

Geotechnical Investigation and Consultation Services

Proposed Vista Loop Apartments Site

Tax Lot No's. 900 and 1000

40808 and 41010 Highway 26

Sandy (Clackamas County), Oregon

for

Roll Tide Property Corporation

Project No. 1861.001.G November 23, 2020

November 23, 2020

Mr. Dave Vandehey Roll Tide Property Corporation P.O. Box 703 Cornelius, Oregon 97113

Dear Mr. Vandehey:

Re: Geotechnical Investigation and Consultation Services, Proposed Vista Loop Apartments Development Site, Tax Lot No's. 900 and 1000, 40808 and 41010 Highway 26, Sandy (Clackamas County), Oregon

Submitted herewith is our report entitled "Geotechnical Investigation and Consultation Services, Proposed Vista Loop Apartments Development Site, Tax Lot No's. 900 and 1000, 40808 and 41010 Highway 26, Sandy (Clackamas County), Oregon". The scope of our services was outlined in our formal discussions with Mr. Carey Sheldon of Sheldon Development, Inc. October 12, 2020. Authorization of our services was provided by Mr. Dave Vandehey of Roll Tide Property Corporation on October 20, 2020.

During the course of our investigation, we have kept you and/or others advised of our schedule and preliminary findings. We appreciate the opportunity to assist you with this phase of the project. Should you have any questions regarding this report, please do not hesitate to call.

Sincerely,

Daniel M. Redmond, P.E., G.E. President/Principal Engineer

Cc: Mr. Ray Moore All County Surveyors & Planners, Inc.

TABLE OF CONTENTS

Page	No.
------	-----

INTRODUCTION	1
PROJECT DESCRIPTION	1
SCOPE OF WORK	2
SITE CONDITIONS	3
Regional and Site Geology	3
Surface Conditions	4
Subsurface Soil Conditions	4
Groundwater	5
INFILTRATION TESTING	5
LABORATORY TESTING	5
SEISMICITY AND EARTHQUAKE SOURCES	6
Liquefaction	7
Landslides	7
Surface Rupture	7
Tsunami and Seiche	7
Flooding and Erosion	8
SLOPE STABILITY ANALYSIS	8
CONCLUSIONS AND RECOMMENDATIONS	9
General	9
Site Preparation	10
Foundation Support	12
Shallow Foundations	12

Table of Contents (continued)

1

Floor Slab Support	12
Retaining/Below Grade Walls	13
Pavements	14
Collector Streets	14
Local Residential Street	15
Private Access Drives and Parking	15
Pavement Subgrade, Base Course & Asphalt Materials	16
Wet Weather Grading and Soft Spot Mitigation	16
Shrink-Swell and Frost Heave	17
Excavations/Slopes	17
Surface Drainage/Groundwater	17
Design Infiltration Rates	18
Seismic Design Considerations	18
CONSTRUCTION MONITORING AND TESTING	19
CLOSURE AND LIMITATIONS	19
LEVEL OF CARE	20
REFERENCES	21
ATTACHMENTS	
Figure No. 1 - Site Vicinity Map	

.

Figure No. 2 - Site Exploration Plan Figure No. 3 - Typical Key and Bench Fill Slope Detail Figure No. 4 - Perimeter Footing/Retaining Wall Drain Detail

Table of Contents (continued)

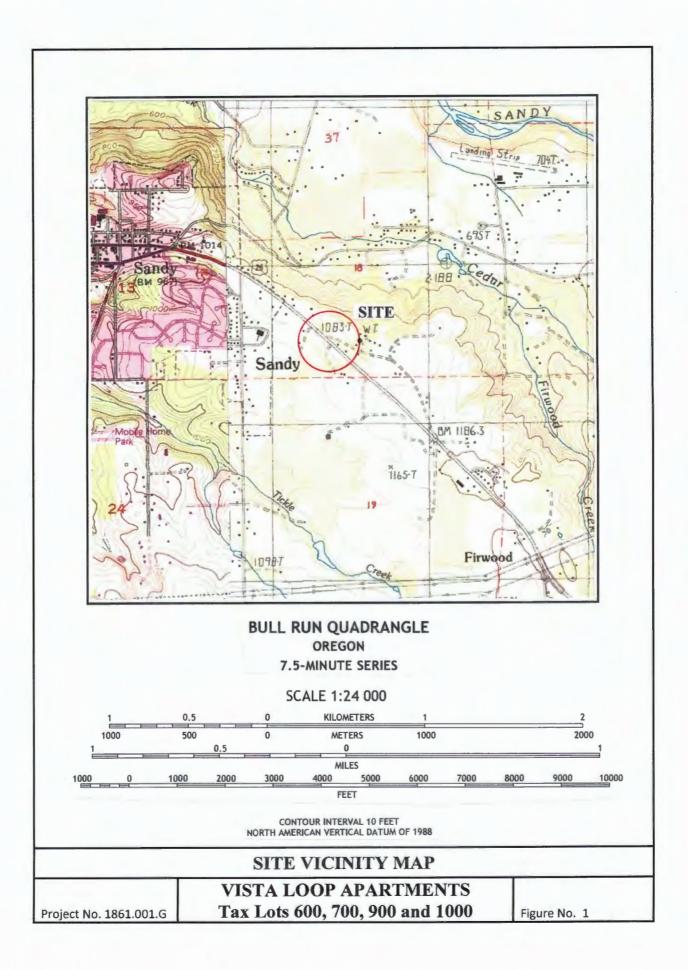
APPENDIX A

Test Pit Logs and Laboratory Data

APPENDIX B

Slope Stability Analysis

GEOTECHNICAL INVESTIGATION AND CONSULTATION SERVICES PROPOSED VISTA LOOP APARTMENTS DEVELOPMENT SITE TAX LOT NO'S. 900 AND 1000 40808 AND 41010 HIGHWAY 26 SANDY (CLACKAMAS COUNTY) OREGON


INTRODUCTION

Redmond Geotechnical Services, LLC is please to submit to you the results of our Geotechnical Investigation and Consultation Services at the site of the proposed new Vista Loop Apartments development project located to the southwest of Highway 26 and the intersection of SE Vista Loop Drive in Sandy (Clackamas County), Oregon. The general location of the subject site is shown on the Site Vicinity Map, Figure No. 1. The purpose of our geotechnical investigation and consultation services at this time was to explore the existing subsurface soils and/or groundwater conditions across the subject site and to evaluate any potential concerns with regard to development at the site as well as to develop and/or provide appropriate geotechnical design and construction recommendations for the proposed new Vista Loop Apartments development project.

PROJECT DESCRIPTION

Based on a review of the proposed site development plan(s), we understand that present plans for the project will consist primarily of the construction of new multi-family apartments. However, due to the current site zoning, the site development may also include the construction of new singlefamily residential homes as well as some mixed use and/or commercial structures. We understand that the multi-family apartments will likely be two- and/or three-story wood-frame structures with a concrete slab-on-grade floor system. However, the single-family lots will likely be developed with new single- and/or two-story wood-frame residential structures with raised wooden post and beam floors. Construction and/or development within the mixed use and/or commercial zoned portion of the property is unknown at this time but is anticipated to result in single- and/or two-story woodframe structures with concrete slab-on-grade floors.

Support of the proposed new multi-family residential structures is anticipated to consist primarily of conventional shallow continuous (strip) footings although some individual (spread) column-type footings may also be required. Additionally, due to the existing sloping site grades and/or the finish slope grades following the site grading activities for the project, we anticipate that some of the proposed new residential homes and/or multi-family structures may be constructed with partial and/or below levels. As such, construction of some below grade retaining walls is also anticipated for the project.

Structural loading information, although unavailable at this time, is anticipated to be fairly typical for this type of single- and/or three-story wood-frame structure and is expected to result in maximum dead plus live continuous (strip) and individual (column) footing loads on the order of about 1.5 to 4.0 kips per lineal foot (klf) and 10 to 50 kips, respectively.

Other associated site improvements for the project will include construction of new paved public streets and/or private access drives and parking areas. Additionally, the project will include the construction of new underground utility services as well as new concrete curbs and sidewalks. Further, we understand that development of the site will also include the collection of storm water from hard and/or impervious surfaces (i.e., roofs and pavements) for on-site treatment and disposal within various storm water detention facilities designed by the Civil Engineer.

Earthwork and grading operations for the project to bring the subject property to finish design grades and/or elevations are unknown at this time. However, based on our past experience with similar types of projects, we envision that the site grading and earthwork for the project will include cuts and/or fills of between five (5) and ten (10) feet.

SCOPE OF WORK

The purpose of our geotechnical studies was to evaluate the overall subsurface soil and/or groundwater conditions underlying the subject site with regard to the proposed new residential development and construction at the site and any associated impacts or concerns with respect to development at the site as well as provide appropriate geotechnical design and construction recommendations for the project. Specifically, our geotechnical investigation included the following scope of work items:

- 1. Review of available and relevant geologic and/or geotechnical investigation reports for the subject site and/or area including a Geotechnical and Slope Stability Investigation for the proposed Vista Loop North and Vista Loop South Subdivisions prepared by GeoPacific Engineering, Inc. dated August 16, 2005.
- 2. A detailed field reconnaissance and subsurface exploration program of the soil and ground water conditions underlying the site by means of eight (8) exploratory test pit excavations. The exploratory test pits were excavated to depths ranging from about six (6) to seven (7) feet beneath existing site grades at the approximate locations as shown on the Site Exploration Plan, Figure No. 2. Additionally, field infiltration testing was also performed within various test pits excavated across the subject site.
- 3. Laboratory testing to evaluate and identify pertinent physical and engineering properties of the subsurface soils encountered relative to the planned site development and construction at the site. The laboratory testing program included tests to help evaluate the natural (field) moisture content and dry density, maximum dry density and optimum moisture content, Atterberg Limits and gradational characteristics, as well as (remolded) direct shear strength and "R"-value tests.

- 4. A literature review and engineering evaluation and assessment of the regional seismicity to evaluate the potential ground motion hazard(s) at the subject site. The evaluation and assessment included a review of the regional earthquake history and sources such as potential seismic sources, maximum credible earthquakes, and reoccurrence intervals as well as a discussion of the possible ground response to the selected design earthquake(s), fault rupture, landsliding, liquefaction, and tsunami and seiche flooding.
- 5. Engineering analyses utilizing the field and laboratory data as a basis for furnishing recommendations for foundation support of the proposed new residential structures. Recommendations include maximum design allowable contact bearing pressure(s), depth of footing embedment, estimates of foundation settlement, lateral soil resistance, and foundation subgrade preparation. Additionally, construction and/or permanent subsurface water drainage considerations have also been prepared. Further, our report includes recommendations regarding site preparation, placement and compaction of structural fill materials, suitability of the on-site soils for use as structural fill, criteria for import fill materials, and preparation of foundation, pavement and/or floor slab subgrades.
- 6. Flexible pavement design and construction recommendations for the proposed new public streets and private access drives and parking area improvements.
- 7. A quantitative limit equilibrium slope stability analysis.

SITE CONDITIONS

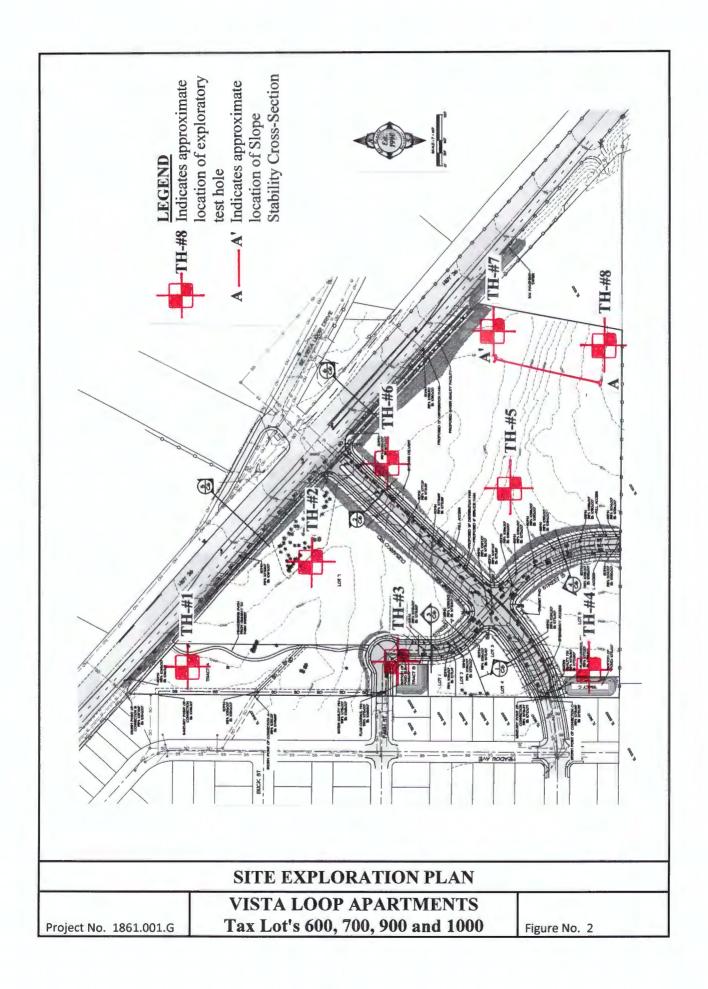
Regional and Site Geology

The subject site and/or area is located on the eastern margin of the Portland Basin near where the basin meets the western edge of the Cascade Mountains physiographic province (Orr and Orr, 1999). Bedrock in this region consists of volcanic rocks emplaced tens of millions of years ago, associated with the Columbia River Basalt Group and with volcanics from the Western Cascades province (Gannet and Caldwell, 1998).

The volcanic basement is overlain by silts, sands and gravels of Miocene to Pleistocene age which form the majority of the basin fill in the area. The basin fill sediments generally are mapped as Sandy River Mudstone towards the lower portion of the assemblage inturn overlain by the Troutdale Formation, a series of gravels, sands and silts deposited by the ancestral Columbia River and smaller rivers flowing from the Cascade Mountains (Schlicker and Finlayson, 1979). In the vicinity of Sandy, the Troutdale Formation is overlain by the Springwater Formation, a conglomerate with some volcaniclastic sands, silts, and debris flows derived from the Cascade Range. The conglomerate consists of gravels, cobbles, and boulders of volcanic composition that are strongly and deeply weathered to completely decomposed residual soils often producing a red, fine-grained soil up to 75 feet deep.

Surface Conditions

The proposed new Vista Loop Apartments development property consists of two (2) generally irregular shaped tax lots (TL's 900 and 1000) which encompass a total plan area of approximately 15.04 acres. The proposed Vista Loop Apartments development property is roughly located to the southwest of Highway 26 and to the southwest of the intersection with SE Vista Loop Drive. The subject property is presently unimproved. However, we understand that the subject property was previously improved and contained two (2) single-family residential homes the northwesterly and southeasterly portions of the subject site. Surface vegetation across the site generally consists of a light to moderate growth of grass, weeds and brush as well as numerous small to large sized trees. Additionally, the northeasterly portion of the subject property contains an existing seasonal drainage basin.


Topographically, the subject site is characterized as gently sloping terrain (i.e., 5 to 30 percent) descending downward towards the north and/or northwest with overall topographic relief estimated at about seventy (70) feet and ranges from a low about Elevation 1052 feet near the northwesterly corner of the subject site to a high of about Elevation 1123 near the southeasterly corner of the site.

Subsurface Soil Conditions

Our understanding of the subsurface soil conditions underlying the site was developed by means of eight (8) exploratory test pits excavated to depths ranging from about six (6) to seven (7) feet beneath existing site grades on October 20, 2020 with a John Deere 200C track-mounted excavator. The location of the exploratory test pits were located in the field by marking off distances from existing and/or known site features and are shown in relation to the existing site features and/or site improvements on the Site Exploration Plan, Figure No. 2. Detailed logs of the test pit explorations, presenting conditions encountered at each location explored, are presented in the Appendix, Figure No's. A-4 through A-7.

The exploratory test pit excavations were observed by staff from Redmond Geotechnical Services, LLC who logged each of the test pit explorations and obtained representative samples of the subsurface soils encountered across the site. Additionally, the elevation of the exploratory test pit excavations were referenced from a site topographic survey and should be considered as approximate. All subsurface soils encountered at the site and/or within the exploratory test pit excavations were logged and classified in general conformance with the Unified Soil Classification System (USCS) which is outlined on Figure No. A-3.

The test pit explorations revealed that the subject site is underlain by native soil deposits comprised of residual soils and/or highly weathered bedrock deposits composed of a surficial layer of dark brown, wet, soft, organic, sandy, clayey silt topsoil materials to depths of about 10 to 16 inches. These surficial topsoil materials were inturn underlain by medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey silt to the maximum depth explored of about seven (7) feet beneath the existing site and/or surface grades.

These sandy, clayey silt subgrade soils and/or residual soils (highly weathered bedrock deposits) are best characterized by relatively moderate strength and low to moderate compressibility.

Groundwater

Groundwater was not encountered within any of the exploratory test pit explorations (TH-#1 through TH-#8) at the time of excavation to depths of at least 7.0 feet beneath existing surface grades except. However, the northerly portion of the subject property contain existing seasonal drainage basin. In this regard, groundwater elevations at the site may fluctuate seasonally in accordance with rainfall conditions and/or associated with runoff across the site as well as changes in site utilization. As such, we are generally of the opinion that the static water levels and/or surface water ponding observed and/or not observed during our recent field exploration work generally reflect the seasonal groundwater level(s) at and/or beneath the site.

INFILTRATION TESTING

We performed two (2) field infiltration tests at the site on October 20, 2020. The infiltration tests were performed in test holes TH-#3 and TH-#4 at depths of between four (4) and five (5) feet beneath the existing site and/or surface grades. The subgrade soils encountered in the infiltration test hole consisted of sandy, clayey silt. The infiltration testing was performed in general conformance with current EPA and/or the City of Sandy/Clackamas County Encased Falling Head test method which consisted of advancing a 6-inch diameter PVC pipe approximately 6 inches into the exposed soil horizon at each test location. Using a steady water flow, water was discharged into the pipe and allowed to penetrate and saturate the subgrade soils. The water level was adjusted over a two (2) hour period and allowed to achieve a saturated subgrade soil condition consistent with the bottom elevation of the surrounding test pit excavation. Following the required saturating period, water was again added into the PVC pipe and the time and/or rate at which the water level dropped was monitored and recorded. Each measurable drop in the water level was recorded until a consistent infiltration rate was observed and/or repeated.

Based on the results of the field infiltration testing at the site, we have found that the native sandy, clayey silt subgrade soil deposits posses an ultimate infiltration rate on the order of about 0.1 to 0.2 inches per hour (in/hr).

LABORATORY TESTING

Representative samples of the on-site subsurface soils were collected at selected depths and intervals from various test pit excavations and returned to our laboratory for further examination and testing and/or to aid in the classification of the subsurface soils as well as to help evaluate and identify their engineering strength and compressibility characteristics. The laboratory testing consisted of visual and textural sample inspection, moisture content and dry density determinations, maximum dry density and optimum moisture content, gradation analyses and Atterberg Limits as well as direct shear strength and "R"-value tests. Results of the various laboratory tests are presented in the Appendix, Figure No's. A-8 through A-12.

SEISMICITY AND EARTHQUAKE SOURCES

The seismicity of the southwest Washington and northwest Oregon area, and hence the potential for ground shaking, is controlled by three separate fault mechanisms. These include the Cascadia Subduction Zone (CSZ), the mid-depth intraplate zone, and the relatively shallow crustal zone. Descriptions of these potential earthquake sources are presented below.

The CSZ is located offshore and extends from northern California to British Columbia. Within this zone, the oceanic Juan de Fuca Plate is being subducted beneath the continental North American Plate to the east. The interface between these two plates is located at a depth of approximately 15 to 20 kilometers (km). The seismicity of the CSZ is subject to several uncertainties, including the maximum earthquake magnitude and the recurrence intervals associated with various magnitude earthquakes. Anecdotal evidence of previous CSZ earthquakes has been observed within coastal marshes along the Washington and Oregon coastlines. Sequences of interlayered peat and sands have been interpreted to be the result of large Subduction zone earthquakes occurring at intervals on the order of 300 to 500 years, with the most recent event taking place approximately 300 years ago. A study by Geomatrix (1995) and/or USGS (2008) suggests that the maximum earthquake associated with the CSZ is moment magnitude (Mw) 8 to 9. This is based on an empirical expression relating moment magnitude to the area of fault rupture derived from earthquakes that have occurred within Subduction zones in other parts of the world. An Mw 9 earthquake would involve a rupture of the entire CSZ. As discussed by Geomatrix (1995) this has not occurred in other subduction zones that have exhibited much higher levels of historical seismicity than the CSZ. However, the 2008 USGS report has assigned a probability of 0.67 for a Mw 9 earthquake and a probability of 0.33 for a Mw 8.3 earthquake. For the purpose of this study an earthquake of Mw 9.0 was assumed to occur within the CSZ.

The intraplate zone encompasses the portion of the subducting Juan de Fuca Plate located at a depth of approximately 30 to 50 km below western Washington and western Oregon. Very low levels of seismicity have been observed within the intraplate zone in western Oregon and western Washington. However, much higher levels of seismicity within this zone have been recorded in Washington and California. Several reasons for this seismic quiescence were suggested in the Geomatrix (1995) study and include changes in the direction of Subduction between Oregon, Washington, and British Columbia as well as the effects of volcanic activity along the Cascade Range. Historical activity associated with the intraplate zone includes the 1949 Olympia magnitude 7.1 and the 1965 Puget Sound magnitude 6.5 earthquakes. Based on the data presented within the Geomatrix (1995) report, an earthquake of magnitude 7.25 has been chosen to represent the seismic potential of the intraplate zone.

The third source of seismicity that can result in ground shaking within the Vancouver and southwest Washington area is near-surface crustal earthquakes occurring within the North American Plate. The historical seismicity of crustal earthquakes in this area is higher than the seismicity associated with the CSZ and the intraplate zone. The 1993 Scotts Mills (magnitude 5.6) and Klamath Falls (magnitude 6.0), Oregon earthquakes were crustal earthquakes.

Liquefaction

Seismic induced soil liquefaction is a phenomenon in which lose, granular soils and some silty soils, located below the water table, develop high pore water pressures and lose strength due to ground vibrations induced by earthquakes. Soil liquefaction can result in lateral flow of material into river channels, ground settlements and increased lateral and uplift pressures on underground structures. Buildings supported on soils that have liquefied often settle and tilt and may displace laterally. Soils located above the ground water table cannot liquefy, but granular soils located above the water table may settle during the earthquake shaking.

Our review of the subsurface soil test pit logs from our exploratory field explorations (TH-#1 through TH-#8) and laboratory test results indicate that the site is generally underlain by medium stiff to stiff, sandy, clayey silt residual soils and/or highly weathered bedrock deposits to depths of at least 7.0 feet beneath existing site grades. Additionally, groundwater was generally not encountered within any of the exploratory test pit excavations (TH-#1 through TH-#8) at the site during our field exploration work.

As such, due to the medium stiff to stiff and/or cohesive nature of the sandy, clayey silt subgrade soils and/or highly weathered bedrock deposits beneath the site, it is our opinion that the native clayey, sandy silt subgrade soil and/or highly weathered bedrock deposits located beneath the subject site have a very low potential for liquefaction during the design earthquake motions previously described.

Landslides

No ancient and/or active landslides were observed or are known to be present on the subject site. Additionally, the subject property does not contain any steep slopes (i.e., greater than 40 percent). As such, development of the subject site into the planned residential development does not appear to present a potential geologic and/or landslide hazard provided that the site grading and development activities conform with the recommendations presented within this report.

Surface Rupture

Although the site is generally located within a region of the country known for seismic activity, no known faults exist on and/or immediately adjacent to the subject site. As such, the risk of surface rupture due to faulting is considered negligible.

Tsunami and Seiche

A tsunami, or seismic sea wave, is produced when a major fault under the ocean floor moves vertically and shifts the water column above it. A seiche is a periodic oscillation of a body of water resulting in changing water levels, sometimes caused by an earthquake. Tsunami and seiche are not considered a potential hazard at this site because the site is not near to the coast and/or there are no adjacent significant bodies of water.

Flooding and Erosion

Stream flooding is a potential hazard that should be considered in lowland areas of Clackamas County and Sandy. The FEMA (Federal Emergency Management Agency) flood maps should be reviewed as part of the design for the proposed new residential structures and site improvements. Elevations of structures on the site should be designed based upon consultants reports, FEMA (Federal Emergency Management Agency), and Clackamas County requirements for the 100-year flood levels of any nearby creeks, streams and/or drainage basins.

SLOPE STABILITY ANALYSIS

For the purpose of evaluating slope stability at the subject site, we performed quantitative slope stability modeling and analyses based upon the existing site conditions and/or the proposed site development plan.

Quantitative slope stability modeling and analyses were performed to evaluate slope stability on the site under the existing and/or post construction in-situ conditions using Slide 7.0 computer program developed by Rocscience, Inc. of Toronto, Ontario, Canada. This numerical analysis program utilizes a two-dimensional limiting equilibrium method to calculate the factor of safety of a potential slip surface, and incorporates search routines to identify the most critical potential failure surfaces for the case(s) analyzed. Factors of safety were calculated using Bishop and Janbu method of slices.

Proposed residential development at the subject site is anticipated to be constructed at and/or above the existing in-situ soil conditions of the existing gently descending slope(s) at the site and were modeled as a two (2) layer system with the upper layer as native, stiff, sandy, clayey silt soil and the lower layer as the existing (native) very moist, very stiff, sandy, clayey silt and/or residual soils encountered in test holes TH-#1 through TH-#8. Site and slope topography, subsurface geometry, and other site conditions modeled in the analyses are based on a topographic map provided by the client and/or our field measurements. In our analysis, we considered potential groundwater levels to be located greater than 30 feet beneath the site.

For stability calculations, the potential failure model was considered primarily as circular sliding along a basal shear surface. Shear strength parameters used in the model were selected based on soil conditions encountered in the test pits, SPT N-value correlations, and our local experience with similar soil types and geologic conditions. The results of our slope stability analyses for the proposed single-family residential structures constructed above the in-situ subgrade soil conditions on structural fill soils are summarized in Table 2. The slope stability analyses cross-section is presented as an attachment to this report in Appendix B. The location of the cross-section used is indicated on the Site Exploration Plan, Figure No. 2.

Geologic Unit	Wet Unit Weight (pcf)	Friction Angle	Cohesion (psf)	
Stiff, andy, clayey SILT (ML)	110	24	450	
Very stiff, sandy, clayey SILT (ML)	110	26	350	

Table 1 - Summary of Estimated In-Situ/Fill Soil Strength Parameters

Table 2 - Summary of Slope Stability Analyses for In-Situ/Fill Soil Conditions with Proposed Development

Pre-Construction	Factor of Safety (Static)	Factor of Safety (Seismic)	
Cross-Section A-A'	4.626	1.857	

The results of the quantitative slope stability modeling and analysis performed using Slide 7.0 computer program indicated an existing in-situ and/or post construction slope stability factor of safety (FS) under static and seismic loading greater than 1.5 and 1.2 (see Slope Stability Results in Appendix B). In our opinion, the calculated factor of safety is adequate for the proposed residential construction and development of the subject site as we understand it.

CONCLUSIONS AND RECOMMENDATIONS

General

Based on the results of our field explorations, laboratory testing, and engineering analyses, it is our opinion that the site is presently stable and suitable for the proposed new Vista Loop Apartments development and its associated site improvements provided that the recommendations contained within this report are properly incorporated into the design and construction of the Vista Loop Apartments development project.

The primary features of concern at the site are 1) the presence of highly moisture sensitive clayey and silty subgrade soils across the site, 2) the presence of gently steep sloping site conditions across the site and 3) the relatively low infiltration rates anticipated within the near surface clayey and silty subgrade soils.

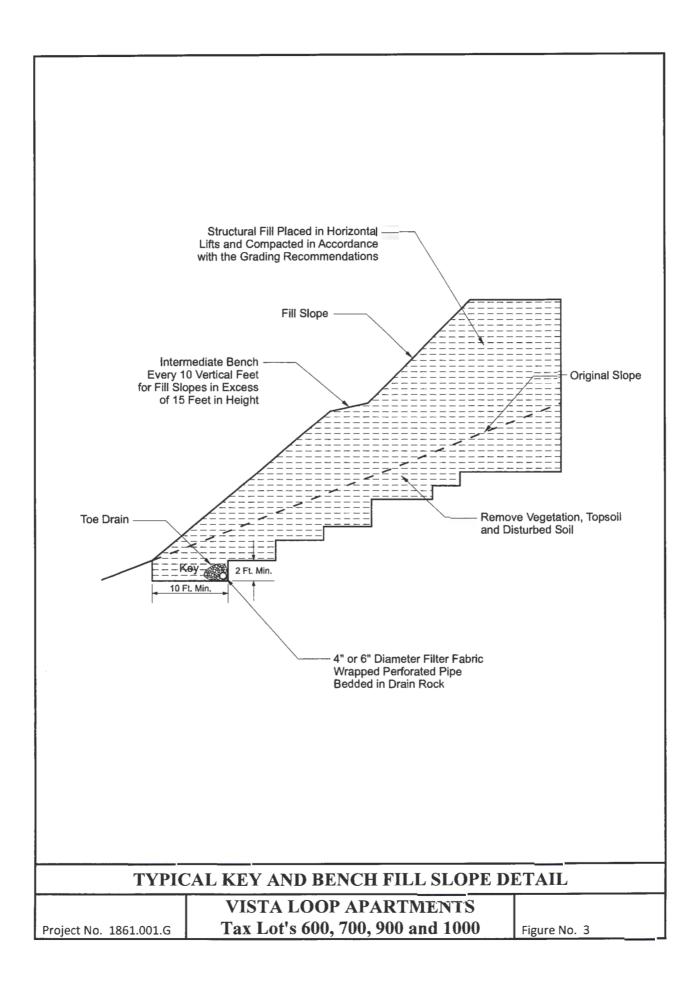
With regard to the moisture sensitive clayey and silty subgrade soils, we are generally of the opinion that all site grading and earthwork activities be scheduled for the drier summer months which is typically June through September.

In regards to the gently sloping site conditions across the site, we are of the opinion that site grading and/or structural fill placement should be minimized where possible and should generally limit cuts and/or fills to about ten (10) feet unless approved by the Geotechnical Engineer. Additionally, where existing site slopes and/or surface grades exceed about 20 percent (1V:5H) and in order to construct the proposed new site improvements, benching and keying of all fills into the natural site slopes will be required. Further, due to the presence of the existing seasonal drainage basin across the northerly portion of the site, the use of subdrains may be required beneath all structural fills and/or within all fill slopes

With regard to the relatively low infiltration rates anticipated within the clayey and silty subgrade soils beneath the site, we generally do not recommend any storm water detention and/or infiltration within structural and/or embankment fills. However, storm water detention and some infiltration may be feasible within storm water detention basins excavated into the existing medium stiff to stiff, sandy, clayey silt residual soils across the lower westerly portion of the site. In this regard, we recommend that all proposed storm water detention and/or infiltration systems for the project be reviewed and approved by Redmond Geotechnical Services, LLC.

The following sections of this report provide specific recommendations regarding subgrade preparation and grading as well as foundation and floor slab design and construction for the new Vista Loop Apartments development project.

Site Preparation


As an initial step in site preparation, we recommend that the proposed new Vista Loop Apartments development site as well as any associated structural and/or site improvement area(s) be stripped and cleared of all existing improvements, any existing unsuitable fill materials, surface debris, existing vegetation, topsoil materials, and/or any other deleterious materials present at the time of construction. In general, we envision that the site stripping to remove existing vegetation and topsoil materials will generally be about 10 to 14 inches. However, localized areas requiring deeper removals, such as any existing undocumented and/or unsuitable fill materials as well as old foundation remnants, will likely be encountered and should be evaluated at the time of construction by the Geotechnical Engineer. The stripped and cleared materials should be properly disposed of as they are generally considered unsuitable for use/reuse as fill materials.

Following the completion of the site stripping and clearing work and prior to the placement of any required structural fill materials and/or structural improvements, the exposed subgrade soils within the planned structural improvement area(s) should be inspected and approved by the Geotechnical Engineer and possibly proof-rolled with a half and/or fully loaded dump truck. Areas found to be soft or otherwise unsuitable should be over-excavated and removed or scarified and recompacted as structural fill. During wet and/or inclement weather conditions, proof rolling and/or scarification and recompaction as noted above may not be appropriate.

The on-site native sandy, clayey silt subgrade soil materials are generally considered suitable for use/reuse as structural fill materials provided that they are free of organic materials, debris, and rock fragments in excess of about 6 inches in dimension. However, if site grading is performed during wet or inclement weather conditions, the use of some of the on-site native soil materials which contain significant silt and clay sized particles will be difficult at best. In this regard, during wet or inclement weather conditions, we recommend that an import structural fill material be utilized which should consist of a free-draining (clean) granular fill (sand & gravel) containing no more than about 5 percent fines. Representative samples of the materials which are to be used as structural fill materials should be submitted to the Geotechnical Engineer and/or laboratory for approval and determination of the maximum dry density and optimum moisture content for compaction.

In general, all site earthwork and grading activities should be scheduled for the drier summer months (June through September) if possible. However, if wet weather site preparation and grading is required, it is generally recommended that the stripping of topsoil materials be accomplished with a tracked excavator utilizing a large smooth-toothed bucket working from areas yet to be excavated. Additionally, the loading of strippings into trucks and/or protection of moisture sensitive subgrade soils will also be required during wet weather grading and construction. In this regard, we recommend that areas in which construction equipment will be traveling be protected by covering the exposed subgrade soils with a geotextile fabric such as Mirafi FW404 followed by at least 12 inches or more of crushed aggregate base rock. Further, the geotextile fabric should have a minimum Mullen burst strength of at least 250 pounds per square inch for puncture resistance and an apparent opening size (AOS) between the U.S. Standard No. 70 and No. 100 sieves.

All structural fill materials placed within the new building and/or pavement areas should be moistened or dried as necessary to near (within 3 percent) optimum moisture conditions and compacted by mechanical means to a minimum of 92 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Structural fill materials should be placed in lifts (layers) such that when compacted do not exceed about 8 inches. Additionally, all fill materials placed within five (5) lineal feet of the perimeter (limits) of the proposed single-family and/or multi-family structures and/or pavements should be considered structural fill. Additionally, due to the sloping site conditions, we recommend that all structural fill materials planned in areas where existing surface and/or slope gradients exceed about 20 percent (1V:5H) be properly benched and/or keyed into the native (natural) slope subgrade soils. In general, a bench width of about eight (8) to ten (10) feet and a keyway depth of about one (1) to one and one-half (1.5) feet is recommended (see Typical Key and Bench Fill Slope Detail, Figure No. 3). However, the actual bench width and keyway depth should be determined at the time of construction by the Geotechnical Engineer. Further, all fill slopes should be constructed with a finish slope surface gradient no steeper than about 2H:1V. All aspects of the site grading, including a review of the proposed site grading plan(s), should be approved and/or monitored by a representative of Redmond Geotechnical Services, LLC.

Foundation Support

Based on the results of our investigation, it is our opinion that the site of the proposed new Vista Loop Apartments development is suitable for support of the planned single- and/or three-story wood-frame structures provided that the following foundation design recommendations are followed. The following sections of this report present specific foundation design and construction recommendations for the planned new single-family and/or multi-family structures.

Shallow Foundations

In general, conventional shallow continuous (strip) footings and individual (spread) column footings may be supported by approved native (untreated) subgrade soil materials and/or clayey silt structural fill soils based on an allowable contact bearing pressure of about 2,000 pounds per square foot (psf). This recommended allowable contact bearing pressure is intended for dead loads and sustained live loads and may be increased by one-third for the total of all loads including short-term wind or seismic loads. In general, continuous strip footings should have a minimum width of at least 16 inches and be embedded at least 18 inches below the lowest adjacent finish grade (includes frost protection). Individual column footings (where required) should be embedded at least 18 inches below grade and have a minimum width of at least 24 inches. Additionally, if foundation excavation and construction work is planned to be performed during wet and/or inclement weather conditions, we recommend that a 2- to 4-inch layer of compacted crushed rock be used to help protect the exposed foundation bearing surfaces until the placement of concrete.

Total and differential settlements of foundations constructed as recommended above and supported by approved native subgrade soils or by properly compacted structural fill materials are expected to be well within the tolerable limits for this type of wood-frame structure and should generally be less than about 1-inch and 1/2-inch, respectively.

Allowable lateral frictional resistance between the base of the footing element and the supporting subgrade bearing soil can be expressed as the applied vertical load multiplied by a coefficient of friction of 0.30 and 0.45 for native silty subgrade soils and/or import gravel fill materials, respectively. In addition, lateral loads may be resisted by passive earth pressures on footings poured "neat" against in-situ (native) subgrade soils or properly backfilled with structural fill materials based on an equivalent fluid density of 300 pounds per cubic foot (pcf). This recommended value includes a factor of safety of approximately 1.5 which is appropriate due to the amount of movement required to develop full passive resistance.

Floor Slab Support

In order to provide uniform subgrade reaction beneath concrete slab-on-grade floors, we recommend that the floor slab area be underlain by a minimum of 6 inches of free-draining (less than 5 percent passing the No. 200 sieve), well-graded, crushed rock. The crushed rock should help provide a capillary break to prevent migration of moisture through the slab.

However, additional moisture protection can be provided by using a 10-mil polyolefin geomembrane sheet such as StegoWrap.

The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Where floor slab subgrade materials are undisturbed, firm and stable and where the underslab aggregate base rock section has been prepared and compacted as recommended above, we recommend that a modulus of subgrade reaction of 150 pci be used for design.

Retaining/Below Grade Walls

Retaining and/or below grade walls should be designed to resist lateral earth pressures imposed by native soils or granular backfill materials as well as any adjacent surcharge loads. For walls which are unrestrained at the top and free to rotate about their base, we recommend that active earth pressures be computed on the basis of the following equivalent fluid densities:

Slope Backfill (Horizontal/Vertical)	Equivalent Fluid Density/Silt (pcf)	Equivalent Fluid Density/Gravel (pcf)	
Level	35	30	
3H:1V	60	50	
2H:1V	90	80	

Non-Restrained Retaining Wall Pressure Design Recommendations

For walls which are fully restrained at the top and prevented from rotation about their base, we recommend that at-rest earth pressures be computed on the basis of the following equivalent fluid densities:

Restrained Retaining Wall Pressure Design Recommendations

Slope Backfill (Horizontal/Vertical)	Equivalent Fluid Density/Silt (pcf)	Equivalent Fluid Density/Gravel (pcf)
Level	45	35
3H:1V	65	60
2H:1V	95	90

The above recommended values assume that the walls will be adequately drained to prevent the buildup of hydrostatic pressures. Where wall drainage will not be present and/or if adjacent surcharge loading is present, the above recommended values will be significantly higher. For seismic loading, we recommend an additional uniform earth pressure of 8H where H is the height of the wall in feet.

Backfill materials behind walls should be compacted to 90 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Special care should be taken to avoid over-compaction near the walls which could result in higher lateral earth pressures than those indicated herein. In areas within three (3) to five (5) feet behind walls, we recommend the use of hand-operated compaction equipment.

Pavements

Flexible pavement design for the proposed new public street improvements as well as the proposed new private drives and parking area improvements for the Vista Loop Apartments development was determined in accordance with the City of Sandy and/or Clackamas County Department of Public Works standards.

The subgrade soil samples collected at the site were tested in the laboratory in accordance with the ASTM Vol. 4.08 Part D-2844-69 (AASHTO T-190-93) test method for the determination of the subgrade soil "R"-value and expansion pressure. The results of the "R"-value testing was then converted to an equivalent Resilient Modulus (MRsG) in accordance with current AASHTO methodology. The results of the laboratory "R"-value tests revealed that the subgrade soils have an apparent "R"-value of between 29 and 31 with an average "R"-value of 30 (see Figure No. A-12). Using the current AASHTO methodology for converting "R"-value to Resilient Modulus (MRsG), the subgrade soils have a Resilient Modulus (MRsG) of about 6,070 psi which is classified a "Fair" (MRsG = 5,000 psi to 10,000 psi). Based on the above, we recommend that the asphaltic concrete pavement section(s) for the new The Views planned development areas at the site consist of the following:

Collector Streets

The following documents and/or design input parameters were used to help determine the flexible pavement section design for improvements to new and/or existing Collector Streets:

- . Street Classification: Collector Street
- . Design Life: 20 years
- . Serviceability: 4.2 initial, 2.5 terminal
- . Traffic Loading Data: 1,000,000 18-kip EAL's
- . Reliability Level: 90%
- . Drainage Coefficient: 1.0 (asphalt), 0.8 (aggregate)
- . Asphalt Structural Coefficient: 0.41
- . Aggregate Structural Coefficient: 0.10

Based on the above design input parameters and using the design procedures contained within the AASHTO 1993 Design of Pavement Structures Manual, a Structural Number (SN) of 4.1 was determined. In this regard, we recommend the following flexible pavement section for the new improvements to new and/or existing Collector Streets:

Material Type	Pavement Section (inches)		
Asphaltic Concrete	5.0		
Aggregate Base Rock	14.0		

Local Residential Streets

The following documents and/or design input parameters were used to help determine the flexible pavement section design for new local residential streets:

- . Street Classification: Local Residential Street
- . Design Life: 25 years
- . Serviceability: 4.2 initial, 2.5 terminal
- . Traffic Loading Data: 100,000 18-kip EAL's
- . Reliability Level: 90%
- . Drainage Coefficient: 1.0 (asphalt), 0.8 (aggregate)
- . Asphalt Structural Coefficient: 0.41
- . Aggregate Structural Coefficient: 0.10

Based on the above design input parameters and using the design procedures contained within the AASHTO 1993 Design of Pavement Structures Manual, a Structural Number (SN) of 2.6 was determined. In this regard, we recommend the following flexible pavement section for the construction of new Local Residential Streets:

Material Type	Pavement Section (inches)
Asphaltic Concrete	4.0
Aggregate Base Rock	10.0

Private Access Drives and Parking Areas

We recommend that the asphaltic concrete pavement section(s) for any private access drives and parking areas associated with The Views planned development areas consist of the following:

	Asphaltic Concrete Thickness (inches)	Crushed Base Rock Thickness (inches)		
Automobile Parking Areas	3.0	8.0		
Automobile Drive Areas	3.5	10.0		

Note: Where heavy vehicle traffic is anticipated such as those required for fire and/or garbage trucks, we recommend that the automobile drive area pavement section be increased by adding 0.5 inches of asphaltic concrete and 2.0 inches of aggregate base rock. Additionally, the above recommended flexible pavement section(s) assumes a design life of 20 years.

Pavement Subgrade, Base Course & Asphalt Materials

The above recommended pavement section(s) were based on the design assumptions listed herein and on the assumption that construction of the pavement section(s) will be completed during an extended period of reasonably dry weather. All thicknesses given are intended to be the minimum acceptable. Increased base rock sections and the use of a woven geotextile fabric may be required during wet and/or inclement weather conditions and/or in order to adequately support construction traffic and protect the subgrade during construction. Additionally, the above recommended pavement section(s) assume that the subgrade will be prepared as recommended herein, that the exposed subgrade soils will be properly protected from rain and construction traffic, and that the subgrade is firm and unyielding at the time of paving. Further, it assumes that the subgrade is graded to prevent any ponding of water which may tend to accumulate in the base course.

Pavement base course materials should consist of well-graded 1-1/2 inch and/or 3/4-inch minus crushed base rock having less than 5 percent fine materials passing the No. 200 sieve. The base course and asphaltic concrete materials should conform to the requirements set forth in the latest edition of the Oregon Department of Transportation, Standard Specifications for Highway Construction. The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. The asphaltic concrete paving materials should be compacted to at least 92 percent of the theoretical maximum density as determined by the ASTM D-2041 (Rice Gravity) test method.

Wet Weather Grading and Soft Spot Mitigation

Construction of the proposed new paved site improvements is generally recommended during dry weather. However, during wet weather grading and construction, excavation to subgrade can proceed during periods of light to moderate rainfall provided that the subgrade remains covered with aggregate. A total aggregate thickness of 8- to 12-inches may be necessary to protect the subgrade soils from heavy construction traffic. Construction traffic should not be allowed directly on the exposed subgrade but only atop a sufficient compacted base rock thickness to help mitigate subgrade pumping. If the subgrade becomes wet and pumps, no construction traffic shall be allowed on the road alignment. Positive site drainage shall be maintained if site paving will not occur before the on-set of the wet season.

Depending on the timing for the project, any soft subgrade found during proof-rolling or by visual observations can either be removed and replaced with properly dried and compacted fill soils or removed and replaced with compacted crushed aggregate. However, and where approved by the Geotechnical Engineer, the soft area may be covered with a bi-axial geogrid and covered with compacted crushed aggregate.

Soil Shrink-Swell and Frost Heave

The results of the laboratory "R"-value tests indicate that the native subgrade soils possess a low to moderate expansion potential. As such, the exposed subgrade soils should not be allowed to completely dry and should be moistened to near optimum moisture content (plus or minus 3 percent) at the time of the placement of the crushed aggregate base rock materials. Additionally, exposure of the subgrade soils to freezing weather may result in frost heave and softening of the subgrade. As such, all subgrade soils exposed to freezing weather should be evaluated and approved by the Geotechnical Engineer prior to the placement of the crushed aggregate base rock materials.

Excavation/Slopes

Temporary excavations of up to about four (4) feet in depth may be constructed with near vertical inclinations. Temporary excavations greater than about four (4) feet but less than eight (8) feet should be excavated with inclinations of at least 1 to 1 (horizontal to vertical) or properly braced/shored. Where excavations are planned to exceed about eight (8) feet, this office should be consulted. All shoring systems and/or temporary excavation bracing for the project should be the responsibility of the excavation contractor. Permanent slopes should be constructed no steeper than about 2H to 1V unless approved by the Geotechnical Engineer.

Depending on the time of year in which trench excavations occur, trench dewatering may be required in order to maintain dry working conditions if the invert elevations of the proposed utilities are located at and/or below the groundwater level. If groundwater is encountered during utility excavation work, we recommend placing trench stabilization materials along the base of the excavation.

Trench stabilization materials should consist of 1-foot of well-graded gravel, crushed gravel, or crushed rock with a maximum particle size of 4 inches and less than 5 percent fines passing the No. 200 sieve. The material should be free of organic matter and other deleterious material and placed in a single lift and compacted until well keyed.

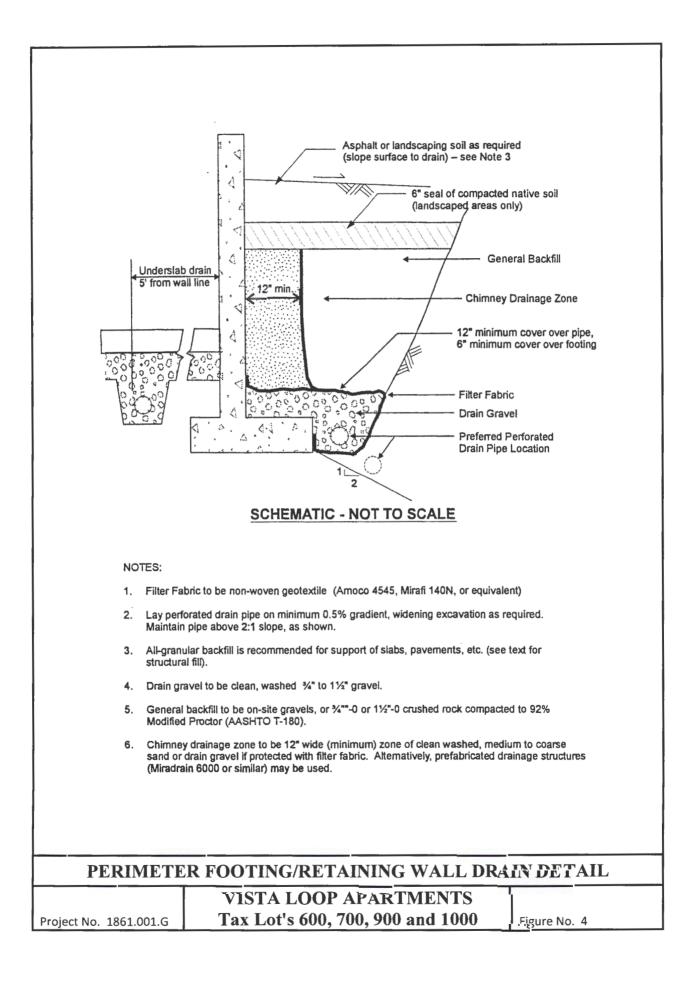
Surface Drainage/Groundwater

We recommend that positive measures be taken to properly finish grade the site so that drainage waters from the residential structures and landscaping areas as well as adjacent properties or buildings are directed away from the new single- and/or multi-family residential structures foundations and/or floor slabs. All roof drainage should be directed into conduits that carry runoff water away from the residential structures to a suitable outfall. Roof downspouts should not be connected to foundation drains. A minimum ground slope of about 2 percent is generally recommended in unpaved areas around the proposed new residential structures.

Groundwater was not encountered at the site within any of the exploratory test pits excavated at the site at the time of excavation to depths of up to 8.0 feet beneath existing site grades. However, the northerly, easterly and southerly portion(s) of the site contain existing seasonal drainage basins. Further, groundwater elevations in the area and/or across the subject property may fluctuate seasonally and may temporarily pond/perch near the ground surface during periods of prolonged rainfall.

As such, based on our current understand of the possible site grading required to bring the subject site to finish design grade(s), we are of the opinion that an underslab drainage system is generally not required for the proposed multi-family residential structures. However, a perimeter foundation drain is recommended for any perimeter footings and/or below grade retaining walls. A typical recommended perimeter footing/retaining wall drain detail is shown on Figure No. 4. Additionally, a subdrain is recommended beneath and/or within all structural fills which are constructed within and/or above the existing seasonal drainage basins. Further, due to our understanding that various storm water detention and/or infiltration basins will be utilized for the project as well as the relatively low infiltration rates of the near surface sandy, clayey silt subgrade soils and/or highly weathered bedrock deposits anticipated within and/or near to the foundation bearing level of the proposed residential structures, we are generally of the opinion that storm water detention basins and/or infiltration systems should not be utilized around and/or up-gradient of the proposed residential structures unless approved by the Geotechnical Engineer.

Design Infiltration Rates


Based on the results of our field infiltration testing, we recommend using the following infiltration rate to design any on-site near surface storm water infiltration and/or disposal systems for the project:

Subgrade Soil Type	Recommended Infiltration Rate			
sandy, clayey SILT (ML)	less than 0.1 inches per hour (in/hr)			

Note: A safety factor of two (2) was used to calculate the above recommended design infiltration rate. Additionally, given the gradational variability of the on-site sandy, clayey sit subgrade soils beneath the site as well as the anticipation of some site grading for the project, it is generally recommended that field testing be performed during and/or following construction of any on-site storm water infiltration system(s) in order to confirm that the above recommended design infiltration rates are appropriate.

Seismic Design Considerations

Structures at the site should be designed to resist earthquake loading in accordance with the methodology described in the 2019 and/or latest edition of the State of Oregon Structural Specialty Code (OSSC), ASCE 7-16 and/or Amendments to the 2018 International Building Code (IBC).

The maximum considered earthquake ground motion for short period and 1.0 period spectral response may be determined from the Oregon Structural Specialty Code, ASCE 7-16 and/or from the 2015 National Earthquake Hazard Reduction Program (NEHRP) "Recommended Provisions for Seismic Regulations for New Buildings and Other Structures" published by the Building Seismic Safety Council. We recommend Site Class "D" be used for design. Using this information, the structural engineer can select the appropriate site coefficient values (Fa and Fv) from the 2018 IBC and/or ASCE 7-16 to determine the maximum considered earthquake spectral response acceleration for the project. However, we have assumed the following response spectrum for the project:

Table 1. ASCE 7-16 Seismic Design Parameters

Site Class	Ss	S1	Fa	Fv	Sms	Sm1	Sds	Sd1
D	0.705	0.314	1.236	1.986	0.871	0.623	0.581	0.416

Notes: 1. Ss and S1 were established based on the ASCE 7-16 mapped maximum considered earthquake spectral acceleration maps for 2% probability of exceedence in 50 years.

2. Fa and Fv were established based on the ASCE 7-16 using the selected Ss and S1 values.

CONSTRUCTION MONITORING AND TESTING

We recommend that **Redmond Geotechnical Services**, **LLC** be retained to provide construction monitoring and testing services during all earthwork operations for the proposed new Vista Loop Apartments development. The purpose of our monitoring services would be to confirm that the site conditions reported herein are as anticipated, provide field recommendations as required based on the actual conditions encountered, document the activities of the grading contractor and assess his/her compliance with the project specifications and recommendations. It is important that our representative meet with the contractor prior to any site grading to help establish a plan that will minimize costly over-excavation and site preparation work. Of primary importance will be observations made during site preparation and stripping, structural fill placement, footing excavations and construction as well as retaining wall backfill.

CLOSURE AND LIMITATIONS

This report is intended for the exclusive use of the addressee and/or their representative(s) to use to design and construct the proposed new single- and/or multi-family residential structures and their associated site improvements described herein as well as to prepare any related construction documents. The conclusions and recommendations contained in this report are based on site conditions as they presently exist and assume that the explorations are representative of the subsurface conditions between the explorations and/or at other locations across the study area. The data, analyses, and recommendations herein may not be appropriate for other structures and/or purposes.

We recommend that parties contemplating other structures and/or purposes contact our office. In the absence of our written approval, we make no representation and assume no responsibility to other parties regarding this report. Additionally, the above recommendations are contingent on Redmond Geotechnical Services, LLC being retained to provide all site inspections and constriction monitoring services for this project. Redmond Geotechnical Services, LLC will not assume any responsibility and/or liability for any engineering judgment, inspection and/or testing services performed by others.

It is the owners/developers responsibility for insuring that the project designers and/or contractors involved with this project implement our recommendations into the final design plans, specifications and/or construction activities for the project. Further, in order to avoid delays during construction, we recommend that the final design plans and specifications for the project be reviewed by our office to evaluate as to whether our recommendations have been properly interpreted and incorporated into the project.

If during any future site grading and construction, subsurface conditions different from those encountered in the explorations are observed or appear to be present beneath excavations, we should be advised immediately so that we may review these conditions and evaluate whether modifications of the design criteria are required. We also should be advised if significant modifications of the proposed site development are anticipated so that we may review our conclusions and recommendations.

LEVEL OF CARE

The services performed by the Geotechnical Engineer for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in the area under similar budget and time restraints. No warranty or other conditions, either expressed or implied, is made.

REFERENCES

Adams, John, 1984, Active Deformation of the Pacific Northwest Continental Margin: Tectonics, v.3, no. 4, p. 449-472.

Applied Technology Council, ATC-13, 1985, Earthquake Damage Evaluation Data for California.

Atwater, B.F., 1992, Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington: Journal of Geophysical Research, v. 97, p. 1901-1919.

Atwater, B.F., 1987a, A periodic Holocene recurrence of widespread, probably coseismic Subsidence in southwestern Washington: EOS, v. 68, no. 44.

Atwater, B.F., 1987b, Evidence for great Holocene earthquakes along the outer coast of Washington State: Science, v. 236, no. 4804, pp. 942-944.

Campbell, K.W., 1990, Empirical prediction of near-surface soil and soft-rock ground motion for the Diablo Canyon Power Plant site, San Luis Obispo County, California: Dames & Moore report to Lawrence Livermore National Laboratory.

Carver, G.A., and Burke, R.M., 1987, Late Holocene paleoseismicity of the southern end of the Cascadia Subduction zone [abs.]: EOS, v. 68, no. 44, p. 1240.

Chase, R.L., Tiffin, D.L., Murray, J.W., 1975, The western Canadian continental margin: In Yorath, C.J., Parker, E.R., Glass, D.J., editors, Canada's continental margins and offshore petroleum exploration: Canadian Society of Petroleum Geologists Memoir 4, p. 701-721.

Crouse, C.B., 1991a, Ground motion attenuation equations for earthquakes on the Cascadia Subduction Zone: Earthquake Spectra, v. 7, no. 2, pp. 201-236.

Crouse, C.B., 1991b, Errata to Crouse (1991a), Earthquake Spectra, v. 7, no. 3, p. 506.

Darienzo, M.E., and Peterson, C.D., 1987, Episodic tectonic subsidence recorded in late Holocene salt marshes, northern Oregon central Cascadia margin: Tectonics, v. 9, p. 1-22.

Darienzo, M.E., and Peterson, C.D., 1987, Episodic tectonic subsidence recorded in late Holocene salt marshes northwest Oregon [abs]: EOS, v. 68, no. 44, p. 1469.

EERI (Earthquake Engineering Research Institute), 1993, The March 25, 1993, Scotts Mill Earthquake, Western Oregon's Wake-Up Call: EERI Newsletter, Vol. 27, No. 5, May.

Geomatrix, 1995 Seismic Design Mapping, State of Oregon: Final Report to Oregon Department of Transportation, January.

Geologic Map Series (GMS-49), Map of Oregon Seismicity, 1841-1986 dated 1986.

Geologic Map Series (GMS-97), Geologic Map of the Damascus Quadrangle, Clackamas County, Oregon dated 1995.

Grant, W.C., and McLaren, D.D., 1987, Evidence for Holocene Subduction earthquakes along the northern Oregon coast [abs]: EOS v. 68, no. 44, p. 1239.

Grant, W.C., Atwater, B.F., Carver, G.A., Darienzo, M.E., Nelson, A.R., Peterson, C.D., and Vick, G.S., 1989, Radiocarbon dating of late Holocene coastal subsidence above the Cascadia Subduction zone-compilation for Washington, Oregon, and northern California, [abs]: EOS Transactions of the American Geophysical Union, v. 70, p. 1331.

International Conference of Building Officials (ICBO), 1994, Uniform Building Code: 1994 Edition, Whittier, CA. 1994.

Joyner, W.B., and Boore, D.M., 1998, Measurement, characterization and prediction of strong ground motion: Earthquake Engineering and Soil Dynamics II – Recent Advances in Ground Motion Evaluation, ASCE Geotech. Special Publ. No. 20, p. 43-102.

Riddihough, R.P., 1984, Recent movements of the Juan de Fuca plate system: Journal of Geophysical Research, v. 89, no. B8, p. 6980-6994.

Youngs, R.R., Day, S.M., and Stevens, J.L., 1998, Near field ground motions on rock for large Subduction earthquakes: Earthquake Engineering and Soil Dynamics II – Recent Advances in Ground Motion Evaluation, ASCE Geotech. Special Publ. No. 20, p. 445-462.

Test Pit Logs and Laboratory Test Data

APPENDIX

FIELD EXPLORATIONS AND LABORATORY TESTING

FIELD EXPLORATION

Subsurface conditions at the site were explored by excavating eight (8) exploratory test pits (TH-#1 through TH-#8) on October 20, 2020. The approximate location of the test pit explorations are shown in relation to the existing site features and/or site improvements on the Site Exploration Plan, Figure No. 2.

The test pits were excavated using track-mounted excavating equipment in general conformance with ASTM Methods in Vol. 4.08, D-1586-94 and D-1587-83. The test pits were excavated to depths ranging from about 6.0 to 7.0 feet beneath existing site grades. Detailed logs of the test pits are presented on the Log of Test Pits, Figure No's. A-4 through A-7. The soils were classified in accordance with the Unified Soil Classification System (USCS), which is outlined on Figure No. A-3.

The exploration program was coordinated by a field engineer who monitored the excavating and exploration activity, obtained representative samples of the subsurface soils encountered, classified the soils by visual and textural examination, and maintained continuous logs of the subsurface conditions. Disturbed and/or undisturbed samples of the subsurface soils were obtained at appropriate depths and/or intervals and placed in plastic bags and/or with a thin walled ring sample.

Groundwater was not encountered within any of the exploratory test pits (TH-#1 through TH-#8) at the time of excavating to depths of up to 7.0 feet beneath existing surface grades.

LABORATORY TESTING

Pertinent physical and engineering characteristics of the soils encountered during our subsurface investigation were evaluated by a laboratory testing program to be used as a basis for selection of soil design parameters and for correlation purposes. Selected tests were conducted on representative soil samples. The program consisted of tests to evaluate the existing (in-situ) moisture-density, maximum dry density and optimum moisture content, Atterberg Limits and gradational characteristics as well as direct shear strength and "R"-value tests.

Dry Density and Moisture Content Determinations

Density and moisture content determinations were performed on both disturbed and relatively undisturbed samples from the test pit explorations in general conformance with ASTM Vol. 4.08 Part D-216. The results of these tests were used to calculate existing overburden pressures and to correlate strength and compressibility characteristics of the soils. Test results are shown on the test pit logs at the appropriate sample depths.

Maximum Dry Density

Two (2) Maximum Dry Density and Optimum Moisture Content tests were performed on representative samples of the on-site sandy, clayey silt subgrade soils in accordance with ASTM Vol. 4.08 Part D-1557. This test was conducted to help establish various engineering properties for use as structural fill. The test results are presented on Figure No. A-8.

Atterberg Limits

Two (2) Liquid Limit (LL) and Plastic Limit (PL) tests were performed on representative samples of the sandy, clayey silt subgrade soils in accordance with ASTM Vol. 4.08 Part D-4318-85. These tests were conducted to facilitate classification of the soils and for correlation purposes. The test results appear on Figure No. A-9.

Gradation Analysis

Two (2) Gradation analyses were performed on representative samples of the sandy, clayey silt subsurface soils in accordance with ASTM Vol. 4.08 Part D-422. The test results were used to classify the soil in accordance with the Unified Soil Classification System (USCS). The test results are shown graphically on Figure No. A-10.

Direct Shear Strength Test

One (1) Direct Shear Strength test was performed on an undisturbed and/or remolded sample of the sandy, clayey silt subgrade soils at a continuous rate of shearing deflection (0.02 inches per minute) in accordance with ASTM Vol. 4.08 Part D-3080-79. The test results were used to determine engineering strength properties and are shown graphically on Figure No. A-11.

"R"-Value Tests

Two (2) "R"-value tests were performed on remolded samples of the sandy, clayey silt subgrade soils in accordance with ASTM Vol. 4.08 Part D-2844. The test results were used to help evaluate the subgrade soils supporting and performance capabilities when subjected to traffic loading. The test results are shown on Figure No. A-12.

The following figures are attached and complete the Appendix:

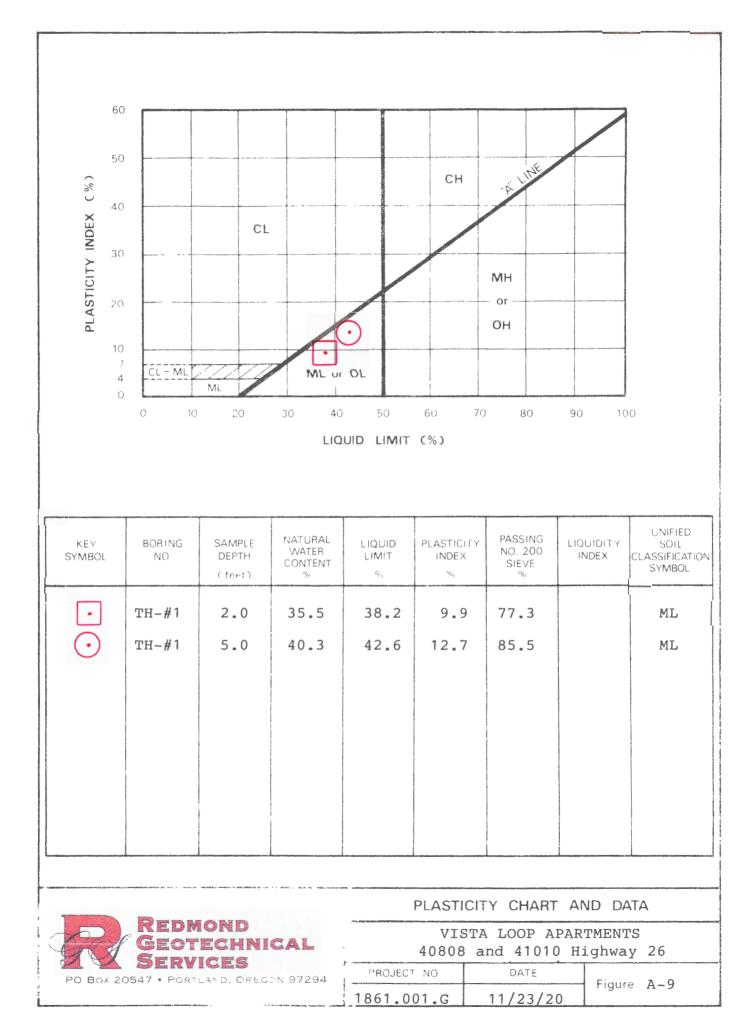
Figure No. A-3 Figure No's. A-4 through A-7 Figure No. A-8 Figure No. A-9 Figure No. A-10 Figure No. A-11 Figure No. A-12 Figure No's. A-13 and A-14 Key To Exploratory Test Pit Logs Log of Test Pits Maximum Dry Density Atterberg Limits Test Results Gradation Test Results Direct Shear Strength Test Results Results of "R"-Value Tests Field Infiltration Test Results

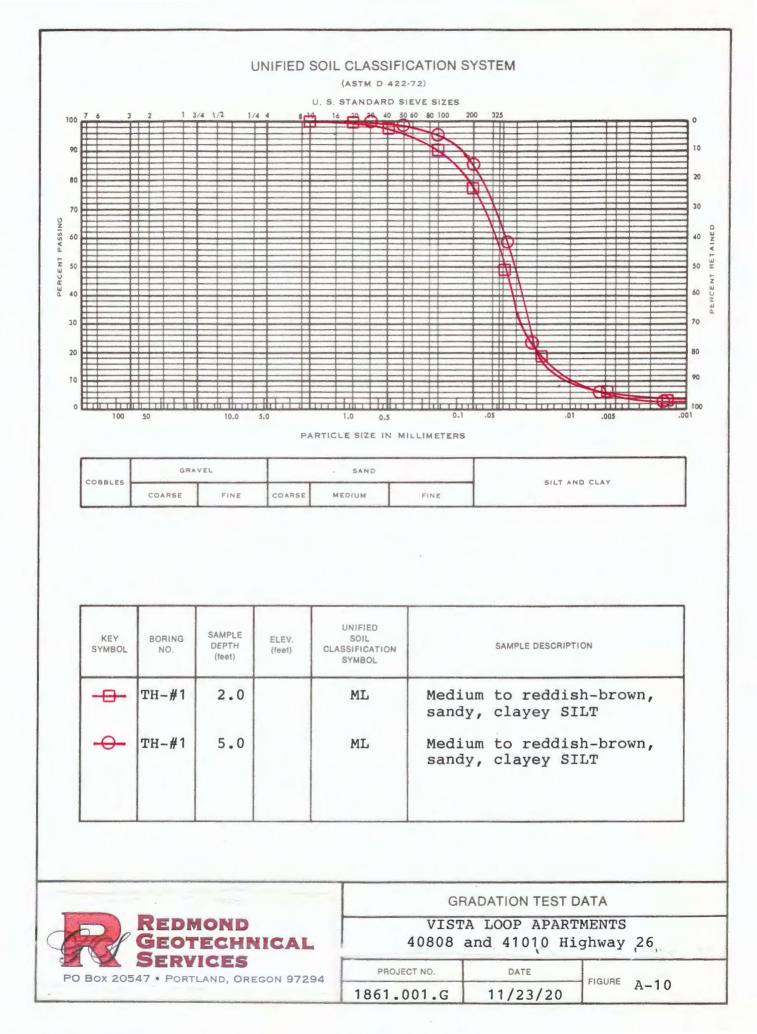
P	RIMARY DIVISION	GROUP SYMBOL	SECONDARY DIVISIONS						
AL	GRAVELS	CLEAN GRAVELS	GW	Well graded gravels, gravel-sand mixtures, little or no fines. Poorly graded gravels or gravel-sand mixtures, little or					
SOILS MATERIAL D. 200	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	GP	Poorly gi no fir		gravels or gravel-s	sand mixtures	s, little or	
VED OF N N(FRACTION IS LARGER THAN	GRAVEL WITH	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.					
	NO. 4 SIEVE	FINES	GC	GC Clayey gravels, gravel-sand-clay mixtures, plastic fines					
E GRA N HAL ER TH SIEVE	SANDS	CLEAN SANDS (LESS THAN	sw	Well graded sands, gravelly sands, little or no fines.					
ARSE GRAIN THAN HALF LARGER THA SIEVE S	MORE THAN HALF OF COARSE	5% FINES)	SP	Poorly gr	raded s	ands or gravelly :	sands, little c	r no fines.	
CO, MORE IS I	FRACTION IS SMALLER THAN	SANDS WITH	SM	Silty san	Silty sands, sand-silt mixtures, non-plastic fine			nes.	
	NO. 4 SIEVE	FINES	SC	Clayey sands, sand-clay mixtures, plastic fines.					
SOILS LF OF ALLER EVE SIZE	SILTS AND	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.						
	LIQUID LIN LESS THA		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.					
1 101 -			OL Organic silts and organic silty clays of low plasticity.						
INE GRAINE MORE THAN MATERIAL IS	SILTS AND	СН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.						
FINE GF MORE T MATERIA THAN NO.	LIQUID LIN GREATER TH	ОН	Inorganic clays of high plasticity, fat clays.						
	HIGHLY ORGANIC SOILS				Organic clays of medium to high plasticity, organic silts. Peat and other highly organic soils.				
		DEFINITI	Pt ON OF	TERMS					
NON-PI VE MED VE	200 CLAYS FINE GRAVELS AND ASTIC SILTS BLOW ASTIC SILTS CON RY LOOSE C LOOSE C LOOSE C IUM DENSE C DENSE C RY DENSE C RY	/S/FOOT [†]) - 4 - 10) - 30) - 50 /ER 50 Y pound hammer fa	10 CC AIN SIZE CL/ PLAS VE VE	AYS ANE STIC SIL RY SOFT FIRM STIFF RY STIFF HARD	FIN D TS CC e a 2 in	GRAVEL JE COARSE STRENGTH [‡] 0 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 OVER 4 ONSISTENCY mch O.D. (1-3/8 in	BLOWS/F BLOWS/F 0 - 2 - 4 - 8 - 16 - 3 OVER 3	BOULDERS 00T [†] 2 4 8 16 32	
by	Unconfined compressive some the standard penetration REDMOND GEOTECHNIE SERVICES .7 • PORTLAND, OREGO	CAL 97294	KEY	TO EX oil Clas VIS 40808	(PLO ssific TA L and	PRATORY TE vane, or visual ob PRATORY TE Cation Syste OOP APART 41010 Hic DATE /23/20	EST PIT L m (ASTM MENTS ghway 26	1 D-2487)	

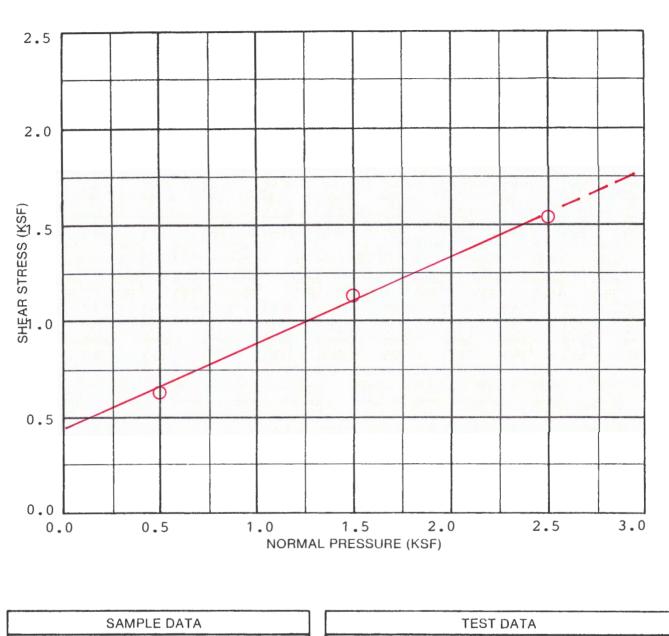
(FEET)	BAG SAMPLE	DENSITY TEST	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION TEST PIT NO. TH-#1 ELEVATION 1058 ¹ ±
	х			35.5	ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil) Medium to reddish-brown, very moist, stiff
-	x			40.3		sandy, clayey SILT Becomes very stiff
-						
						Total Depth = 7.0 feet No groundwater encountered at time of exploration
					ML	TEST PIT NO. TH-#2 ELEVATION 1.067'± Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
					ML	Medium to reddish-brown, very moist, stiff sandy, clayey SILT
-						Becomes very stiff
						Total Depth = 6.0 feet No groundwater encountered at time of exploration

ш	BAG	DENSITY	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION
(LECI)	SA	E C		MOI	SOIL (U.S	TEST PIT NO. TH-#3 ELEVATION 1075'±
					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
1 1	х			36.1	ML	Medium to reddish-brown, very moist, stiff sandy, clayey SILT
_						Becomes very stiff
-	х			41.7		
						Total Depth = 7.0 feet No groundwater encountered at time of exploration
					ML	TEST PIT NO. TH-#4 ELEVATION 1082'± Dark brown, wet, very soft, highly organic sandy, clayey SILT (Topsoil)
1 1 1	х			35.5	ML	Medium to reddish-brown, very moist, stiff sandy, clayey SILT
-						Becomes very stiff
						Total Depth = 7.0 feet No groundwater encountered at time of exploration
-						G OF TEST PITS

ACKHOE	COM	PANY	: Inla	and Cor		BUCKET SIZE: 24 inches DATE: 10/20/20
DEPTH (FEET)	BAG SAMPLE	DENSITY	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION TEST PIT NO. TH-#5 ELEVATION 1095'±
0					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
-					ML	Medium to reddish-brown, very moist, stiff, sandy, clayey SILT
5						Becomes very stiff
						Total Depth = 6.0 feet No groundwater encountered at time of exploration
0					ML	TEST PIT NO. TH-#6 ELEVATION 1075'± Dark brown, wet, soft, organic, sandy,
-	х			34.9	ML	clayey SILT (Topsoil) Medium to reddish-brown, very moist, stiff, sandy, clayey SILT
5	x			41.4		Becomes very stiff
						Total Depth = 7.0 feet No groundwater encountered at time of exploration
15						
					L 🗆 (3 OF TEST PITS


ACKHO	E CON	PANY	. Inla	and Co		BUCKET SIZE: 24 inches DATE: 10/20/20
) DEPTH (FEET)	BAG SAMPLE	DENSITY TEST	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION TEST PIT NO. TH-#7 ELEVATION 1085'±
0					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
-	х			35.7	ML	Medium to reddish-brown, very moist, stiff, sandy, clayey SILT
5 —						Becomes very stiff
						Total Depth = 6.0 feet No groundwater encountered at time of exploration
0					ML	TEST PIT NO. TH-#8 ELEVATION 1120'± Dark brown, wet, soft, organic, sandy,
]					N	clayey SILT (Topsoil)
-	х			36.7	ML	Medium to reddish-brown, very moist, stiff, sandy, clayey SILT
5						Becomes very stiff
						Total Depth = 7.0 feet No groundwater encountered at time of exploration
15						
				I	LO	G OF TEST PITS


SAMPLE LOCATION	SOIL DESCRIPTION	MAXIMUM DRY DENSITY (pcf)	OPTIMUM MOISTURE CONTENT (%)
TH-#3 @ 2.5'	Medium to reddish-brown, sandy, clayey, SILT (ML)	104.0	28.0


MAXIMUM DENSITY TEST RESULTS

EXPANSION INDEX TEST RESULTS

SAMPLE	INITIAL MOISTURE (%)	COMPACTED DRY DENSITY (pcf)	FINAL MOISTURE (%)	VOLUMETRIC SWELL (%)	EXPANSION INDEX	EXPANSIVE CLASS.
		(per)				
XIMU	M DENS	ITY&E>	PANSI		X TEST	RESU
	1.001.G					

to reddish-brown SILT (ML)
ELEVATION (ft):
ESULTS
50 psf
L FRICTION (Ø): 24°

-	FEST DA	ТА		
TEST NUMBER	1	2	3	4
NORMAL PRESSURE (KSF)	0.5	1.5	2.5	
SHEAR STRENGTH (KSF)	0.6	1.1	1.5	
INITIAL H2O CONTENT (%)	28.0	28.0	28.0	
FINAL H20 CONTENT (%)	28.9	23.2	16.6	
INITIAL DRY DENSITY (PCF)	95.0	95.0	95.0	
FINAL DRY DENSITY (PCF)	95.7	98.9	103.3	
STRAIN RATE: 0.02 in	nches	per mi	nute	

DIRECT SHEAR TEST DATA

VISTA LOOP APARTMENTS 40808 and 41010 Highway 26

PROJECT NO.	DATE	F :	
1861.001.G	11/23/20	Figure	A-11

RESULTS OF R (RESISTANCE) VALUE TESTS

SAMPLE LOCATION: TH-#3

SAMPLE DEPTH: 2.5 feet bgs

Specimen	A	B	C
Exudation Pressure (psi)	219	329	431
Expansion Dial (0.0001")	0	1	2
Expansion Pressure (psf)	0	3	8
Moisture Content (%)	17.6	14.4	11.1
Dry Density (pcf)	93.4	98.2	102.6
Resistance Value, "R"	17	30	41
"R"-Value at 300 psi Exudation Pressu	are = 29		

SAMPLE LOCATION: TH-#6

SAMPLE DEPTH: 2.0 feet bgs

Specimen	A	B	C
Exudation Pressure (psi)	208	326	439
Expansion Dial (0.0001")	0	1	2
Expansion Pressure (psf)	0	3	8
Moisture Content (%)	17.3	14.1	10.7
Dry Density (pcf)	94.9	99.1	103.7
Resistance Value "R"	19	32	43
"R"-Value at 300 psi Exudation Pressu	are = 31		

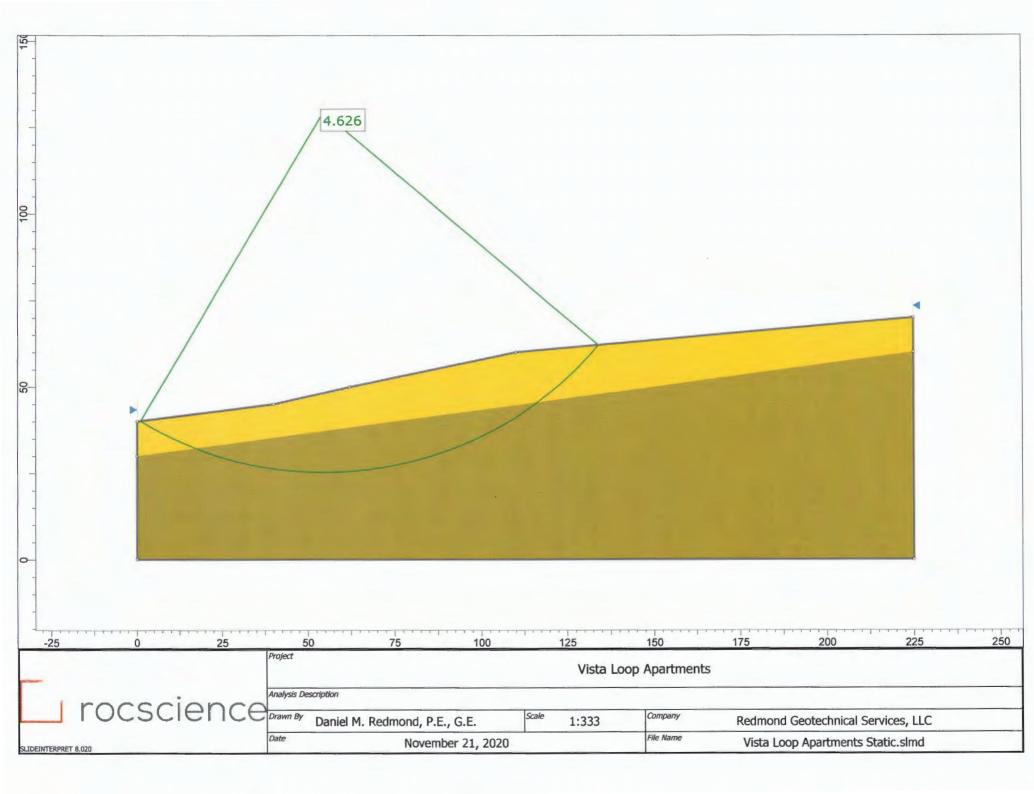
Division 004 Appendix C - Infiltration Testing

Depth to Bottom of Hole: 4.0 feet Hole Diameter: 6 inc Tester's Name: Daniel M. Redmond, P.E., G.E. Tester's Company: Redmond Geotechnical Services, LLC Depth (feet) 0-1.0	Ches Test Method: Encased Falling Head Tester's Contact Number: 503-285-0598
Tester's Company: Redmond Geotechnical Services, LLC Depth (feet)	Tester's Contact Number: 502-285-0508
Depth (feet)	Tester's Contact Number: 502-285-0508
	rester s contact number: 303-203-0398
0-1.0	Soil Characteristics
	Dark brown Topsoil
1.0-4.0 Medium to r	reddish-brown, sandy, clayey SILT (ML)

Time	Time Interval (Minutes)	Measurement (inches)	Drop in Water (inches)	Infiltration Rate (inches/hour)	Remarks
11:00	0	48.00			Filled w/12" water
11:20	20	48.20	0.20	0.60	
11:40	20	48.34	0.14	0.42	
12:00	20	48.45	0.11	0.33	
12:20	20	48.54	0.09	0.27	
12:40	20	48.62	0.08	0.24	
1:00	20	48.69	0.07	0.21	
1:20	20	48.76	0.07	0.21	
1:40	20	48.83	0.07	0.21	

Infiltration Test Data Table

Division 004 Appendix C - Infiltration Testing


Location: Vista Loop Apartments	Date: October 20, 2020	Test Hole: TH-#4		
Depth to Bottom of Hole: 5.0 feet	Hole Diameter: 6 inches Test Method: Encased Falling			
Tester's Name: Daniel M. Redmond, P.E Tester's Company: Redmond Geotechni		er's Contact Number: 503-285-0598		
Depth (feet)	Soi	Characteristics		
0-1.0	Dar	k brown Topsoil		
	Medium to reddish			

Time	Time Interval (Minutes)	Measurement (inches)	Drop in Water (inches)	Infiltration Rate (inches/hour)	Remarks
11:30	0	60.00			Filled w/12" water
11:50	20	60.15	0.15	0.45	
12:10	20	60.25	0.10	0.30	
12:30	20	60.32	0.07	0.21	
12:50	20	60.37	0.05	0.15	
1:10	20	60.41	0.04	0.12	
1:30	20	60.44	0.03	0.09	
1:50	20	60.47	0.03	0.09	
2:10	20	60.50	0.03	0.09	

Infiltration Test Data Table

Appendix "B"

Slope Stability Analysis

Slide Analysis Information Vista Loop Apartments Static

Project Summary

File Name:	Vista Loop Apartments Static.slmd
Slide Modeler Version:	8.02
Compute Time:	00h:00m:01.150s
Project Title:	Vista Loop Apartments
Author:	Daniel M. Redmond, P.E., G.E.
Company:	Redmond Geotechnical Services, LLC
Date Created:	November 21, 2020

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:

Vertical

Analysis Methods Used

	Bishop simplified
	Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Material 1	Material 5
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	110
Cohesion [psf]	450	350
Friction Angle [°]	24	26
Water Surface	None	None
Ru Value	0	0

Global Minimums

Method: bishop simplified

FS	4.626110
Center:	54.656, 129.596
Radius:	104.317
Left Slip Surface Endpoint:	1.015, 40.127
Right Slip Surface Endpoint:	134.197, 62.104
Resisting Moment:	1.90519e+07 lb-ft
Driving Moment:	4.11834e+06 lb-ft
Total Slice Area:	2301.38 ft2
Surface Horizontal Width:	133.182 ft
Surface Average Height:	17.28 ft

Method: janbu simplified

FS	4.243600
Center:	58.497, 104.803
Radius:	81.443
Left Slip Surface Endpoint:	7.895, 40.987
Right Slip Surface Endpoint:	127.487, 61.521
Resisting Horizontal Force:	162738 lb
Driving Horizontal Force:	38349 lb
Total Slice Area:	2275.47 ft2
Surface Horizontal Width:	119.591 ft
Surface Average Height:	19.027 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:12126Number of Invalid Surfaces:44

Error Codes:

Error Code -112 reported for 44 surfaces

Method: janbu simplified

Number of Valid Surfaces:11229Number of Invalid Surfaces:941

Error Codes:

Error Code -108 reported for 342 surfaces Error Code -111 reported for 599 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 4.62611

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	2.67883	278.075	-30.0942	Material 1	450	24	113.6	525.528	169.639	0	169.639
2	2.67883	818.959	-28.4075	Material 1	450	24	133.654	618.297	378.003	0	378.003
3	2.67883	1330.02	-26.7473	Material 1	450	24	152.452	705.26	573.323	0	573.323
4	2.67883	1812.58	-25.1109	Material 1	450	24	170.066	786.742	756.335	0	756.335
5	2.67883	2267.82	-23.4962	Material 1	450	24	186.555	863.025	927.668	0	927.668
6	2.67883	2696.74	-21.9011	Material 1	450	24	201.974	934.356	1087.88	0	1087.88
7	2.68435	3107.05	-20.322	Material 5	350	26	205.722	951.694	1233.66	0	1233.66
8	2.68435	3487.49	-18.7573	Material 5	350	26	220.528	1020.18	1374.08	0	1374.08
9	2.68435	3843.89	-17.207	Material 5	350	26	234.279	1083.8	1504.51	0	1504.51
10	2.68435	4176.87	-15.6696	Material 5	350	26	247.013	1142.71	1625.3	0	1625.3
11	2.68435	4486.99	-14.1437	Material 5	350	26	258.763	1197.07	1736.74	0	1736.74
12	2.68435	4774.73	-12.628	Material 5	350	26	269.557	1247	1839.12	0	1839.12
13	2.68435	5040.51	-11.1212	Material 5	350	26	279.419	1292.62	1932.66	0	1932.66
14	2.68435	5284.68	-9.62213	Material 5	350	26	288.373	1334.04	2017.59	0	2017.59
15	2.68435	5516.31	-8.12971	Material 5	350	26	296.785	1372.96	2097.39	0	2097.39
16	2.68435	5787.61	-6.64283	Material 5	350	26	306.737	1419	2191.78	0	2191.78
17	2.68435	6049.7	-5.16044	Material 5	350	26	316.277	1463.13	2282.25	0	2282.25
18	2.68435	6291.13	-3.6815	Material 5	350	26	324.951	1503.26	2364.54	0	2364.54
19	2.68435	6512.03	-2.20502	Material 5	350	26	332.774	1539.45	2438.74	0	2438.74
20	2.68435	6712.49	-0.729997	Material 5	350	26	339.754	1571.74	2504.93	0	2504.93
21	2.68435	6892.53	0.744538	Material 5	350	26	345.895	1600.15	2563.18	0	2563.18
22	2.68435	7052.16	2.21957	Material 5	350	26	351.202	1624.7	2613.53	0	2613.53
23	2.68435	7190.8	3.69607	Material 5	350	26	355.662	1645.33	2655.81	0	2655.81

Firefox

24	2.68435	7298.45	5.17504	Material 5	350	26	358.885	1660.24	2686.39	0	2686.39
25	2.68435	7381.43	6.65747	-		26	361.126	1670.61	2707.65	0	2707.65
26	2.68435	7443.58	8.1444	Material 5	350	26	362.542	1677.16	2721.07	0	2721.07
27	2.68435	7484.7	9.63688	Material 5	350	26	363.126	1679.86	2726.62	0	2726.62
28	2.68435	7504.53	11.136	Material 5	350	26	362.875	1678.7	2724.23	0	2724.23
29	2.68435	7502.75	12.6429	Material 5	350	26	361.779	1673.63	2713.85	0	2713.85
30	2.68435	7479	14.1587	Material 5	350	26	359.831	1664.62	2695.38	0	2695.38
31	2.68435	7432.87	15.6847	Material 5	350	26	357.021	1651.62	2668.72	0	2668.72
32	2.68435	7363.87	17.2223	Material 5	350	26	353.334	1634.56	2633.74	0	2633.74
33	2.68435	7271.44	18.7727	Material 5	350	26	348.753	1613.37	2590.29	0	2590.29
34	2.68435	7154.97	20.3376	Material 5	350	26	343.262	1587.97	2538.21	0	2538.21
35	2.68435	7013.74	21.9184	Material 5	350	26	336.84	1558.26	2477.3	0	2477.3
36	2.68435	6846.94	23.5171	Material 5	350	26	329.463	1524.13	2407.32	0	2407.32
37	2.68435	6653.67		Material 5	350	26	321.103	1485.46	2328.04	0	2328.04
		6432.87		Material 5	350		311.731				2239.14
		6183.38		Material 5	350		301.311				2140.31
		5903.86		Material 5			289.805				2031.17
				5	350						1908.76
				5	350		260.208				1750.45
		4686.95		Material 5			241.642				1574.35
44		3964.63		1	450		230.597				1385.28
		3470		Material 1			212.188				1194
46 47				1	450 450		192.584				990.316
47				1	450						773.39 542.247
40	2,3412	1732.02	44.303/	iviateriai 1	450	24	143.401	071.424	342.247	U	342.24/

49	2.5412	1088.94	46.5583	Material 1	450	24	125.738	581.676	295.749	0	295.749
50	2.5412	372.395	48.6292	Material 1	450	24	100.406	464.488	32.5414	0	32.5414

• Global Minimum Query (janbu simplified) - Safety Factor: 4.2436

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	2.53101	312.373	-37.2927	Material 1	450	24	129.324	548.801	221.911	0	221.911
2	2.53101	916.276	-35.0855	Material 1	450	24	155.483	659.808	471.238	0	471.238
3	2.53101	1480.1	-32.9366	Material 1	450	24	179.604	762.168	701.141	0	701.141
4	2.53101	2006.79	-30.8388	Material 1	450	24	201.875	856.675	913.408	0	913.408
5	2.53101	2498.8	-28.786	Material 1	450	24	222.448	943.98	1109.5	0	1109.5
6	2.39611	2789.74	-26.8256	Material 5	350	26	229.639	974.496	1280.41	0	1280.41
7	2.39611	3175.29	-24.9514	Material 5	350	26	248.05	1052.63	1440.6	0	1440.6
8	2.39611	3535.88	-23.1054	Material 5	350	26	265.08	1124.89	1588.77	0	1588.77
9	2.39611	3872.56	-21.2844	Material 5	350	26	280.805	1191.62	1725.58	0	1725.58
10	2.39611	4186.26	-19.4858	Material 5	350	26	295.287	1253.08	1851.59	0	1851.59
11	2.39611	4477.75	-17.7069	Material 5	350	26	308.584	1309.51	1967.28	0	1967.28
12	2.39611	4747.73	-15.9455	Material 5	350	26	320.744	1361.11	2073.08	0	2073.08
13	2.39611	4996.8	-14.1995	Material 5	350	26	331.808	1408.06	2169.34	0	2169.34
14	2.39611	5250.62	-12.4668	Material 5	350	26	343.051	1455.77	2267.16	0	2267.16
15	2.39611	5523.46	-10.7457	Material 5	350	26	355.165	1507.18	2372.58	0	2372.58
16	2.39611	5777.12	-9.0343	Material 5	350	26	366.281	1554.35	2469.28	0	2469.28
17	2.39611	6011.49	-7.33102	Material 5	350	26	376.395	1597.27	2557.28	0	2557.28
18	2.39611	6226.8	-5.63424	Material 5	350	26	385.529	1636.03	2636.75	0	2636.75
19	2.39611	6423.25	-3.94241	Material 5	350	26	393.699	1670.7	2707.83	0	2707.83
20	2.39611	6600.97	-2.25402	Material 5	350	26	400.919	1701.34	2770.65	0	2770.65
21	2.39611	6760.06	-0.567591	Material 5	350	26	407.199	1727.99	2825.3	0	2825.3
22	2.39611	6900.56	1.11835	Material 5	350	26	412.548	1750.69	2871.85	0	2871.85
23	2.39611	7019.52	2.80526	Material 5	350	26	416.832	1768.87	2909.12	0	2909.12

Firefox

24	2.39611	7111.33	4.49461	Material 5	350	26	419.792	1781.43	2934.87	0	2934.87
25	2.39611	7183.84	6.18789	_	350	26	421.807	1789.98	2952.4	0	2952.4
26	2.39611	7237.43	7.88662	-	350	26	422.9	1794.62	2961.92	0	2961.92
27	2.39611	7271.9	9.59236	Material 5	350	26	423.07	1795.34	2963.38	0	2963.38
28	2.39611	7286.97	11.3067	Material 5	350	26	422.304	1792.09	2956.73	0	2956.73
29	2.39611	7282.32	13.0314	Material 5	350	26	420.598	1784.85	2941.88	0	2941.88
30	2.39611	7257.56	14.7683	Material 5	350	26	417.938	1773.56	2918.72	0	2918.72
31	2.39611	7212.24	16.5191	Material 5	350	26	414.304	1758.14	2887.11	0	2887.11
32	2.39611	7145.82	18.2859	Material 5	350	26	409.68	1738.52	2846.88	0	2846.88
33	2.39611	7057.67	20.071		350	26	404.044	1714.6	2797.84	0	2797.84
34	2.39611	6947.07	21.8767	Material 5	350	26	397.368	1686.27	2739.76	0	2739.76
35	2.39611	6813.2	23.7055	Material 5	350	26	389.622	1653.4	2672.37	0	2672.37
36	2.39611	6655.1	25.5604	Material 5	350	26	380.771	1615.84	2595.35	0	2595.35
37	2.39611	6471.66	27.4444	Material 5	350	26	370.77	1573.4	2508.35	0	2508.35
38	2.39611	6261.59	29.3613	Material 5	350	26	359.574	1525.89	2410.94	0	2410.94
39	2.39611	6023.4	31.315	Material 5	350	26	347.13	1473.08	2302.65	0	2302.65
40	2.39611	5755.36	33.3102	Material 5	350	26	333.366	1414.67	2182.9	0	2182.9
41	2.39611	5455.42	35.3522	Material 5	350	26	318.211	1350.36	2051.04	0	2051.04
42	2.39611	5121.14	37.4474	Material 5	350	26	301.576	1279.77	1906.31	0	1906.31
43	2.39611	4732.47	39.603	Material 5	350	26	282.605	1199.26	1741.25	0	1741.25
44	2.39611	4247.71	41.8282	Material 5	350	26	259.53	1101.34	1540.48	0	1540.48
45	2.24803	3501.02	44.0598	Material 1	450	24	244.603	1038	1320.66	0	1320.66
46	2.24803	2989.47		Material 1	450	24	221.266	938.966	1098.24	0	1098.24
47	2.24803	2431.11	48.6467	Material 1	450	24	196.126	832.279	858.613	0	858.613
48	2.24803	1819.15	51.103	Material 1	450	24	168.971	717.044	599.791	0	599.791

49	2.24803	1144.63	53.6982	Material 1	450	24	139.535	592.13	319.227	0	319.227
50	2.24803	395.219	56.4655	Material 1	450	24	107.474	456.075	13.6445	0	13.6445

Interslice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 4.62611

Firefox

	N N		Internition	Interaliza	Intorelies
Slice	X	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	1.01512	40.1269	0	0	0
2	3.69395	38.5744	567.672	0	0
3	6.37278	37.1255	1473.38	0	0
4	9.0516	35.7754	2655.79	0	0
5	11.7304	34.5199	4060.92	0	0
6	14.4093	33.3554	5640.99	0	0
7	17.0881	32.2784	7353.62	0	0
8	19.7724	31.2843	9132.26	0	0
9	22.4568	30.3727	10976.8	0	0
10	25.1411	29.5414	12856.4	0	0
11	27.8255	28.7884	14743.3	0	0
12	30.5098	28.1119	16612.7	0	0
13	33.1942	27.5105	18442.3	0	0
14	35.8785	26.9828	20212.2	0	0
15	38.5629	26.5278	21904.4	0	0
16	41.2472	26.1443	23505.3	0	0
17	43.9316	25.8317	25013.9	0	0
18	46.6159	25.5892	26416.1	0	0
19	49.3003	25.4165	27696.8	0	0
20	51.9846	25.3132	28842.1	0	0
21	54.669	25.279	29839.8	0	0
22	57.3533	25.3139	30678.8	0	0
23	60.0377	25.4179	31349.6	0	0
24	62.722	25.5913	31843.8	0	0
25	65.4064	25.8344	32154	0	0
26	68.0907	26.1477	32275	0	0
27	70.7751	26.5319	32202.9	0	0
28	73.4594	26.9877	31934.8	0	0
29	76.1438	27.5161	31469.4	0	0
30	78.8281	28.1182	30806.4	0	0
31	81.5125	28.7954	29947	0	0
32	84.1968	29.5492	28893.7	0	0
33	86.8812	30.3813	27650.7	0	0
34	89.5655	31.2937	26223.5	0	0
35	92.2498	32.2886	24619.4	0	0
36	94.9342	33.3687	22847.8	0	0
37	97.6185	34.5369	20920.1	0	0
38	100.303	35.7963	18850	0	0
39	102.987	37.1509	16653.8	0	0
40	105.672	38.6047	14350.9	0	0
41	108.356	40.1626	11964.4	0	0
42	111.04	41.8303	9524.49	0	0
43	113.725	43.614	7100.64	0	0
					I

44	116.409	45.5212	4746.69	0	0
45	118.95	47.4482	2663.21	0	0
46	121.491	49.5021	750.037	0	0
47	124.033	51.6929	-930.196	0	0
48	126.574	54.0326	-2303.34	0	0
49	129.115	56.5354	-3280.67	0	0
50	131.656	59.2187	-3754.75	0	0
51	134.197	62.1041	0	0	0

• Global Minimum Query (janbu simplified) - Safety Factor: 4.2436

	×	Y	Interslice	Interslice	Interslice
Slice Number		coordinate - Bottom [ft]		Shear Force [lbs]	Force Angle [degrees]
1	7.89535	40.9869	0	0	0
2	10.4264	39.0593	755.076	0	0
3	12.9574	37.2815	1986.4	0	0
4	15.4884	35.6418	3590.62	0	0
4	18.0194	34.1307	5481.81	0	0
6	20.5504	32.7401	7587.73	0	o
7	22.9465	31.5283	9689.44	0	0
-		30.4135	11889.8	0	0
8	25.3426		14149.2	0	0
9	27.7387	29.3912	16432.8	0	0
10	30.1348	28.4577			0
11	32.5309	27.6099	18710.2	0	-
12	34.927	26.8449	20954.6	0	0
13	37.3231	26.1603	23142.3	0	0
14	39.7193	25.554	25252.6	0	0
15	42.1154	25.0243	27275.6	0	0
16	44.5115	24.5695	29205.5	0	0
17	46.9076	24.1886	31023.9	0	0
18	49.3037	23.8803	32714.1	0	0
19	51.6998	23.6439	34261.2	0	0
20	54.0959	23.4788	35651.7	0	0
21	56.492	23.3845	36873.6	0	0
22	58.8881	23.3607	37916.4	0	0
23	61.2842	23.4075	38770.5	0	0
24	63.6803	23.5249	39427.7	0	0
25	66.0764	23.7133	39880.8	0	0
26	68.4726	23.973	40124.5	0	0
27	70.8687	24.305	40154.7	0	0
28	73.2648	24.7099	39968.4	0	0
29	75.6609	25.189	39563.8	0	0
30	78.057	25.7436	38940.1	0	0
31	80.4531	26.3752	38097.9	0	0
32	82.8492	27.0858	37039	0	0
33	85.2453	27.8776	35766.5	0	0
34	87.6414	28.7531	34285.2	0	0
35	90.0375	29.7152	32601.4	0	0
36	92.4336	30.7673	30723.4	0	0
37	94.8298	31.9133	28661.5	0	0
38	97.2259	33.1577	26428.6	0	0
39	99.622	34.5057	24040.2	0	0
40	102.018	35.9634	21515.3	0	0
41	102.010	37.5379	18877	0	0
41	104.414	39.2378	16153.1	0	0
43	109.206	41.0729	13377.4	0	0
45	109.200	41.0723	10077.4	0	U

0

0

0 0

0 0 0

0

UTON .					
	44	111.603	43.0553	10602.6	0
	45	113.999	45.1998	7920.92	0
	46	116.247	47.3753	5597.76	0
	47	118.495	49.7281	3511.2	0
	48	120.743	52.2822	1759.13	0
	49	122.991	55.0685	467.77	0
	50	125.239	58.1286	-195.43	0

61.5206

0

0

Entity Information

127.487

Group: Group 1 🔶

51

Shared Entities

Туре	Coord	linat	es
	x	Y	
	225	0	
	225	60	
	225	70	
	110	60	
External Boundary	62	50	
	40	45	
	0	40	
	0	30	
	0	0	
	x	Y	
Material Boundary	0	30	
	225	60	

250					1.857					 ■ 0.24 ₩₩₩
200				/						
150										
100			/							
20					-					
0										
	-100	-50	0		100	150	200	250	300	350
-		PI	oject				op Apartments			
	rocscie	ence	nalysis Description	Redmond D.E. C	F Scale	1.507	Company D	admond Costachin	ical Services, LLC	
SLIDEINTERPRET			ate Daniel M	Redmond, P.E., G. November 2	· L ·	1:587	N	ista Loop Apartme		

Slide Analysis Information

Vista Loop Apartments Seismic

Project Summary

File Name:	Vista Loop Apartments Seismic.slmd
Slide Modeler Version:	8.02
Compute Time:	00h:00m:00.963s
Project Title:	Vista Loop Apartments
Author:	Daniel M. Redmond, P.E., G.E.
Company:	Redmond Geotechnical Services, LLC
Date Created:	November 21, 2020

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:

Vertical

Analysis Methods Used

	Bishop simplified
	Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.24

Materials

Property	Material 1	Material 5
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	110
Cohesion [psf]	450	350
Friction Angle [°]	24	26
Water Surface	None	None
Ru Value	0	0

Global Minimums

Method: bishop simplified

FS	1.856590
Center:	89.369, 228.460
Radius:	208.568
Left Slip Surface Endpoint:	0.015, 40.002
Right Slip Surface Endpoint:	224.980, 69.998
Resisting Moment:	8.13211e+07 lb-ft
Driving Moment:	4.38013e+07 lb-ft
Total Slice Area:	5650.2 ft2
Surface Horizontal Width:	224.966 ft
Surface Average Height:	25.1158 ft

Method: janbu simplified

FS	1.731380
Center:	95.068, 183.089
Radius:	171.782
Left Slip Surface Endpoint:	0.015, 40.002
Right Slip Surface Endpoint:	224.322, 69.941
Resisting Horizontal Force:	446877 lb
Driving Horizontal Force:	258104 lb
Total Slice Area:	7072.08 ft2
Surface Horizontal Width:	224.307 ft
Surface Average Height:	31.5286 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:11493Number of Invalid Surfaces:0

Method: janbu simplified

Number of Valid Surfaces: 11438 Number of Invalid Surfaces: 55

Error Codes:

Error Code -108 reported for 41 surfaces Error Code -111 reported for 4 surfaces Error Code -112 reported for 10 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 1.85659

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.53789	662.052	-24.6812	Material 1	450	24	311.709	578.715	289.1	0	289.1
2	4.53789	1953.83	-23.3164	Material 1	450	24	385.462	715.645	596.65	0	596.65
3	4.53789	3181.93	-21.9656	Material 1	450	24	454.478	843.78	884.444	0	884.444
4	4.53789	4348.21	-20.6274	Material 1	450	24	519.003	963.575	1153.51	0	1153.51
5	4.4484	5336.64	-19.314	Material 5	350	26	554.736	1029.92	1394.04	0	1394.04
6	4.4484	6344.29	-18.0239	Material 5	350	26	615.808	1143.3	1626.51	0	1626.51
7	4.4484	7297.93	-16.7433	Material 5	350	26	672.648	1248.83	1842.88	0	1842.88
8	4.4484	8198.68	-15.4712	Material 5	350	26	725.429	1346.83	2043.79	0	2043.79
9	4.4484	9048.48	-14.207	Material 5	350	26	774.371	1437.69	2230.09	0	2230.09
10	4.4484	9977.17	-12.9497	Material 5	350	26	827.711	1536.72	2433.13	0	2433.13
11	4.4484	10947.5	-11.6987	Material 5	350	26	883.054	1639.47	2643.79	0	2643.79
12	4.4484	11868.4	-10.4534	Material 5	350	26	934.703	1735.36	2840.4	0	2840.4
13	4.4484	12740.4	-9.21307	Material 5	350	26	982.775	1824.61	3023.41	0	3023.41
14	4.4484	13563.7	-7.97707	Material 5	350	26	1027.34	1907.35	3193.04	0	3193.04
15	4.4484	14313.4	-6.74479	Material 5	350	26	1066.95	1980.88	3343.82	0	3343.82
16	4.4484	15000.7	-5.51565	Material 5	350	26	1102.35	2046.62	3478.58	0	3478.58
17	4.4484	15640.9	-4.28904	Material 5	350	26	1134.55	2106.4	3601.14	0	3601.14
18	4.4484	16234.3	-3.06441	Material 5	350	26	1163.61	2160.34	3711.75	0	3711.75
19	4.4484	16781	-1.84117	Material 5	350	26	1189.58	2208.56	3810.62	0	3810.62
20	4.4484	17281.3	-0.618778	Material 5	350	26	1212.51	2251.14	3897.92	0	3897.92
21	4.4484	17735	0.603335	Material 5	350	26	1232.46	2288.18	3973.86	0	3973.86
22	4.4484	18142.4	1.82572	Material 5	350	26	1249.47	2319.75	4038.59	0	4038.59
23	4.4484	18503.2	3.04895	Material 5	350	26	1263.56	2345.91	4092.24	0	4092.24

-		
F	ireta)X
•		

24	4.4484	18817.4	4.27356	Material 5	350	26	1274.77	2366.73	4134.91	0	4134.91
25	4.4484	19068	5.50013	Material 5		26	1282.17	2380.46	4163.06	0	4163.06
26	4.4484	19078.9	6.72924	Material 5	350	26	1275.7	2368.46	4138.45	0	4138.45
27	4.4484	18987.5	7.96147	_	350	26	1263.43	2345.68	4091.75	0	4091.75
28	4.4484	18848.4		Material 5	350	26	1248.53	2318.01	4035.01	0	4035.01
29	4.4484	18660.9	10.4377	Material 5	350	26	1231	2285.46	3968.28	0	3968.28
30	4.4484	18424.7	11.683	Material 5	350	26	1210.84	2248.04	3891.55	0	3891.55
31	4.4484	18139	12.9338	Material 5	350	26	1188.07	2205.76	3804.88	0	3804.88
32	4.4484	17803.1	14.191	Material 5	350	26	1162.67	2158.61	3708.2	0	3708.2
33	4.4484	17416.2	15.4552	Material 5	350	26	1134.66	2106.59	3601.55	0	3601.55
34	4.4484	16977.5	16.7272	Material 5	350	26	1104	2049.68	3484.86	0	3484.86
35	4.4484	16485.9	18.0077	Material 5	350	26	1070.7	1987.85	3358.08	0	3358.08
36	4.4484	15940.3		Material 5	350	26	1034.73	1921.07	3221.18	0	3221.18
37	4.4484	15339.5	20.5978	Material 5	350	26	996.084	1849.32	3074.06	0	3074.06
38	4.4484	14682	21.9091	Material 5	350	26	954.734	1772.55	2916.65	0	2916.65
39	4.4484	13966.4	23.2326	Material 5	350	26	910.648	1690.7	2748.84	0	2748.84
40			24.5694	5							2570.5
41	4.4484	12353.6	25.9207	Material 5	350						2381.52
42	4.4484	11452.5	27.2876	Material 5	350	26	761.66	1414.09	2181.72	0	2181.72
43			28.6715	5			706.292				1970.95
44				5	350		647.991				1749.02
45			31.4967	5	350		586.704				1515.73
46			32.9414	5			522.372				1270.84
47		5897.03		5	350						1014.13
48	5.1/765	5161.99	36.0301	Material 1	450	24	409.975	761.156	698.868	0	698.868

49 5	5.17765	3201.89	37.8098	Material 1	450	24	329.402	611.564	362.879	0	362.879
50 5	5.17765	1093	39.6335	Material 1	450	24	244.462	453.865	8.68085	0	8.68085

• Global Minimum Query (janbu simplified) - Safety Factor: 1.73138

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.54862	872.643	-32.6947	Material 1	450	24	370.438	641.369	429.822	0	429.822
2	4.54862	2568.82	-30.9091	Material 1	450	24	478.934	829.217	851.736	0	851.736
3	4.54862	4169.44	-29.1563	Material 1	450	24	578.719	1001.98	1239.77	0	1239.77
4	4.43565	5521.15	-27.454	Material 5	350	26	647.664	1121.35	1581.5	0	1581.5
5	4.43565	6876.98	-25.7987	Material 5	350	26	739.714	1280.73	1908.27	0	1908.27
6	4.43565	8156.16	-24.1663	Material 5	350	26	824.441	1427.42	2209.03	0	2209.03
7	4.43565	9361.69	-22.5545	Material 5	350	26	902.367	1562.34	2485.65	0	2485.65
8	4.43565	10496.2	-20.9613	Material 5	350	26	973.946	1686.27	2739.75	0	2739.75
9	4.43565	11562.5	-19.3849	Material 5	350	26	1039.6	1799.94	2972.81	0	2972.81
10	4.43565	12685.6	-17.8236	Material 5	350	26	1108.26	1918.82	3216.55	0	3216.55
11	4.43565	13841.4	-16.2759	Material 5	350	26	1178.18	2039.88	3464.76	0	3464.76
12	4.43565	14933.9	-14.7404	Material 5	350	26	1242.77	2151.7	3694.05	0	3694.05
13	4.43565	15964.6	-13.2156	Material 5	350	26	1302.26	2254.71	3905.24	0	3905.24
14	4.43565	16934.5	-11.7003	Material 5	350	26	1356.86	2349.24	4099.04	0	4099.04
15	4.43565	17820.5	-10.1932	Material 5	350	26	1405.15	2432.84	4270.46	0	4270.46
16	4.43565	18631.5	-8.69326	Material 5	350	26	1447.82	2506.73	4421.96	0	4421.96
17	4.43565	19384.5	-7.19928	Material 5	350	26	1486.16	2573.11	4558.06	0	4558.06
18	4.43565	20080.3	-5.71022	Material 5	350	26	1520.28	2632.18	4679.18	0	4679.18
19	4.43565	20719.3	-4.22502	Material 5	350	26	1550.3	2684.15	4785.72	0	4785.72
20	4.43565	21302	-2.74266	Material 5	350	26	1576.3	2729.17	4878.02	0	4878.02
21	4.43565	21828.5	-1.26213	Material 5	350	26	1598.38	2767.4	4956.41	0	4956.41
22	4.43565	22299.1	0.217548	Material 5	350	26	1616.61	2798.96	5021.13	0	5021.13
23	4.43565	22713.9	1.69737	Material 5	350	26	1631.05	2823.96	5072.39	0	5072.39

Firefox

24	4.43565	23072.6	3.17833			26	1641.75	2842.5	5110.39	0	5110.39
25	4.43565	23364.8	4.66143		350	26	1648.12	2853.53	5133.01	0	5133.01
26	4.43565	23416.2	6.14766	5 Material 5	350	26	1639.49	2838.58	5102.34	0	5102.34
27	4.43565	23342.7	7.63805	-	350	26	1623.24	2810.44	5044.65	0	5044.65
28	4.43565	23211.8	9.13367		350	26	1603.61	2776.45	4974.97	0	4974.97
29	4.43565	23022.8	10.6356		350	26	1580.61	2736.64	4893.34	0	4893.34
30	4.43565	22774.9	12.145	Material 5	350	26	1554.25	2690.99	4799.75	0	4799.75
31	4.43565	22467.2	13.6629	Material 5	350	26	1524.52	2639.53	4694.23	0	4694.23
32	4.43565	22098.5	15.1908	Material 5	350	26	1491.42	2582.22	4576.71	0	4576.71
33	4.43565	21667.6	16.7297	Material 5	350	26	1454.93	2519.04	4447.19	0	4447.19
34	4.43565	21173.1	18.2813	Material 5	350	26	1415.02	2449.94	4305.52	0	4305.52
35	4.43565	20613.2	19.8468	Material 5	350	26	1371.67	2374.89	4151.65	0	4151.65
36	4.43565	19986.1	21.4279	Material 5	350	26	1324.84	2293.81	3985.4	0	3985.4
37	4.43565	19289.7	23.0264	Material 5	350	26	1274.49	2206.62	3806.64	0	3806.64
38	4.43565	18521.5	24.6441	Material 5			1220.55				3615.17
39	4.43565	17678.8	26.283	5	350						3410.79
		16758.6		5	350						3193.22
				5	350						
				5	350						2717.38
			33.1006	5							2458.4
				5	350						2184.87
				5	350						1896.35
				5	350						1592.28
				5	350						1272.15
48	4.43565	6041.34	42.474	Material 5	350	26	405.038	800.196	935.34	U	900.34

49 5.52855	4890.6	44.7759	Material 1	450	24	388.242	672.195	499.057	0	499.057
50 5.52855	1684.4	47.438	Material 1	450	24	264.207	457.444	16.7184	0	16.7184

Interslice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 1.85659

Firefox

Slice	X	Y	Interslice	Interslice	Interslice
Number		coordinate - Bottom [ft]	Normal Force [lbs]	[lbs]	Force Angle [degrees]
	[ft]		[[03]	[103]	0
1	0.0146863	40.0018	-	0	0
2	4.55258	37.9164	1858.09	-	
3	9.09047	35.9606	4304.83	0	0
4	13.6284	34.1303	7221.71	0	0
5	18.1662	32.4222	10503	0	0
6	22.6146	30.8631	13862.6	0	0
7	27.063	29.4157	17432.8	0	0
8	31.5114	28.0775	21138.9	0	0
9	35.9598	26.8462	24913.7	0	0
10	40.4082	25.72	28697.3	0	0
11	44.8566	24.6971	32472.5	0	0
12	49.305	23.776	36207.4	0	0
13	53.7534	22.9553	39846.9	0	0
14	58.2018	22.2338	43341.2	0	0
15	62.6502	21.6104	46645.1	0	0
16	67.0986	21.0843	49713.9	0	0
17	71.547	20.6548	52510.3	0	0
18	75.9954	20.3211	55003.4	0	0
19	80.4438	20.083	57165.8	0	0
20	84.8922	19.94	58973.5	0	0
21	89.3406	19.892	60405.5	0	0
22	93.789	19.9388	61443.9	0	0
23	98.2374	20.0806	62073.6	0	0
24	102.686	20.3175	62282.4	0	0
25	107.134	20.65	62060.9	0	0
26	111.583	21.0783	61403.3	0	0
27	116.031	21.6032	60325.5	0	0
28	120.479	22.2253	58841.5	0	0
29	124.928	22.9456	56963.9	0	0
30	129.376	23.765	54707.9	0	0
31	133.825	24.6849	52091.1	0	0
32	138.273	25.7065	49134.3	0	0
33	142.721	26.8313	45860.9	0	о
34	147.17	28.0612	42297.4	0	0
35	151.618	29.3981	38473.6	0	0
36	156.067	30.8442	34422.6	0	0
37	160.515	32.4018	30181.2	0	o
38	164.963	34.0736	25790.1	0	0
39		35.8627	21294.1	0	0
40	173.86	37.7723	16742.8	0	0
41	178.309	39.806	12190.7	0	0
42	182.757	41.968	7697.59	0	0
43	187.205	44.2628	3329.68	0	0
	2071200		0010.00	0	

44	191.654	46.6953	-840.208	0	0
45	196.102	49.2713	-4731.66	0	0
46	200.551	51.9969	-8255.71	0	0
47	204.999	54.8793	-11313.7	0	0
48	209.447	57.9263	-13795.9	0	0
49	214.625	61.6923	-15544.6	0	0
50	219.803	65.7099	-16065.9	0	0
51	224.98	69.9983	0	0	0

• Global Minimum Query (janbu simplified) - Safety Factor: 1.73138

	x	Y	Interslice	Interslice	Interslice
Slice	x coordinate	-			
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	0.0146863	40.0018	0	0	0
2	4.5633	37.0823	2731.9	0	0
3	9.11192	34.359	6615.27	0	0
4	13.6605	31.8214	11395.3	0	0
5	18.0962	29.5169	16590.1	0	0
6	22.5318	27.3727	22315.2	0	0
7	26.9675	25.3824	28414.5	0	0
8	31.4031	23.5402	34752.9	0	0
9	35.8388	21.8409	41213.2	0	0
10	40.2744	20.2802	47693.2	0	0
11	44.7101	18.854	54156.1	0	0
12	49.1457	17.559	60551.7	0	0
13	53.5814	16.392	66795.8	0	0
14	58.017	15.3503	72813.6	0	0
15	62.4526	14.4317	78538.5	0	0
16	66.8883	13.6342	83905.6	0	0
17	71.3239	12.956	88860.6	0	0
18	75.7596	12.3957	93360	0	0
19	80.1952	11.9521	97365.4	0	0
20	84.6309	11.6244	100843	0	0
21	89.0665	11.412	103765	0	0
22	93.5022	11.3142	106107	0	0
23	97.9378	11.3311	107847	0	0
24	102.373	11.4625	108970	0	0
25	106.809	11.7088	109463	0	0
26	111.245	12.0705	109316	0	0
27	115.68	12.5483	108537	0	0
28	120.116	13.1431	107140	0	0
29	124.552	13.8562	105140	0	0
30	128.987	14.6892	102556	0	0
31	133.423	15.6438	99408.4	0	0
32	137.859	16.722	95722.8	0	0
33	142.294	17.9264	91528.3	0	0
34	146.73	19.2597	86857.9	0	0
35	151.166	20.725	81749.3	0	0
36	155.601	22.326	76244.7	0	0
37	160.037	24.0668	70391.9	0	0
38	164.473	25.9521	64244	0	0
39	168.908	27.987	57860.9	0	0
40	173.344	30.1776	51309.3	0	0
41	177.779	32.5307	44664.3	0	0
42	182.215	35.0539	38010.2	0	0
43	186.651	37.7563	31441.8	0	0

44	191.086	40.6479	25066.4	0	0
45	195.522	43.7406	19005.8	0	0
46	199.958	47.048	13399	0	0
47	204.393	50.5863	8405.74	0	0
48	208.829	54.3745	4210.72	0	о
49	213.265	58.4353	1029.74	0	0
50	218.793	63.9208	-733.296	0	0
51	224.322	69.941	0	0	0

Entity Information

Group: Group 1 🔷

Shared Entities

Туре	Coordinates		
	x	Y	
External Boundary	225	0	
	225	60	
	225	70	
	110	60	
	62	50	
	40	45	
	0	40	
	0	30	
	0	0	
	х	Y	
Material Boundary	0	30	
inderna boundary	225	60	