

City of Sandy

<u>Agenda</u> City Council Meeting Meeting Date: Tuesday, February 16, 2021 Meeting Time: 6:00 PM

Page

1. MEETING FORMAT NOTICE

The City Council will conduct this meeting electronically using the Zoom video conference platform. Members of the public may listen, view, and/or participate in this meeting using Zoom. Using Zoom is free of charge. See the instructions below:

- To login to the electronic meeting online using your computer, click this link: <u>https://us02web.zoom.us/i/86205864486</u>
- If you would rather access the meeting via telephone, dial (253) 215-8782. When prompted, enter the following meeting number: 862 0586 4486
- If you do not have access to a computer or telephone and would like to take part in the meeting, please contact City Hall by Friday February 12 and arrangements will be made to facilitate your participation.

2. CITY COUNCIL WORK SESSION - 6:00 PM

2.1. <u>Public Meetings / Ethics / Land Use Hearings Training</u> Public Meetings / Ethics / Land Use Hearings Training 4 - 48

3. CITY COUNCIL REGULAR MEETING - 7:00 PM

4. PLEDGE OF ALLEGIANCE

- 5. ROLL CALL
- 6. CHANGES TO THE AGENDA

7. PUBLIC COMMENT

<u>Please Note</u>: there will be an opportunity to provide testimony during the public hearing on "The Views" later in the agenda.

The Council welcomes your comments on other topics at this time. Please see the instructions below:

- If you are participating online, click the "raise hand" button and wait to be recognized.
- If you are participating via telephone, dial *9 to "raise your hand" and wait to be recognized.

8. **RESPONSE TO PREVIOUS PUBLIC COMMENTS**

9. PRESENTATION

9.1.	Audit Presentation - Fiscal Year Ended June 30, 2020 Staff Report and Links to Full Documents	49
	10. CONSENT AGENDA	
10.1.	City Council Minutes	50 - 65
	<u>City Council - 01 Feb 2021 - Minutes - Pdf</u>	
10.2.	Renewal of Oregon Public Works Emergency Response Cooperative Agreement	66 - 73
	Staff Report and Agreement	
	11. OLD BUSINESS	
		74 70
11.1.	Planning Commission Appointment	74 - 78
	Staff Report and Applications	
11.2.	PUBLIC HEARING: The Views Planned Development	79 - 916
	Land Use File: 20-028 The Views SUB TREE FSH PD	
	Staff Report	
	<u>Applicant Submittals - (EXHIBITS A - K)</u>	
	<u>Applicant Submittals - (EXHIBITS J - R)</u>	
	Agency Comments (EXHIBITS S - AA)	
	Additional Documents from Staff (EXHIBTS BB-HH)	
	Additional Submission Items from the Applicant (EXHIBITS II- TT)	
	Public Comments (EXHIBITS UU-ZZZ)	
	Public Comments After Agenda Publication (before 5PM 2.16.20) (EXHIBITS AAAA-	
	MMMM)	
	Parks and Trails Advisory Board Minutes - Sept-Oct 2020 - EXHIBIT NNNN	
	Staff PowerPoint Slides	

12. NEW BUSINESS

- 13. REPORT FROM THE CITY MANAGER
- 14. COMMITTEE /COUNCIL REPORTS

15. STAFF UPDATES

- 15.1. Monthly Reports
 - 16. ADJOURN

Staff Report

Meeting Date:	February 16, 2021
From	Jordan Wheeler, City Manager
SUBJECT:	Public Meetings / Ethics / Land Use Hearings Training

BACKGROUND:

Periodically, and particularly when new councilors take office, the City Attorney's Office provides training and educational materials on matters relating to open meetings law, public records, ethics requirements, and land use decision making procedures.

Chris Crean, with our city attorney firm Beery Elsner & Hammond LLP, will be attending the Council Work Session to provide an overview of these issues and answer any questions from the Council. He has also provided several reference documents / resources for the Council's use.

LIST OF ATTACHMENTS/EXHIBITS:

- Public Meetings and Records Overview
- Oregon Government Ethics Overview
- OGEC Letter on Conflicts of Interest in Budget Process
- Land Use Decisionmaking

PUBLIC RECORDS & MEETINGS

Beery, Elsner & Hammond, LLP 503. 226.7191 www.gov-law.com

TABLE OF CONTENTS

Page

1. Introduction	4	
2. Right to Inspect		
3. Bodies Subject to the Law	4	
A. Public Bodies	4	
B. Private Bodies	4	
4. Records Covered	5	
5. Inspecting and Obtaining Public Records	6	
6. Public Records Exempt from Disclosure	6	
A. Nature of Exemptions	6	
B. Conditional and Unconditional Exemptions	7	
C. "Public Interest in Disclosure	7	
7. Destruction of Public Records	8	
8. Public Meetings Policy		
A. Public Body Decisions	9	
B. Recommendations to Public Bodies	9	
9. Meetings Subject to the Law		
A. Quorum Requirements	9	
B. Meetings and Social Gatherings	10	
C. Electronic Communication	10	
10. Legal Requirements	10	
A. Notice	10	
B. Accessibility to Persons with Disabilities	12	

C. Public Attendance	13
D. Control of Meetings	13
E. Voting	13
F. Minutes and Recordkeeping	14
11. Executive (Closed) Sessions	14
A. Permissible Purposes	14
B. Final Decision Prohibition	.15
C. Method of Convening	15
D. Media Representation	15
E. Other Persons Attendance	16

1. Introduction

The Public Records Law (ORS 192.311 to 192.478) and the Public Meetings Law (ORS 192.610 to 192.695) were enacted in 1973. They established state policy that the public is entitled to know how governments operate. The written record of public business is available, with some important exceptions, to any person. Almost all deliberations and decisions of public bodies are open to attendance by interested persons. The laws have been amended many times at subsequent legislative sessions.

2. Right to Inspect

Under ORS 192.314 "every person" has a right to inspect any non-exempt public record.¹ Any natural person or any corporation, partnership, firm or association has this right. The identity, motive and need of persons requesting access to public records are irrelevant unless an exemption from disclosure allows consideration of those factors. Interested persons, news media representatives, people seeking access for personal gain, busybodies on fishing expeditions, persons seeking to embarrass government agencies, and scientific researchers all have equal footing. *See MacEwan v. Holm*, 226 Or 27 (1961). The identity and motive of the person seeking a specific public record may be relevant in determining if a record is exempt from disclosure under a conditional exemption

ORS 192.314(2) places an additional requirement on a person who is a party to civil litigation or has filed notice under ORS 30.275(5)(a). When such a person makes a request for a public record the person knows relates to the litigation or notice, the person must submit the request to the custodian and the attorney for the public body at the same time.

3. Bodies Subject to the Law

A. <u>Public Bodies</u>

The Public Records Law applies to any public body in the state. ORS 192.311(4) defines "public body" to include every state officer, agency, department, division, bureau, board and commission; every county and county governing body, school district, special district, municipal corporation, and any board, department, commission, council, or agency thereof; and any other public agency of this state. Thus, all state and local government bodies are subject to the records law, including "public corporations" such as the Oregon State Bar, the SAIF Corporation, and the Oregon Health Sciences University. *State ex rel Frohnmayer v. Oregon State Bar*, 307 Or 304 (1989), and *Frohnmayer v. SAIF*, 294 Or 570 (1983).

B. <u>Private Bodies</u>

In *Marks v. McKenzie High School Fact-Finding Team*, 319 Or 451 (1994), the Oregon Supreme Court determined that a group selected by a private association of school administrators

¹. See Section 6.B discussing conditional and unconditional exemptions.

and charged by a public school district board with investigating and making recommendations about high school operations was not a "public body" within the meaning of public records law. However, in that case the Oregon Supreme Court held that if a private entity is the "functional equivalent" of a public body, the Public Records Law could apply to it. The court set forth several factors to assist with determining whether a private entity is the functional equivalent of a public body, which included:

- the entity's origin (was it created by government or was it created independently?);
- the nature of the function(s) assigned and performed by the entity (are these functions traditionally performed by government or are they commonly performed by a private entity?);
- the scope of the authority granted to and exercised by the entity (does it have the authority to make binding decisions or only to make recommendations to a public body?);
- the nature and level of any governmental financial and nonfinancial support;
- the scope of governmental control over the entity;
- the status of the entity's officers and employees (are they public employees?).

4. Records Covered

The definition of "public records" and the ORS 192.314 policy statement make it clear that the records law applies to all government records of any kind. The 2011 legislature (HB 2244) expanded the ORS 192.005(5) definition of "public record" to include "any information" prepared, owned, used or retained by a city, relating to an activity, transaction or function of the city, or necessary to satisfy fiscal, legal, administrative or historical policies, requirements or needs of the city. Public records are no longer limited to "documents" and need not be prepared by the city. Records prepared outside government "owned, used or retained" by the city, are within the scope of the records law. For example, letters written to the city, retained and used by the city are public records. However, a document prepared by a private entity does not become a public record merely because a public official reviews the document in the course of official business. The 2011 amendments confirm that unrecorded spoken communications are not public records.

Materials prepared and owned by a private company do not become "public records" when they are in temporary custody of a public official for purpose of preliminary review. Public records include any "writing" containing information relating to the conduct of public business. ORS 192.311(5)(a). "Writing" is broadly defined by ORS 192.311(7) to include handwriting, typewriting, printing, photographing and every means of recording, including letters, words, pictures, sounds, or symbols, or combination thereof, and all papers, maps, files, facsimiles or electronic recordings. "Writing" thus includes information stored on computer tape, microfiche, photographs, films, tape or videotape recordings and virtually any other method of recording information. The city uses electronic mail (e-mail) for communications. E-mail is a public record. Even after e-mail messages are "deleted" from individual computer accounts, they generally continue to exist on computer back-up tapes that are also public records. The city must make non-exempt e-mail available for inspection and copying.

Text messages sent and received from personal cell phones, e-mails sent and received from personal accounts and social media messages and post may also be public records if involving a public official and if the message "relat[es] to an activity, transaction or function of the city, or necessary to satisfy fiscal, legal, administrative or historical policies, requirements or needs of the city." For this reason, public officials are encouraged to forward all city-related emails received on personal e-mail addresses to the official's city e-mail account.

Note that the Public Records Law does not require the city to *create* public records. This is especially important for computer-stored data. Although the data in computer programs and printouts generated for use by the city are public records, the city is not obligated to perform specific computer runs or manipulate computer data in a requested manner.

5. Inspecting and Obtaining Public Records

Under the records law, the "custodian" of the public records has the duty to make nonexempt public records available for inspection and copying. The legislature has defined "custodian" as a public body mandated to create, maintain, care for or control the records. ORS 192.311(2). However, the public body that has custody of a public record as an agent for another public body is not the custodian, unless the record is not otherwise available. When the city is a custodian of public records received from another public body, it should consult with the other public body to determine whether the records may be exempt from disclosure. *See* ORS 192.502(10). The 2007 legislature amended what is now ORS 192.324 to assure more timely disclosure to interested parties by requiring a response to requests as soon as possible and without unreasonable delay. The statute was amended again by the legislature again in 2017 to require requests to be acknowledged within 5 business days, and to be complete (or provide an estimated completion date for the request) within an additional 10 business days (15 days total).

All public bodies must make available to the public a written procedure for submitting the requests, including at least one person and address to which it can be delivered along with the methods that will be used to calculate the fees charged.

The city may delay action on a public record disclosure request to consult with the city attorney. It is reasonable for a record custodian to obtain legal advice before responding to an extensive public record disclosure request when compliance could disrupt operations. It is also reasonable for a records custodian to consult with the city attorney about disclosure of documents that appear to be exempt, in whole or in part, from disclosure requirements under law. Consultation with the city attorney should not be used to merely delay or frustrate the inspection process, and the 5 day acknowledgment and 15 day completion or estimate requirements above continue to apply.

6. Public Records Exempt from Disclosure

A. <u>Nature of Exemptions</u>

The records law is primarily a *disclosure* law not a confidentiality law. Exemptions are limited in nature and scope because state policy favors public access to government records.

When the city denies a records inspection request, it has the burden of proving that the record information is exempt from disclosure. Oregon courts interpret the records law exemptions *narrowly*, and the courts "presume" that exemptions do not apply.

Even though information may meet the test to qualify for exemption from disclosure, it does not necessarily mean that the city is prohibited from disclosing the information. In most cases, exemptions do not prohibit disclosure, and the city has discretion to disclose record information that qualifies for exemption under the law. In only rare cases may the city say, "This record is exempt from disclosure under the records law, and therefore we may not disclose it."

There are a few instances where a government is barred from disclosing information that is exempt from inspection under the records law. ORS 192.368 *prohibits* a public body from disclosing a home address or personal telephone number if the requirements of that section are met. The "catch-all" exemption in ORS 192.355(9) incorporates into the records law some other statutes that prohibit public release of certain types of information such as income tax information. In addition, the federal law exemption in ORS 192.355(8) incorporates some federal laws that bar public dissemination of certain types of records, such as student record information under 20 USC 1232. Release of personal privacy information exempt under ORS 192.355(2) is likely to result in claims against the city. The city attorney should be consulted before such information is disclosed.

B. Conditional and Unconditional Exemptions

Exemptions are generally found in ORS 192.345 and 192.355. There are two types of exemptions under Oregon law: conditional and unconditional exemptions. All the exemptions under ORS 192.345 are *conditional*; they exempt certain types of information from disclosure "unless the public interest requires disclosure in the particular instance." In addition, several ORS 192.355 exemptions are conditioned on the extent to which governmental and private interests in confidentiality outweigh the public interest in disclosure. Conditional exemptions require the city to balance carefully confidentiality interests against public disclosure interests. Some of the exemptions in ORS 192.355 are unconditional, meaning that no balancing is required. The legislature has already balanced the competing interests and concluded that confidentiality interests outweigh public disclosure interests as a matter of law.

In determining whether an exemption applies, the identity of the requester and the circumstances surrounding the request are irrelevant. The circumstances of a particular request become relevant only if the requested information comes under exemption that requires a balancing of interests. In that context, the requester's purpose in seeking disclosure may be relevant to determining whether the public interest requires disclosure.

The 2011 legislature (SB 437) amended ORS 192.355(17)(a) to make records, communications and information submitted to the cities by applicants for investment funds, grants, loans, services or economic development moneys, support or assistance exempt from disclosure.

C. "Public Interest in Disclosure"

The public record law does not define "public interest in disclosure." However, the Oregon Court of Appeals stated, "[t]he Public Records Law expresses the legislature's view that members of the public are entitled to information that will facilitate their understanding of how public business is conducted." *Guard Publishing Co. v. Lane County School District,* 96 Or App at 468-69. It previously characterized the public interest in disclosure as "the right of the citizens to monitor what elected and appointed officials are doing on the job." *Jensen v. Schiffman,* 24 Or App 11, 17 (1976). The public's right to monitor public employees includes the right to inspect records of alleged misuse and theft of public property by public employees. *Oregonian Publishing Co. v. Portland School District,* 329 Or 393 (1999). The term "public" means that the "focus is on the effect of the disclosure in general, not disclosure to a particular person at a particular time." *Morrison v. School District No. 48,* 53 Or App 148, 156 (1981).

7. Destruction of Public Records

State laws and regulations govern the retention and destruction of public records. ORS 192.001 to 192.170. In order to comply with these laws, public employees and officials are required to identify public records and determine their retention period; retain records in compliance with records retention schedules promulgated by the State Archivist; and destroy those records that are non-public records and those that have reached their retention period. For purposes of the record retention and destruction laws, "public record" includes correspondence, including email, text messages and social media communications, but excludes extra copies of a document preserved only for convenience. ORS 192.005(5)(d). Even public records exempt from disclosure are subject to the retention schedules.

It is important to follow these requirements as state law makes it a crime to knowingly destroy, conceal, remove or falsely alter a public record. ORS 162.305.

8. Public Meetings Policy

The Oregon policy of open decision-making is established by ORS 192.620:

The Oregon form of government requires an informed public aware of the deliberations and decisions of governing bodies and the information upon which such decisions were made. It is the intent of ORS 192.610 to 192.690 that decisions of governing bodies are arrived at openly.

The Public Meetings Law applies to not only the state, but also the cities, counties and special districts despite any conflicts with their charters, ordinances or other rules. Cities, counties and other public bodies may impose greater requirements than those of the law by their charters, ordinances, administrative rules or bylaws.

The Public Meetings Law applies to meetings of the "governing body of a public body." ORS 192.630(1). A "public body" is the state, any regional council, county, city or district, or any municipal or public corporation or any board, department, commission, council, bureau, committee, subcommittee or advisory group or any other agency thereof. ORS 192.610(4). If two or more members of any public body have "the authority to make decisions for or recommendations to a public body on policy or administration," they are a "governing body" for purposes of the meetings law. ORS 192.610(3).

Thus, the city council (council), and citizen advisory commissions and committees are "governing bodies." A subcommittee of a commission or committee can also be a "governing body" if it is authorized to make decisions for or to advise the council.

A. <u>Public Body Decisions</u>

A committee or commission that has authority to make decisions for the city on "policy or administration" is a governing body. ORS 192.610(3).

B. <u>Recommendations to a Public Body</u>

An advisory committee, subcommittee, task force or other official group that has authority to make recommendations to the public body on policy or administration also is a governing body. ORS 192.610(3).

"Public body" does not include the city manager or other individual city officials. For example, an advisory committee appointed by the city manager is *not* a governing body subject to the law if the advisory committee reports only to the appointing official. However, if the individual official lacks authority to act on the advisory group's recommendations, and must pass those recommendations unchanged to the council, then the meetings law applies to the advisory group.

If an advisory body is created by a public body to advise it, the fact that its members are all private citizens is irrelevant. The meetings law applies to private citizens, employees and others without decision-making authority when they serve on a group that is authorized to advise the public body.

9. Meetings Subject to the Law

The Public Meetings Law defines a meeting as the convening of any of the "governing bodies" described above "for which a quorum is required in order to make a decision or to deliberate toward a decision *on any matter*." ORS 192.610(5) (emphasis added).

A. Quorum Requirements

The Public Meetings Law does not define "Quorum." For the City's purposes, a majority of the council constitutes a quorum.

Public Records & Meetings Beery, Elsner & Hammond, LLP

A gathering of less than a quorum is not a meeting under the meetings law. The law applies to committees, subcommittees and other advisory groups that are charged by the public body with making recommendations. The recommendations must be the result of formal votes taken at meetings at which a quorum was present.

Staff meetings are not subject to the meetings law because they are not "governing bodies" and quorums are not required. ORS 192.610(3). Similarly, the law does not apply to individuals who are authorized to make recommendations. However, if staff meets with a quorum of the council or a city commission, committee or subcommittee to discuss matters of "policy or administration," or to clarify a decision or direction for staff, the meeting is within the scope of the law. ORS 192.610(5).

B. <u>Meetings and Social Gatherings</u>

The Public Meetings Law applies to all public body meetings for which a quorum is required to make a decision or deliberate toward a decision on any matter. Even meetings for the sole purpose of gathering information upon which to base a future decision or recommendation are covered. Hence, information gathering and investigative activities of a city body are subject to the law.

If a quorum of the governing body gathers to discuss matters outside its jurisdiction, the "meeting" is not legal under the meetings law. Governing bodies sometimes want to have retreats or goal-setting sessions. These types of meetings are nearly always subject to the Public Meetings Law because the governing body is deliberating toward a decision on official business or gathering information for making a decision. Council "retreats" and other gatherings must be held within the jurisdiction.

The law does not cover purely social meetings of council or committee members. In *Harris v. Nordquist*, 96 Or 19 (1989), the court concluded that social gatherings at which school board members sometimes discussed "what's going on at the school" did not violate the meetings law. The *purpose* of the meeting determines if the law applies. However, a purpose to deliberate on any matter of policy may arise *during* a social gathering and lead to a violation. When a quorum is present, members should avoid any discussions of official business during social gatherings. Some citizens may see social gatherings as a subterfuge for avoiding the law.

C. <u>Electronic Communication</u>

The Public Meetings Law expressly applies to telephonic conference calls and "other electronic communication" meetings of governing bodies. ORS 192.670(1). Notice and an opportunity for public access must be provided when meetings are conducted by electronic means. For non-executive session meetings, the public must be provided at least one place to listen to the meeting by speakers or other devices. ORS 192.670(2). Special accommodations may be necessary to provide accessibility for persons with disabilities. The media must be provided such access for electronic executive sessions, unless the executive session is held under a statutory provision permitting its exclusion.

Communications between and among members of a public body on electronically linked personal computers, including email, text messaging and social media may be subject to the meetings law.

D. Serial Communications

Members of a governing body may violate the Oregon Public Meeting Law's prohibition on meeting in private even if a quorum never gather contemporaneously.

ORS 192.630(2) provides that a "quorum of a governing body may not meet in private for the purpose of deciding on or deliberating towards a decision on any matter." A decision is "any determination, action, vote or final disposition upon a motion, proposal, resolution, order, ordinance or measure on which a vote of a governing body is required, at any meeting at which a quorum is present. ORS 192.610(1). In other words, a quorum of a governing body may violate the prohibition against private meetings by (1) communicating in private, (2) for the purpose of deciding or deliberating on (3) any topic that may require a vote.

A recent Oregon Court of Appeals case held that the prohibition against meeting in private includes both when a quorum meets contemporaneously *and* when a series of non-contemporaneous communications between members of the governing body, in the aggregate, include a quorum and the purpose of the communications is to decide or deliberate on a matter that may come before the governing body. *Handy v. Lane Cty.*, 274 Or. App. 644, 689, 362 P.3d 867, 894 (2015).²

To illustrate this point, the following communications between members of a five person governing body may violate the state's public meeting laws:

- A councilor forwards an email discussion she had with another member of the Council regarding a matter that may come before the governing body to a third member of the Council. Because the email messages, in the aggregate, include a quorum of the Council (3 Councilors), and the purposes of the communications was to discuss a matter that will require a vote before the Council, the email exchanges in the aggregate could violate state law under the Court of Appeals decision.

- A staff person individually calls members of a governing body to discuss a matter that will require a vote. When the staff person talks to each member, she shares with the member the opinions and comments of the other members. Although the members never speak directly, the staff person is acting as a conduit and allowing the members of the governing body to deliberate through her. These conversations, in the aggregate, could likewise violate state law.

 $^{^2}$ On November 25, 2016, the Oregon Supreme Court overruled the Court of Appeals decision in part, but it did not directly address the issue of whether serial communications could violate the state's public meeting laws. Thus, although the Court of Appeals decision is no longer binding, it is still persuasive to trial courts and instructive to public officials regarding the limitations on their ability to communicate with each other outside the scope of a public meeting.

- A citizen posts a comment on the city's Facebook page about an upcoming land use hearing and the comment generates a discussion. Two members of the governing body make comments and share opinion on the Facebook "thread." A third member reads the comments and also makes a comment. Because a quorum (3 members) have communicated opinions on the social media site on a matter that will require a vote before their body, the members may have violated state law.

As explained by the Court of Appeals, the prohibition against meeting in private does not include communications that are purely "information gathering." Members of a governing body should be aware, however, that the parameters of "information gathering" are not clear, and questions regarding whether and to what extent serial communications may occur should be directed to staff and/or the City Attorney's Office.

10. Legal Requirements

A. <u>Notice</u>

The Public Meetings Law requires public notice of the time and place of meetings. This requirement applies to regular, special and emergency meetings. ORS 192.640. The public notice requirements apply to *any* "meetings" of the governing body, and committees, subcommittees and advisory committees. Regular meeting notice must be *reasonably calculated* to give actual notice of the time and place of the meeting "to interested persons including news media that have requested notice." ORS 192.640(1). Notice must be given to persons and media that have stated in writing that they wish to be notified of every meeting.

If the meeting will consist of only an executive session, notice still must be given to members of the public body, the general public and news media that have requested notice. The notice must also state the specific legal section authorizing the executive session. ORS 192.640(2).

To help satisfy the accessibility requirements of ORS 192.630(5) and the Americans with Disabilities Act, the notice may provide the name of a person and telephone number (including TDD number) at the city to contact to request an interpreter for the hearing impaired or for other communication aids.

The notice for each meeting must "include a list of the principal subjects anticipated to be considered at the meeting." ORS 192.640(1). The list should be specific enough to permit members of the public to recognize the matters in which they are interested; ordinarily this can be met by distribution of an agenda. The agenda need not go into detail about subjects scheduled for discussion or action, but should be sufficiently descriptive so interested persons can understand agenda topics.

The meetings law does not require the description of every proposed item of business in the notice. The law requires a reasonable effort to inform the public and interested persons of the nature of the more important matters ("principal subjects") coming before the body. The public body may consider additional "principal subjects" arising too late to be included in the notice.

Public Records & Meetings Beery, Elsner & Hammond, LLP

The listing of principal subjects "shall not limit the ability of the governing body to consider additional subjects." ORS 192.640(1).

The purpose of meeting notice is two-fold: general notice to the public at large and *actual* notices to specifically interested persons.

i. Regularly Scheduled Meetings: News media requesting notice *must* be given notice. Paid advertising is *not* required. If the city is aware of persons having a special interest in a particular action, those persons generally should be notified. This is not required if such notification would be unduly cumbersome or expensive.

ii. Special Meetings: At least 24 hours' notice is required for special meetings. This may be accomplished by press releases or phone calls to the media. The city should make reasonable attempts to notify interested persons either by mail or telephone. News media requesting notice must be notified.

iii. Emergency Meetings: An emergency meeting is a special meeting called on less than 24 hours' notice. An "actual emergency" must exist, and the minutes must describe the emergency justifying less than 24 hours' notice. ORS 192.640(3). The public body must identify and describe in the minutes the reason the meeting could not be delayed to allow at least 24 hours' notice. The law requires that "such notice as is appropriate to the circumstances" be given for emergency meetings. The city must attempt to contact the media and other interested persons to inform them of the meeting. Generally, such contacts are made by telephone.

The Oregon Court of Appeals stated in *Oregon Association of Classified Employees v. Salem-Keizer*, 95 Or App 28 (1989) that it will closely scrutinize any claim of an "actual emergency." The "emergency" must relate to the matter to be discussed at the emergency meeting. An actual emergency on one matter does not "justify a public body's emergency treatment of all business coming before it at approximately the same time." 95 Or App at 32. Nor does the convenience or inconvenience of members of the public body provide justification for an emergency meeting.

iv. Space and Location: Public bodies should consider the probable public attendance and meet where there is sufficient room for the expected attendance. If the regular meeting room is adequate for usual attendance, the public body is not required to seek larger quarters for a meeting that unexpectedly attracts an overflow crowd.

v. Geographic Location: Meetings of the council and other city bodies must be held within the city boundaries. ORS 192.630(4). A joint meeting with two or more governing bodies must be held within the geographic boundaries of the area over which one of those bodies has jurisdiction, or at the nearest practical location. This does not apply in the case of an actual emergency requiring immediate action. Additionally, the law permits public bodies to hold "training sessions" outside their jurisdiction, so long as no deliberation toward a decision is involved.

Public Records & Meetings Beery, Elsner & Hammond, LLP

vi. Nondiscriminatory Site: Public bodies may hold public meetings in private places such as restaurants or residences, if *fully* adequate notice is given of the location so interested persons may attend, and if *fully* adequate arrangements are made for their convenient attendance. Municipal bodies may not meet at a place where discrimination based on race, creed, color, sex, age, national origin or disability is practiced. ORS 192.630(3). The Americans with Disabilities Act, 42 USC 12131 *et seq.*, prohibits discrimination against persons with disabilities by public entities, and by places of public accommodation for meeting sites owned by private entities.

B. Accessibility to Persons with Disabilities

ORS 192.630(5)(a) states:

It is discrimination on the basis of disability for a governing body of a public body to meet in a place inaccessible to persons with disabilities, or, upon request of a person who is deaf or hard of hearing, to fail to make a good faith effort to have an interpreter for persons who are deaf or hard of hearing provided at a regularly scheduled meeting.

This statute imposes two requirements. First, public meetings must be held in places accessible to individuals with mobility and other impairments. Second, there must be a good faith effort to provide an interpreter for hearing impaired persons.

C. <u>Public Attendance</u>

The meetings law is a public attendance law, not a public participation law. Meetings are open to the public except for closed meetings specifically authorized. ORS 192.630. *The right* of public attendance guaranteed by the Public Meetings Law does not include the right to participate by public testimony or comment.

Other statutes, rules, charters, ordinances, resolutions, and bylaws outside the meetings law may require the council and other city bodies to hear public testimony or comment on certain matters. In circumstances where such requirements do not apply, the public body may conduct a meeting without public participation.

D. <u>Control of Meetings</u>

The presiding officer of any meeting has inherent authority to keep order and to impose any reasonable restrictions necessary for the efficient and orderly conduct of a meeting. If public participation is part of the meeting, the presiding officer may regulate the order and length of appearances and limit appearances to presentations of relevant points. Presiding officers need to ensure consistency in the application of whatever rules are imposed.

This authority extends to control over equipment such as cameras, tape recorders and microphones, but only to the extent of reasonable regulation. Members of the public may not be prohibited from unobtrusively recording the proceedings of a public meeting. The criminal law

Public Records & Meetings Beery, Elsner & Hammond, LLP

prohibition against electronically recording conversations without the consent of a participant does not apply to recording "public or semipublic meetings such as hearing before government or quasi-government bodies." ORS 165.540(6)(a).

Any person who fails to comply with reasonable rules of conduct and actually causes a disturbance may be asked or required to leave and upon failure to do so becomes a trespasser. *State v. Marbet,* 32 Or App 67 (1978). Cities should not eject an individual from a council meeting or otherwise prohibit free speech related activities, however, unless those actions actually disrupt the meeting. *See Norse v. City of Santa Cruz,* 629 F3d 966, 976 (9th Cir. 2010); *Acosta v. City of Costa Mesa,* 718 F.3d 800 (9th Cir. 2013).

E. <u>Voting</u>

All official actions by a public body must be taken by public vote. The vote of each member must be recorded. ORS 192.650(1)(c). Written ballots may be used, but each ballot must identify the member voting and the vote must be announced. *Secret ballots are prohibited*.

The failure to record a vote is not itself a ground for reversing a decision. Without a showing that the failure to record a vote was related to a manipulation of the vote, a court will presume that public officials lawfully performed their duties. *Gilmore v. Board of Psychologist Examiners*, 81 Or App 321, 324 (1986).

F. Minutes and Recordkeeping

ORS 192.650 requires that a sound, video or digital recording or the taking of written minutes be taken at all meetings, except for executive sessions. Meeting minutes shall include at least the following:

- i. Members of the governing body present;
- ii. Motions, proposals, ordinances, resolutions, orders and measures proposed and their disposition;
- iii. Results of all votes and the vote of each member by name;
- iv. The substance of any discussion on any matter; and
- v. Subject to the Public Records Law (ORS 192.311 to 192.478), a reference to any document discussed at the meeting. This reference does not change the status of the document under the Public Records Law.

Minutes need not be a verbatim transcript, and the meeting does not have to be recorded unless otherwise required by law. The minutes must be a true reflection of the matters discussed at the meeting and the views of the participants. ORS 192.650(1).

The public body must prepare minutes and have them available within a "reasonable time after the meeting." ORS 192.650(1). After minutes are prepared, they are public records subject to disclosure under the Public Records Law. They may not be withheld from the public merely because they have not yet been approved. If minutes have not been approved, they may be so identified.

Public Records & Meetings Beery, Elsner & Hammond, LLP

Executive session minutes may be kept in the form of a tape recording rather than written minutes. ORS 192.650(2). No transcription of executive session minutes must be made unless otherwise required by law. If disclosure of material in the minutes would be inconsistent with the purpose of the executive session that was held under ORS 192.660, the material may be withheld from disclosure. ORS 192.650(2).

The media has no right to the minutes or tapes of executive sessions greater than that of the general public.

11. Executive (Closed) Sessions

A. <u>Permissible Purposes</u>

Public bodies may meet in executive sessions only in specified situations. ORS 192.660. An "executive session" is defined as "any meeting or part of a meeting of governing body that is *closed* to certain persons for deliberation on certain matters." ORS 192.610(2) (emphasis added).

The public body may hold an open session even when the law permits it to hold an executive session. A public body is authorized to hold closed sessions regarding the following subjects:

- Real Property Transactions;
- Exempt Public Records;
- Legal Counsel;
- City Employees; and
- Labor Negotiations.

B. Final Decision Prohibition

ORS 192.660(6) states: "No executive session may be held for the purpose of taking any final action or making any final decision." The public body may reach a consensus in executive session. The purpose of the "final decision" requirement is to allow the public to know the *results* of the discussions. Taking a formal vote in open session satisfies that requirement, even if the public vote merely confirms a decision made informally in closed session.

C. <u>Method of Convening</u>

An executive session may be called during a regular, special or emergency meeting for which notice has already been given in accordance with ORS 192.640. The person presiding at the meeting must announce the statutory authority for the executive session before going into closed session. ORS 192.660(1). When a meeting that will be solely an executive session is called, the statutory authority for the executive session must be set forth in addition to notice requirements for any other meeting.

Public Records & Meetings Beery, Elsner & Hammond, LLP

D. Media Representation

The Public Meeting Law expressly provides that representatives of the news media *shall* be allowed to attend all executive sessions except for sessions involving deliberations with persons designated to carry on labor negotiations, *Barker v. City of Portland*, 67 Or App 23 (1984).

As stated above, the public bodies may consult with their attorney about pending litigation or litigation likely to be filed. The public body may exclude any member of the media from such a meeting if the member is a party to the litigation to be discussed or is an employee, agent or contractor of a new media organization that is a party to the litigation. ORS 192.660(5).

The public body may require the non-disclosure of specified information that is the subject of the executive session. ORS 192.660(4). The presiding officer should make the specification. Absent a specification, the entire proceedings may be reported and the purpose of the executive session may be frustrated. The media may discuss the statutory grounds justifying the executive session.

The meetings law contains no sanction to enforce the requirement that a news representative not disclose specified information. Penalties may raise freedom of press and speech questions. The Attorney General has concluded, "enforcement'... depends upon cooperation between public officials and the media." AGM 146.

Reporters have no obligation to refrain from disclosing information obtained at an executive session if the public body fails to specify that certain information is not for publication. Reporters may, but are not required to, inquire whether a public body's failure to specify was an oversight. Reporters are under no obligation to keep confidential any information the reporter independently gathers as the result of leads obtained in executive session. Reporters may disclose matters discussed in executive session that are not properly within the scope of announced statutory authorization of executive sessions.

The public body may request a news medium not to assign a particular representative to cover its meetings if the representative has irresponsibly violated a clearly valid nondisclosure requirement. That representative may be barred from future executive sessions because the meeting law purposes will be met by allowing attendance of another representative, and representatives from other news media.

E. Other Persons Attendance

The public body may permit others to attend executive sessions. Generally, executive sessions are closed to all except members of the public body, their staff, their attorney, persons reporting on the subject of the executive session or otherwise involved, and news media representatives. However, the law does not prohibit the public body from permitting other persons to attend.

Public Records & Meetings Beery, Elsner & Hammond, LLP

Oregon Government Ethics

Beery, Elsner & Hammond, LLP 503. 226.7191 www.gov-law.com

OREGON GOVERNMENT ETHICS

After the Watergate scandal in 1974, Oregon voters adopted a comprehensive ethics law for public officials. The law attempts to ensure that government officials promote general public interests rather than private financial interests. The policy states, "that service as a public official is a public trust, and that, as one safeguard for that trust, the people require all public officials to comply with the applicable provisions of this chapter." ORS 244.010(1).

ORS chapter 244 has six major parts: (1) abuse of office, (2) reporting requirements, (3) conflicts of interest, (4) nepotism, (5) the ethics commission and (6) penalties. The first four parts are of major importance to public officials and employees. The Oregon Government Ethics Commission (OGEC) is the state agency that oversees and implements Oregon's ethics laws. The OGEC also has jurisdiction over alleged violations of executive sessions.

1. Abuse of Office

A. <u>Who does the ethics law apply to?</u>

The law applies to all "public officials" and in some cases to candidates for public office. The definition of "public officials" is broad and includes any person who serves state or local government as an officer, employee or agent. It includes council, committee and commission members, city attorneys, city employees and persons who work for the city on contract. It applies whether or not a public official is paid. ORS 244.020(14).

- B. <u>What does the ethics law prohibit?</u>
 - i) Use of position

Public officials may not use or attempt to use their position to obtain financial gain or avoid financial detriment that would not otherwise be available but for the holding of the official position. This applies to public officials and "relatives" of public officials, which includes (1) the spouse, parent, step-parent, child, sibling, step-sibling, son-in-law and daughter-in-law of a public official; (2) the parent, step-parent, child, sibling, son-in-law and daughter in law of the spouse of a public official; (3) any individual that the public official has a legal obligation to support; and (4) any individual to whom or from whom the official provides or receives benefits from employment. ORS 244.020(15).

It is improper for a public official to lobby council, committee or commission members or public employees to award a contract to a business with which the official of any member of the household of the official is associated. Member of household is defined as any person who resides with the public official. ORS 244.020(10). In addition, public officials may not use their positions to avoid taxes, charges or fees paid by other residents.

The state law does not apply to official compensation, honoraria, reimbursement of expenses, or unsolicited award for professional achievement for a public official or relative. ORS 244.040(2).

Official compensation is not defined by the statutes. The OGEC has interpreted official compensation package as "wages and other benefits provided to the public official." To be part of the package the wages and benefits must be specifically and formally approved by the public body. The benefits provided by contract or personnel policies must generally apply to public employees or other public officials. Official compensation also includes direct public body payment of a public official's expenses. OAR 199-005-0035(3).

<u>Example</u>: An SAIF official purchased a personal car as an "add-on" to the SAIF fleet purchase and saved about \$1300. There was no additional cost to SAIF and no cost to the vehicle vendor.

<u>Held</u>: Ethical violation because official "availed himself of" financial benefit accessible only because of his status as a public official. Person would not have been benefited "but for" the official position. *Davidson v. Oregon Government Ethics Commission*, 300 Or 415 (1985).

<u>Example</u>: Public employees' personal use of employer's telephones, cellular phones and computers (including Internet access).

<u>Held</u>: (a) Personal use of public telephones is not an ethical violation because "it is normal practice by both public and private employers to permit employees to use business telephones..." for personal business. However, personal long distance calls, even if employee reimburses public employer may be an ethical violation. (b) Use of a public computer on employee's own time may not be ethical violation. However, public computer use by employee to avoid a financial detriment is legally prohibited. This may include personal use to avoid private purchase of computer hardware or software. (c) Personal use of a public cellular phone does not violate ethics code where use is **directly** related to official duties, such as phone use to inform family of a late meeting or schedule change. However, personal uses beyond those necessary for public business or emergency would violate ethics code. This is the result even where an employee reimburses the employer for personal use. *Oregon Government Standards and Practices Commission*, Technical Advisory Opinion 98A-1003 (July 1998).

ii) Gifts

The law prohibits public officials, relatives of public officials and members of a public official's household from soliciting or receiving any gifts over \$50 in a calendar year from any source that has, or could reasonably be expected to have, a legislative or administrative interest in the public official's decisions or votes. ORS 244.025; OAR 199-005-0003. A gift is anything of economic value, but the definition excludes things such as:

- gifts from relatives or members of the household of the public official;
- food / lodging / travel reimbursed by the public body when representing the public body;

- food / lodging / travel reimbursed by another government agency, organization, company or person when the official is representing the public body and under specific limited circumstances;¹
- campaign and legal expense fund contributions;
- gifts in the form of tokens, plaques, trophies or mementos with a resale value less than \$25;
- publications, subscriptions or other informational material related to the official's duties;
- waivers or discounts for continuing education for professional licensing;
- entertainment incidental to the main purpose of an event or when the official is acting in an official capacity and representing the public body for a ceremonial purpose.² ORS 244.020(6);
- gifts received as part of one's private business, employment or volunteerism; and
- gifts received that bear no relation to one's position or public office.

<u>Example</u>: A mayor, council president and city manager traveled to New York City to present the city's bond proposal to an investment rating service. The travel expenses of the officials' spouses were paid by the financial institution that prepared the city bond package.

<u>Held</u>: The food, lodging and travel exemption does not apply to family household members. Payments of these expenses were illegal gifts because they were not "extended to others who are not public officials." Officials were fined twice the value of the reimbursed expenses. *Keller v. Oregon Government Ethics Commission*, 94 Or App 462 (1988), 106 Or App 727 (1991).

iii) Confidential information

Public officials may not further or attempt to further personal gain through use of confidential information gained in the course of or by reason of their official positions or activities in any way. Public officials often receive information that is not available to the general public. It is improper for an official to sell such information for use by another or to make use of such information for personal gain. ORS 244.040(4).

iv) Employment

A public official may not solicit or receive promises of future employment when there is any relationship or understanding that the promise will influence the official's actions. ORS 244.040(3).

2. Reporting Requirements

The regulation of the receiving of gifts, honorariums, expense reimbursements and certain forms of income is governed by a set of laws that apply to public officials, as defined in

¹ The law was amended in 2007 and 2009. Under ORS 244.020(6)(b), reimbursement or payment of expenses for reasonable food, travel or lodging to a city official, and in some cases a relative, household member or staff member accompanying a city official, representing city government is not a gift, depending on the facts as they relate to ORS 174.111, 174.116 and 174.117.

² Reimbursement or payment of entertainment expenses to public officials, their relatives or household member are sometimes defined as gifts and in those instances, are allowed under ORS 244.025(4).

ORS 244.020(14), and includes "an elected official, appointed official, employee or agent, irrespective of whether the person is compensated for the services". However, state law only imposes the associated reporting requirements on some of these public officials including elected city officials, members of planning, zoning and development commissions, the city manager and as of April 15, 2010 each current candidate for any of these offices or positions. The remaining members of the staff and governing commissions and committees are not subject to the reporting requirements. ORS 244.050.

A. <u>Annual Verified Statement of Economic Interest</u>

The Annual Verified Statement of Economic Interest (SEI) must be filed by April 15 of each year and becomes a public record. The SEI is best characterized as a declaration of income, holdings and business associations. The information to be included changed in 2009 and a brief description is:

- the businesses controlled or affiliated with the public official and members of their household;
- the sources of income for the official's household that produce 10% or more of the total annual household income;
- any real property owned by the household within the geographic boundaries of the jurisdiction of the public body with the exception of the primary residence. ORS 244.060;
- any expenses reimbursed with an aggregate value exceeding \$50 and the name of the organizations or governments from which they were received;
- all honoraria received with a value exceeding \$15; and
- each source of income in excess of \$1,000 from an individual or business that could have a legislative or administrative interest in the public body. ORS 244.100.

A further requirement of the SEI only applies to those individuals or businesses that have done, or could reasonably be expected to do, business with the public body and has an administrative or legislative interest in the public body. If the foregoing is found to exist, then the official must also report the following as they relate to those individuals or businesses only:

- debts owed by the official in the amount of \$1,000 or more;
- beneficial interest or investment by stocks or bonds by the official in excess of \$1,000; and
- any fee for services in excess of \$1,000. ORS 244.070.

B. <u>Quarterly Public Official Disclosure</u>

Beginning April 2009, those public officials who also had to file a Quarterly Public Official Disclosure (QPOD) due on the 15th of April, July, October and January of each year are no longer required to do so. Governments, tribes and corporations that provide for payment of expenses or the giving of honorarium must still file QPOD's and provide those public officials that received payment notice of their having done so.

3. Conflicts of Interest

A. <u>What is an actual conflict of interest?</u>

An actual conflict of interest exists whenever the effect of any action, decision or recommendation by a person acting as a public official **would** cause private pecuniary benefit or detriment for the person or the person's relative or any business with which the person or a relative is associated. ORS 244.020(1). If public officials approve or recommend approval of applications involving their own land, award contracts or make purchases from persons to whom they owe money, or approve employment agreements with organizations for whom spouses work, then there is an actual conflict of interest. A conflict exists even if the official would lose money by taking a particular action. When an official's relative or a business associated with a relative would be affected by an official decision, there is also an actual conflict of interest.

B. <u>What is a potential conflict of interest?</u>

A potential conflict of interest exists whenever the effect of any action, decision or recommendation by a person acting as a public official <u>could</u> cause private pecuniary benefit or detriment for the person or person's relative or any business with which the person or a relative is associated. ORS 244.020(12).

Excluded from the definition of "business" is any nonprofit IRC 501(c) corporations where the associated public officials receive no remuneration. ORS 244.020(2). The statute excludes from the definition of potential conflict of interest "membership in or membership on the board of directors of a nonprofit corporation that is tax-exempt under section 501(c) of the Internal Revenue Code". ORS 244.020(12)(c).

There is a class exemption to the definition of a potential conflict of interest. Whenever the public official's action would affect other members of a large class the same way it affects the official, there is no legal potential conflict of interest. For example, if a city considers a storm water charge, then city officials who are city customers would have a potential conflict of interest were it not for the "class exemption." There are enough members of the class that the interest of each official is small compared to all the other members of the class. On the other hand, if the city official owns property about to be rezoned with other properties, a conflict of interest exists because the number of other property owners who are members of the class is small. ORS 244.020(12)(b).

C. What do I do if I have an actual or potential conflict of interest?

The simple answer is to disclose the conflict of interest. Elected and appointed public officials serving on the council, committees or commissions must announce publicly any potential conflicts of interest prior to taking any action. When there is an actual conflict, the official must announce publicly the nature of the actual conflict and refrain from participating as a public official in any discussion or debate on that issue. This official must not vote on the issue. ORS 244.120(2). An actual or potential conflict of interest must be declared at any meeting where the issue is acted upon, discussed, or considered in any manner.

The public body must record the actual or potential conflicts of interest in its public records when a public official gives notice of an actual or potential conflict. The notice and how it was disposed of may be provided to the OGEC within a reasonable period. ORS 244.130(1).

A council, committee or commission member may not participate in any proceeding or action in which the following have a direct or substantial financial interest:

- member or spouse, brother, sister, child, parent, father-in-law, mother-in-law;
- any business in which the member is currently serving or has served within two years; and
- any business in which the member is negotiating or has an understanding concerning future partnership or employment.

Any actual or potential conflict of interest must be disclosed at the meeting where the action is being taken. ORS 244.135. An OGEC opinion in the budgetary context is attached to this handout and is instructive for officials who are related to a city employee.

Appointed public officials must notify in writing the person who appointed them to office of the nature of the conflict. Notification must include a request that the appointing authority dispose of the matter giving rise to the conflict. The appointing authority then has the obligation to assign the matter to another person, or to prescribe a manner for the public official to dispose of the matter. ORS 244.120(1)(c).

4. Nepotism

This law applies to all public officials, members of household and relatives as previously defined under the law relating to gifts and expense reimbursement. Nepotism is favoritism based on kinship. The law states that a public official may not participate in the appointment, employment, promotion, discharge, firing or demoting of a relative or member of the household. A public official must not participate in preliminary discussion of or interviews regarding any of these activities. There is an exception to these requirements for unpaid volunteer positions, but not for the public body the official serves. Reimbursable expenses for volunteers do not constitute nepotism. ORS 244.177.

Much like the law governing conflicts of interest, the public body is not prohibited from any of these activities provided the public official to whom the individual is related or is a member of a common household does not participate. ORS 244.177(4).

Public officials may not directly supervise a relative or member of the household either, with the same exceptions regarding unpaid volunteers and reimbursable expenses. A public body may adopt policies specifying further exceptions. ORS 244.179.

5. Oregon Government Ethics Commission

The Governor appoints all seven members of the Commission who are confirmed by the Senate. The Commission selects an executive director to administer the Commission and the Oregon Department of Justice provides legal counsel. ORS 244.250. The Commission's duties include training, advice, compliance and investigation. ORS 244.290. Advice is divided into staff advice, staff advisory opinions and commission advisory opinions.

Training is one of the highest priorities of the Commission and is available in presentations, the internet, topical written materials and guidance in response to inquiries.

Advice can be requested and received in various forms, depending on the level of advice sought. Telephone, email, letters and written requests for written opinions are all accepted. Staff advice takes all of these forms, originates with Commission staff or the executive director and affords a public official some protection should a penalty later be considered for an action taken on the advice received. ORS 244.284. Staff advisory opinions come from the executive director upon written request, may take 30 to 60 days to receive and generally afford an official with more protection than staff advice. ORS 244.282. Commission advisory opinions originate with the Commission itself based on adoption by a vote, may take 60 to 120 days to receive and provide an official with absolute protection if the advice is followed completely and the facts were accurately reported to the Commission in the initial request. ORS 244.280.

Another duty of the Commission is compliance and it refers to the review of the approximately 6,000 people and entities that must file annual and quarterly reports.

Investigations are in response to the receipt of written complaints alleging violations of Oregon Government Ethics law and follow strict procedure to determine whether wrongdoing has occurred. The process begins with a consideration of whether there is reason to believe there has been a violation. Next, there is a preliminary review phase to determine whether there is a finding of cause to initiate further investigation. The investigatory phase follows and the culmination of a case is a contested hearing if requested by the public official. ORS 244.260.

6. Penalties

Violations of public ethics laws may result in a civil penalty of up to \$5,000 imposed by the Commission. This fine is in addition to any other penalty or sanction that may be imposed by any other law, including removal from office. ORS 244.350. If the OGEC finds a violation has occurred, the finding is prima facie evidence of unfitness where removal is authorized for cause by law. ORS 244.270.

In addition, public officials who financially benefit from a violation of any provision of ORS chapter 244 may be required to forfeit twice the amount of that profit. ORS 244.360.

Specific criminal statutes may also apply to public officials including receipt of a bribe by a public official, ORS 162.025, and misuse of confidential information for personal financial benefit, ORS 162.425.

Government Ethics Commission 3218 Pringle Rd SE, Ste 220 Salem, OR 97302-1544 Telephone: 503-378-5105 Fax: 503-373-1456 Email: ogec.mail@oregon.gov Website: www.oregon.gov/ogec

February 20, 2019

Chad Jacobs, Attorney at Law Beery, Elsner & Hammond, LLP 1750 SW Harbor Way, Suite 380 Portland, OR 97201

RE: Advice No. 19-0011

Dear Mr. Jacobs:

This letter of advice is provided in response to your request received on February 13, 2019 which presented a question regarding the application of Oregon Government Ethics law. This analysis and advice is being offered under the authority provided in ORS 244.284 as guidance on how the current provisions of Oregon Government Ethics law may apply to the specific circumstances you have presented.

FACTS AS PRESENTED:

Public bodies must conform their actions to applicable budget laws and proscribed processes, which often includes a budget committee comprised of some members of the governing body as well as other citizens. The budget committee makes recommendations to the governing body and the governing body makes the ultimate budget decisions.

Your law firm represents public bodies, such as cities or counties. Some of these clients have employees who are related to elected or appointed members of the client's governing body. For example, a newly elected city councilor whose sibling is a city employee.

Your concerns are about the participation of the governing body members in the budget process, given possible conflicts of interest since their relative's compensation is included in the budget. You explained that the governing body members do not supervise, hire, fire, demote, promote, or discipline their relative/employee.

QUESTION:

How would a member of a governing body of a public body whose relative was employed by the same public body remain in compliance with the conflict of interest provisions of Oregon Government Ethics law when participating, in their official capacity, in the public body's budget process?

ANSWER:

If the affected public official complied with the disclosure and disposition requirements of ORS 244.120, it appears that they may be able to participate in most of the budget process, as described below.

G

Chad Jacobs February 19, 2019 Page 2

<u>Conflicts of Interest</u>: ORS 244.020(1) defines an actual conflict of interest and ORS 244.020(13) defines a potential conflict of interest. A public official is met with either an actual or potential conflict of interest when participating in an official capacity in any action, decision, or recommendation, if the effect would or could be to the private pecuniary benefit or detriment of the public official, the public official's relative, or any business with which either are associated. An actual conflict of interest occurs when a public official participates in an official action that would have a direct financial impact on that official, the official's relative or any business with which the official or a relative is associated. A potential conflict of interest occurs when a public official's action, decision or recommendation <u>could</u> have a financial impact on the official's relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative or any business with which the official or a relative is associated.

There is a "class exception" to the conflict of interest provisions which applies to any action a public official may take in their official capacity that would affect to the same degree a class consisting of all inhabitants of the state, or a smaller class consisting of an industry, occupation, or other group which includes the public official, their relative, or a business with which the public official or their relative are associated. [ORS 244.020(1) and (13)(b)] In a budgetary context, a "class exception" may apply if a public body is budgeting for a 2% across the board cost of living increase for all employees. Because the application of the "class exception" is very fact specific, it is not being analyzed in this general letter of advice.

Elected officials or those appointed to a board or commission, when met with a conflict of interest, must on each occasion, publicly announce the nature of their conflict, whether it is an actual or potential conflict of interest. Then, if the conflict is actual, they must also refrain from any discussion, debate or vote on the issue giving rise to the conflict. If the conflict is potential, they may participate in official actions following their public disclosure. [ORS 244.120(2)]

In this case, there are two different budget participation points – when acting as a member of the budget committee and when acting as a member of the governing body.

Budget Committee

Budget Committee members make budget recommendations to the governing body, which is the body that ultimately determines the budget. Therefore, when sitting as a budget committee member, the public official would be met with a potential conflict of interest when participating in official discussions, decisions, or recommendations that could financially impact their relative. The budget committee member must, when met with a potential conflict of interest, publicly disclose the nature of the conflict prior to continuing to take official actions on the matter.

Governing Body

Members of the governing body consider recommendations from the budget committee as to funding levels and make the ultimate budgetary decisions for the public body. If, as you suggested in your request, the governing body were to separate the budget by department or section, the member of the governing body whose relative was an employee of the public body would be met with an actual conflict of interest when discussing or voting on the budget sections that would financially impact their relative (i.e., the department their relative/employee worked in). The public official could then Chad Jacobs February 19, 2019 Page 3

participate in official actions concerning the remainder of the budget that had no financial impact on their relative. Finally, when the entire budget, including the portion that impacts their relative, is discussed or voted on, the public official would again have an actual conflict and would need to announce and refrain from official action.

This general advice is limited to the application of the conflict of interest provisions to the general situation presented in your request. Because the possible applications of the use of office and nepotism provisions of ORS Chapter 244 are very fact specific, they are not analyzed here. Also not considered here is the possible existence of a "class exception" to the conflicts of interest analysis.

If you have any additional questions regarding the application of Oregon Government Ethics law, please feel free to contact me directly.

Sincerely,

Ronald A. Bersin Executive Director

RAB/dg

*****DISCLAIMER*****

This staff advice is provided under the authority given in ORS 244.284(1). This opinion offers guidance on how Oregon Government Ethics law may apply to the specific facts described in your request. This opinion is based on my understanding and analysis of the specific circumstances you described and should not be applied to circumstances that differ from those discussed in this request.

CITY OF SANDY

LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

February 2021

I. WHAT IS A LAND USE DECISION?

A. "Land Use Decision" is Defined by Statute and Case Law

A "land use decision" is defined at ORS 197.015(10) and is subject to several exemptions.

In simplified and non-exhaustive terms, a "land use decision" involves:

- a) a final decision or determination;
- b) made by a local government or special district (or state agency in limited circumstances);
- c) that concerns the adoption, amendment or application of the Statewide Planning Goals, a comprehensive plan provision, or the local land use regulations.

B. "Limited Land Use Decision" as Defined by Statute

Oregon law distinguishes a "land use decision" from a "limited land use decision" in ORS 197.015(12). The key distinctions are: (1) a "limited land use decision" involves land within an urban growth boundary, and (2) procedural requirements are less cumbersome for a "limited land use decision."

Specifically, a "limited land use decision" involves:

- a) a final decision or determination;
- b) made by a local government regarding a site within an urban growth boundary;
- c) that concerns the approval or denial of a tentative subdivision or partition plat, or the approval or denial of an application based on discretionary standards that regulate physical characteristics of an outright permitted use (e.g. site or design review).

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING 1

Examples of limited land use decisions include tentative subdivision plats for land within an UGB,¹ plan review decisions and review of uses permitted outright based on discretionary standards, such as approval of residential use in a residential zone.

The review process for a limited land use decision is less formal and shorter than that of a land use decision. ORS 197.195 requires written notice to property owners within 100 feet of the site for which the application is made, a 14-day comment period, a written list of the applicable criteria upon which the decision will be made and notice of the final decision. A local government may, but is not required, to provide a hearing before the local government on appeal of the final decision. However, if a local hearing is provided, it must comply with procedural requirements in ORS 197.763. The final decision is not required to have complete or exhaustive findings and may take the form of a "brief statement" that explains the relevant standards and criteria, states the facts relied upon in reaching the decision and explains the justification for the decision based on the criteria, standards and facts. However, as a practical matter, the findings for a limited land use decision will look much the same as the findings for a standard land use decision.

Note, however, that a decision to approve a preliminary plat may not qualify as a limited land use decision when it involves other discretionary standards. For example, in *Wasserburg v. City* of *Dunes City*, LUBA determined that an application for City subdivision approval including a request for planned unit development approval (to allow the property to be divided in ways that the property could not be divided without planned unit development approval) meant the decision granting preliminary planned unit development subdivision approval was a land use decision, *not* a limited land use decision. 52 Or. LUBA 70, 78 (2006) (emphasis added).

In either case, approval of the *final* plat is not a land use decision. ORS 197.015(10)(b)(G), (12)(b).²

C. "Land Use Decision" Does Not Include...

One reason for the complexity of defining a "land use decision" in Oregon is that the statute provides an extensive list of what a "land use decision" does *not* include. The list below is not comprehensive but describes the actions you are most likely to encounter that are *not* land use decisions per ORS 197.015(10)(b). A local government decision is *not* a "land use decision" if it:

- a) involves land use standards that do not require interpretation, or the exercise of policy or legal judgment (i.e. "ministerial" decisions);
- b) approves or denies a building permit under clear and objective land use standards;
- c) is a limited land use decision;

¹ See Barrick v. City of Salem, 27 Or. LUBA 417, 419 (1994), holding that a tentative subdivision plat within an UGB is a limited land use decision.

² This statutory provision was adopted in 2007 in response to Oregon Court of Appeals decision in *Homer v. City of Eugene*, 202 Or. App. 189 (2005).

- d) involves a transportation facility that is otherwise authorized by and consistent with the comprehensive plan and land use regulations;
- e) is an expedited land division as described in ORS 197.360; or
- f) approves or denies approval of a final subdivision or partition plat, or determines whether a final subdivision or partition plan substantially conforms to the tentative plan (as noted above).

II. LAND USE BASICS

A. Local Government Authority

In Oregon, there are several levels of government that simultaneously regulate land use — the state, city, county and special districts. A local government, such as a city or county, adopts its own land use plan as well as regulations to implement the plan. However, the local government's plan and regulations must be consistent with and implement state policies that are set forth in the Statewide Planning Goals and Oregon Administrative Rules (OARs). Additionally, those cities and counties located within Metro must meet regional requirements established by Metro.

Oregon law requires coordination between cities and counties. Except for cities and counties within Metro, counties are responsible for coordinating all planning activities within the county, including planning activities of cities, special districts and state agencies.³ Within Metro's boundary, Metro is designated by statute to coordinate planning activities.

State law imposes substantial procedural requirements for local land use decisions, depending on the type of land use decision that is being made. Due to the complexity involved in determining what type of decision is being made, the Planning Department staff and City Attorney will generally evaluate the nature of the particular decision in any given case.

B. State's Role in Local Land Use

(1) Land Conservation and Development Commission (LCDC).

The Oregon Land Conservation and Development Commission (LCDC) adopts the statewide land use goals and administrative rules, assures local plan compliance with applicable land use laws, coordinates state and local planning, and manages the coastal zone program. LCDC is comprised of seven appointed volunteer members and meets about every six weeks to direct the work of the Department of Land Conservation and Development (DLCD).

DLCD is the state agency that administers the state's land use planning program. DLCD works under and provides staff support for LCDC. DLCD is organized into five divisions: Community Services, Planning Services, Ocean and Coastal Services, Measure 49 Development Services and Operations Services.

³ See ORS 195.025 regarding regional coordination of planning activities, ORS 197.175 pertaining to cities' and counties' planning responsibilities, and ORS Chapter 197 on comprehensive land use planning coordination requirements.

Under ORS 197.090(2), DLCD is authorized to participate in local land use decisions that involve statewide planning goals or local acknowledged plans or regulations. With LCDC approval, DLCD may initiate or intervene in the appeal of a local decision when the appeal involves certain pre-established factors laid out in ORS 197.090(2) to (4). DLCD is also involved in reviewing and acknowledging local comprehensive plans.

When "good cause" exists,⁴ LCDC may order a local government to bring its plan, regulations, or decisions into compliance with statewide planning goals or acknowledged plans and regulations. This is known as an "enforcement order" and can be initiated by LCDC or a citizen but is infrequently used. LCDC may also become involved in a local government action if a petitioner requests an enforcement order and LCDC finds there is good cause for the petition. If LCDC determines there is good cause, LCDC will commence proceedings for a contested-case hearing under ORS 197.328. Failure to comply with an enforcement order under ORS 197.328 may result in the loss of certain public revenue, including state shared revenue.

(2) Land Use Board of Appeals (LUBA).

Most appeals of a local land use decision go to the Land Use Board of Appeals (LUBA). LUBA is comprised of three board members who are appointed by the governor and confirmed by the state senate. Anyone who participated in a local land use decision may appeal the decision to LUBA within 21 days of the sate the decision becomes final. It is important to note that the date the decision becomes "final" is when it is put in writing and signed by the decision-maker (e.g. Planning Commission Chair, Mayor, or Hearings Officer). Alternatively, a city may specify in its code when the decision becomes final, such as the date the decision is mailed. In any case, it is not the same as the date the decision becomes *effective*, which may be much later.

Once notice of appeal is served, the local government must compile and submit the record of the decision to LUBA within 21 days. LUBA is required to issue a decision on the appeal within 77 days after the record is transmitted, though there are some exceptions to this deadline. Finally, LUBA's decision may be appealed to the Oregon Court of Appeals.

An important aspect of an appeal is that LUBA's review is limited to the contents in the record. Therefore, it is important that the City Council ensure that all applicable criteria, goals, arguments, staff reports, studies, etc. are included in the record in the event of an appeal. Such care can impact the outcome of any appeal.

For example, the Oregon Court of Appeals found that the interpretation of a local code provisions was not a "new" issue and prohibited the appellant from raising the issue on appeal because, even though the provision was not specifically referenced in the City's notice of hearing the record showed that a member of the City Council raised the provision at the hearing, thus, placing the provision in the record. *Stewart v. City of Salem*, 231 Or. App. 356 (2009).

4

⁴ See ORS 197.320, which lists indicators of "good cause" such as: (1) a local government comprehensive plan or land use regulation that is not in compliance with goals by the date set in statute; (2) a local government does not make satisfactory progress toward coordination; or the local government has engaged in a pattern or practice that violated the comprehensive plan or a land use regulation.

Because of the specific procedural requirements for an appeal to LUBA, the City Council and staff work closely with the City Attorney on any appeals. It is important to notify the City Attorney immediately upon receipt of an appeal.

C. Statewide Planning Goals⁵

The purpose of the Statewide Planning Goals is to implement and consistently apply state land use policies throughout Oregon. The Statewide Planning Goals emphasize citizen involvement, a public planning process, management of growth within UGBs, housing and preservation of natural resources and specific types of lands called resource lands.

Most of the goals are accompanied by "guidelines," which suggest how to apply a goal but are not mandatory. The goals have been adopted as administrative rules and are located in OAR Chapter 660, Division 015. As noted, the City's comprehensive plan and development code must be consistent with the goals and are periodically reviewed by LCDC for compliance.

III. TYPES OF LAND USE DECISIONS

A. Quasi-Judicial Process and Appeals

(1) Overview.

A quasi-judicial decision typically applies pre-existing criteria to an individual person or piece of

⁵ Oregon's 19 Statewide Planning Goals are:

- Goal 1: Citizen Involvement
- Goal 2: Land Use Planning
- Goal 3: Agricultural Lands
- Goal 4: Forest Lands
- Goal 5: Natural Resources, Scenic and Historic Areas, and Open Spaces
- Goal 6: Air, Water and Land Resources Quality
- Goal 7: Areas Subject to Natural Hazards
- Goal 8: Recreational Needs
- Goal 9: Economic Development
- Goal 10: Housing
- Goal 11: Public Facilities and Services
- Goal 12: Transportation
- Goal 13: Energy Conservation
- Goal 14: Urbanization
- Goal 15: Willamette River Greenway
- Goal 16: Estuarine Resources
- Goal 17: Coastal Shorelands
- Goal 18: Beaches and Dunes
- Goal 19: Ocean Resource

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

land. Determining whether a proceeding is "quasi-judicial" turns on whether the decision displays the characteristics of such decisions identified by the Oregon Supreme Court in *Strawberry Hill 4 Wheelers v. Benton County Bd. of Commissioners*, 287 Or. 591, 601 P.2d 769 (1979). First, the proceeding must be "bound to result in a decision." *Id.* at 775. Second, the local government must be "bound to apply preexisting criteria to concrete facts." *Id.* Third, the decision must be "directed at a closely circumscribed factual situation or a relatively small number of persons." *Id.* While the court held that no single factor is determinative, the more closely a local decision comes to meeting these criteria, the more likely the decision is quasi-judicial. Typical examples of a quasi-judicial decision include design review, partition and subdivision, a zone change for a small number of lots or parcels, development permits and variances.

In Oregon, a quasi-judicial decision must comply with general standards of due process. This requirement arises from Oregon Supreme Court's decision in *Fasano v. Washington County Commission*, 264 Or. 574 (1973). Due process standards typically include an opportunity to be heard, an opportunity to present and rebut evidence, an impartial decision-maker and a record and written findings adequate to permit judicial review. *Id.* The mechanics of meeting the due process requirement are deeply embedded in state law and in some local codes.

(2) State law procedural requirements.

The procedures that apply to the City's review of a quasi-judicial application are largely determined by ORS 197.763. For example, at the "initial evidentiary hearing," the City must read a statement that lists the applicable criteria in the City development code; ask that testimony and evidence be directed at the applicable criteria (or other criteria in the plan or development code the person believes apply to the decision); and stating that the failure to raise an issue with sufficient specificity to allow the City and other parties an opportunity to respond prohibits an appeal to LUBA based on that issue. The applicant must also be advised of the requirement to raise any constitutional claims at the beginning of the hearing under ORS 197.796. Typically, these statements are included in a script for the presiding officer but also may be presented by staff or legal counsel.

The City must provide a description of the applicable standards that is "clear enough for an applicant to know what he must show during [the] application process." *State ex. Rel. West Main Townhomes, LLC. V. City of Medford*, 234 Or. App. 343, 346 (2010). Generally referencing local code provisions is not enough to satisfy ORS 197.763(3)(b) and (5)(a), (governing the content of mailed notices and statements at the commencement of the hearing, respectively).

At the close of the "initial evidentiary hearing," *any* participant may request that the record be held open in order to allow additional evidence regarding the application. The City can either hold the record open for a specific period to allow additional written evidence, or continue the hearing to a specific date, time and place at least seven days in the future. It is the City's choice whether to continue the hearing or leave the record open, which may depend on the nature of the evidence to be submitted and the time available in which to render a final decision.

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

If new written evidence is submitted at the continued hearing, a person may request that the record be left open for at least seven days to submit additional written testimony/evidence. Then, after all of the written evidence has been submitted and the record is closed to all other parties, the applicant is allowed at least seven days to submit a final written argument in support of the application.

Approval or denial of a quasi-judicial land use application must be based on standards and criteria that are set forth in the City's development code. ORS 227.173. The City's interpretation of its own code must be consistent with the express language of the code. *Siporen v. City of Medford,* 231 Or. App. 585 (2009). The courts will defer to a City's interpretation of its own code, provided the interpretation is made by the City Council. Conversely, the courts do not defer to an interpretation made by a lower body such as the Planning Commission or a hearings officer.

The City's final decision must include a brief description of the criteria, a description of the evidence that addresses each criterion, and the reasoning for approving or denying the application. ORS 227.173 (3). This part of the decision is generally referred to as the "findings." The legal requirements that apply to the City's findings are addressed in separate training materials but suffice it to say that they may not be cursory or conclusory.

(3) Local code requirements.

Under ORS 227.170(1), a city may establish its own hearing procedures provided they are consistent with ORS 197.763. Sandy's Municipal Code (Development Code), at Chapters 17.12, 17.20, and 17.22 address quasi-judicial procedures.

B. Final decision (Quasi-Judicial)

ORS 227.173(4) requires the final decision on a "permit" application be made in writing and sent to "all parties to the proceeding." A "permit" is defined at ORS 227.160(2) as a discretionary approval of development, excluding limited land use decisions (which have their own statutory process). The Sandy Municipal Code in Chapter 17.14 details the City procedures for issuing a final decision for quasi-judicial decisions. ORS 227.175(12) requires that the final order include notice of appeal procedures.

Finally, under ORS 227.178(1), a final decision must be made within **120 days** of the date the application was "deemed complete," including "resolution of all [local] appeals." While ORS 227.178(5) allows *the applicant* to extend the deadline in writing, the total of all extensions may not exceed 245 days. Accordingly, the City must reach a final decision on an application for a "permit, limited land use decision or zone change" within one year from the date the application is deemed complete.

C. Legislative Process

The procedural requirements for a legislative land use decision differ from the procedural requirements for a quasi-judicial decision. Legislative decisions typically involve the adoption

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

of more generally applicable policies, standards, etc., that apply to a variety of factual situations, and a broad class of people. Examples include amending the comprehensive plan, a zone change that applies broadly to large areas, or changes to the text of the development code to include or delete specific uses in a zoning classification. Because a legislative decision is the expression of City policy, the City is not required to reach a decision on a legislative proposal and may table the issue or decline to review it altogether.

In Sandy, revisions and amendments to the comprehensive plan are processed as a legislative decision under Chapter 17.24 of the Code.

IV. EX PARTE CONTACTS, CONFLICTS OF INTEREST AND BIAS

A. Right to an Impartial Decision

The purpose of declaring ex parte contacts, bias and conflicts of interest is to ensure that *quasijudicial* land use applications are decided by an impartial hearing body. Declaring ex parte contacts, bias or conflict of interest is required prior to conducting a hearing on any quasijudicial land use decision.⁶ It is important to note that, as a resident of the community, Planning Commissioners and City Councilors frequently have personal beliefs, business associations, membership with organizations, and relatives living and working within the community who may be affected directly or indirectly by issues presented by a land use application. Disclosing these beliefs or associations is required only where such beliefs or associations will affect the ability of the hearing body member to render an impartial quasi-judicial decision. The exception to this general rule is ex parte contacts. In a quasi-judicial setting, regardless of whether the ex parte contact affects the impartiality of a decision maker, it must be disclosed.⁷ And a conflict of interest must always be disclosed, regardless of whether the decision is quasi-judicial or legislative in nature, and requires recusal if it is an "actual" conflict of interest.

Once a hearing body member discloses an ex parte contact, bias or conflict of interest and announces publicly his or her ability to render an impartial decision, the burden shifts to the public to prove that the person is not capable of making an impartial decision. However, a mere possibility that an improper ex parte contact occurred is not sufficient for the public to meet its burden. *Dahlen v. City of Bend*, 57 Or. LUBA 757, 765 (2008).

⁶ Because the rights of the applicants in a quasi-judicial proceeding require additional protection relative to a legislative decision, in general ex parte contacts and bias are not an issue in the legislative context. As a result, open discussions with members of the community and expressions of opinion on proposed amendments to the code that affect the community as a whole rather than a narrow class or limited number of property owners generally do not require disclosure. *Casey Jones Well Drilling, Inc. v. City of Lowell*, 34 Or. LUBA 263 (1998). Where there is an actual conflict of interest that will result in a financial benefit to a public official, the statutory provisions *prohibit* participation in that decision. See discussion provided below. In addition to the conflict of interest provisions that protect the community from special interests, ORS 244.040(1) prohibits a public official from using his or her office as a means of financial gain. To that extent disclosure protects both the individual commissioner and the community.

⁷ However, where the disclosure reveals either that the public official did not rely on that information in making a final decision or that the information is not relevant to the applicable criteria, the public official may participate in the decision without undermining the validity of the final decision

With respect to bias or a conflict of interest, a Planning Commission or City Council member may step down and not participate in a decision if the person believes that bias or a conflict of interest will prevent the person from being impartial. The decision to step down is up to the person based on whether he or she believes the particular contact or conflict gives an appearance of impropriety rather than a direct financial benefit. Where a hearing body member (including relatives and business associates) will financially benefit from the decision, ORS 244 prohibits the person from participating in the decision unless a class exception exists. Bias and conflict of interests are discussed in more detail below.

Although not required, a person who recuses himself from the decision may step down from the dais and join the general public seating during the discussion and decision. There is no legal requirement that prevents a person who steps down from participating as an interested citizen, although, when there is an actual financial benefit, a decision maker is discouraged from participating as a citizen to preserve the integrity of the process.

B. Ex Parte Contacts

An ex parte contact is commonly understood as a meeting, written communication (including email), or telephone conversation between a member of the hearing body and an interested party, outside of the public hearing process. While this is true, the scope of ex parte contacts is actually much broader—encompassing any evidence relating to a pending application relied on by a hearing body member in making a final decision that is not fully disclosed. The purpose of disclosure is to provide interested parties an opportunity to consider and rebut evidence.

It is important to note that ex parte contacts are not unlawful. While contact with interested parties to broker a behind-the-scenes deal on a particular decision is often a political disaster, legally such contact is a problem only where the substance of the meeting is not disclosed during a public hearing and recorded as a part of the public record. In most cases, the better approach is to rely on City staff to work directly with interested parties and avoid the risk of engaging in ex parte discussions.

(1) Statutory Provisions.

ORS 227.180(3) provides the legal framework governing ex parte contacts and is discussed in greater detail below.

(a) Full Disclosure

Ex parte contact does not render a decision unlawful so long as there is full disclosure. ORS 227.180(3). Disclosure must occur at the earliest possible time in the decision-making process. *Horizon Construction v. City of Newberg*, 114 Or. App. 249, 834 P.2d 523 (1992) (Declaration of ex parte contact after the hearing at a meeting before making the final decision was ephemeral and required remand). There are two components to full disclosure: (1) placing the substance of the written or oral ex parte contact on the record <u>and</u> (2) a public announcement of the ex parte contact. ORS 227.180(3)(a) & (b). Both requirements are satisfied by disclosure at the public hearing (public announcement that is included as a part of the record). In addition, the presiding

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

officer of the hearing body is required to provide the general public with an opportunity to rebut the substance of the ex parte contact.⁸ If a hearing is continued to another date, decision makers should also disclose at the beginning of the continued hearing any ex parte contacts that occur between the two hearing dates.

(b) Communications with Staff

Under ORS 227.180(4) communications with City staff are not considered an ex parte contact. However, City staff may not serve as a conduit for obtaining information outside of the public process unless that information is disclosed. In practice, decision makers may freely discuss issues and evidence with staff. Where an interested party requests staff to communicate with a decision maker or other evidence is obtained through staff that the decision maker relies on without disclosure (or is not otherwise included as a part of the public record such as the staff report), an ex parte contact problem occurs. Because an ex parte contact is a procedural error, the party appealing a decision must show that the ex parte contact was prejudicial. In general, evidence that a relevant ex parte contact was not disclosed should be regarded as enough to require remand of a decision.

(2) Common Sense.

Common sense judgment can go a long way in deciding what should be disclosed. Generally, a decision maker's instincts about whether information is relevant to the decision and should be included as a part of the record through disclosure are correct. The ex parte contact rules should not be viewed as an impediment to the hearing body's ability to conduct business. The majority of information used to form general opinions that existed prior to but which may impact a decision are not subject to disclosure. Specific information obtained in anticipation of or subsequent to an application being filed that is directly relevant to the decision and unavailable to the rest of the interested parties should always be included in the public record through disclosure.

(3) Scope of Ex Parte Contacts.

As indicated, ex parte contacts are not limited to conversations with interested parties or other members of the community. The concept of ex parte contacts is much broader. For example, consider:

• A site visit is not in itself an *ex parte* contact unless it involves communication between a decision maker and a party or other interested person. *Carrigg v. City of Enterprise*, 48 Or. LUBA 328 (2004). However, site visits do invoke procedural requirements of disclosure and opportunity to rebut. *Id.* If a site visit is conducted and conversations take place between decision makers and applicants and/or opposition that are then used in making the final decision, or give the appearance of so, the content of

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

⁸ Often the opportunity to rebut or object to the decision maker's participation occurs prior to opening the public hearing. Depending on the extent of the rebuttal, the body may allow rebuttal during the public hearing or during the open record period following the initial hearing if requested by the objector.

those conversations must be disclosed or the decision will be remanded. *Gordon v. Polk County*, 50 Or. LUBA 502 (2005).

• Communications with staff where the staff member is acting as a conduit for the transfer of information from persons for or against the proposal, or where the contact occurs after the record closes. See *Nez Perce Tribe and City of Joseph v. Wallowa County*, 47 Or. LUBA 419 (2004) (staff submittal of evidence after the record closes could prejudice parties' substantial right to rebut evidence and requires remand).

• Allegations that the planning staff, who were not the final decision makers, were biased in favor of an application are insufficient, even if true, to demonstrate that the final decision makers were biased. *Hoskinson v. City of Corvallis*, 60 Or. LUBA 93 (2009).

- Newspaper articles, television or radio broadcasts.
- Reading or engaging in social media posts, replies, etc.
- All other outside discussions of a pending application.
- (4) Example another potential for ex parte communications.

Addressing Ex Parte Contacts on Remand. The Land Use Board of Appeals remanded a decision of the City of Portland where a commissioner spoke with an interested party during a recess and failed to disclose the conversation. On remand, the commissioner entered a statement on the record that he could not recall the nature of the conversation, and the decision was again appealed and remanded by LUBA. On appeal, the Court of Appeals agreed with LUBA that the City is required to adopt a decision based on fully disclosed information subject to the opportunity for rebuttal. Although a full hearing on remand is not generally required, the court found in this case that "[t]he remedy should be tailored to rectify the evil at which it is directed, in light of the particular circumstances of the case." *Opp v. City of Portland*, 171 Or. App. 417, 423 (2000).

C. Conflict of Interest

The Government Ethics Commission oversees the implementation of the conflict of interest statutes under ORS Chapter 244.

(1) Actual vs. Potential Conflict of Interest.

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

An actual conflict of interest is defined under ORS 244.020 as any decision or act by a public official that would result in a "private pecuniary benefit or detriment." An actual conflict extends not only to financial gain or loss to the individual public official but also to any relatives, household member or any business with which the official or relative is associated. Again, it is important to note that conflicts of interest are not limited to quasi-judicial decisions, but rather apply to any decision an official makes, be it quasi-judicial, legislative or administrative in nature.

A potential conflict of interest is distinguished from an actual conflict of interest in that the benefit or detriment could occur while in an actual conflict of interest situation, the benefit or detriment "will" occur. ORS 244.020(1), 244.020(12).

In the case of an actual conflict of interest, the official must both:

- Announce the actual conflict of interest; and
- Refrain from taking official action.

For example, in *Catholic Diocese of Baker v. Crook County*, LUBA determined that a county commissioner's wife's testimony and the county commissioner's attendance at a planning commission hearing had no bearing on whether the commissioner's participation in the matter would result in a private pecuniary benefit or detriment to the commissioner. Neither did the fact that the commissioner owned property within 700 feet of the subject property; instead, ownership was indicative of a potential conflict of interest only, which the commissioner announced at the public meeting. 60 Or. LUBA 157, 164 (2009)

In the case of a potential conflict of interest, the official must announce the conflict, but may take action on the issue. The disclosure requirements for both potential and actual conflicts do not apply to class exceptions.

(2) Class Exceptions.

Often a land use decision has at least some indirect financial impact on an individual hearing body member and other members of the community. For example, legislative rezoning and code amendments often entail changes to the development rights of property owners throughout the City. To address this issue, a class exception to a conflict of interest is created under ORS 244.020(12)(b). Where a hearing body member is part of a class that consists of a larger group of people affected by a decision, no conflict exists. There is no hard and fast rule on the size or type of class to which the conflict exemption applies. In general, legislative rezoning decisions that affect the community as a whole are exempt. The class exemption depends on the facts of each case. Several examples are provided below.

(3) Examples.

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

Disclosure of Proximity to Property Being Developed. Councilors living within proximity of an application for the continuance of a nonconforming mining operation failed to disclose the location of their residences during the local process. LUBA remanded requiring disclosure. ODOT v. City of Mosier, 36 Or. LUBA 666 (1999).

GSPC Staff Opinion No. 00S-008. Councilor Rod Park is a member of the Metro Council. Metro was developing an ordinance that would require local governments to adopt limitations on development in proximity of streams and other water bodies. Councilor Park is owner of property that includes an intermittent stream that will be impacted by the ordinance. Because Councilor Park is one of approximately 10,000 landowners affected by the ordinance, he clearly falls within the class exception.

GSPC Staff Opinion No. 01S-018. Sherwood City Councilor Cathy Figley owns commercial property in the City of Sherwood. The City was considering establishing an urban renewal area that includes 260 acres of land. Councilor Figley owns two tax lots of approximately 122 acres of commercial area within the proposed urban renewal area. Here the state pointed out the class exemption applies so long as the benefits from the urban renewal area apply equally to all owners.

GSPC Staff Opinion No. 98S-005. Creswell City Councilor Sharlene Neff requested an opinion as to whether she could actively oppose an application for a 19.5 acre development of a manufactured home park. Councilor Neff owns property that will be directly impacted by traffic from the proposed development. In this case, the state found that the number of property owners impacted by the development was of a sufficient size to trigger the class exception. NOTE: This staff opinion does not address the issue of bias at all. Although the GSPC found that there was no class exception, there is a very real chance that the councilor's participation with an opposition group is evidence of actual bias that would preclude her participation in the final decision.

D. Bias

A biased decision maker substantially impairs a party's ability to receive a full and fair hearing. *1000 Friends of Oregon v. Wasco Co. Court*, 304 Or. 76, 742 P.2d 39 (1987). Bias can be in favor of or against the party or the application. Generalized expressions of opinions are not bias. *Space Age Fuels v. City of Sherwood*, LUBA No. 2001-064 (2001).

Local quasi-judicial decision makers are not expected to be free of bias but they are expected to (1) put whatever bias they may have aside when deciding individual permit applications and (2) engage in the necessary fact finding and attempt to interpret and apply the law to the facts as they find them so that the ultimate decision is a reflection of their view of the facts and law rather than a product of any positive or negative bias the decision maker may bring to the process. *Wal-Mart Stores, Inc. v. City of Central Point*, 49 Or. LUBA 697 (2005).

(1) Actual Bias.

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

Actual bias means prejudice or prejudgment of the parties or the case to such a degree that the decision maker is incapable of being persuaded by the facts to vote another way. This can include:

- Personal bias;
- Personal prejudice; or
- An interest in the outcome.

The standard for determining actual bias is whether the decision maker "prejudged the application and did not reach a decision by applying relevant standards based on the evidence and argument presented [during quasi-judicial proceedings]." *Oregon Entertainment Corp. v. City of Beaverton*, 38 Or. LUBA 440, 445 (2000), *aff'd* 172 Or. App. 361, 19 P.3d 918 (2001). Actual bias strong enough to disqualify a decision maker must be demonstrated in a clear and unmistakable manner. *Reed v. Jackson County*, 2010 WL 2655117, LUBA No. 2009-136 (June 2, 2010).

The burden of proof that a party must satisfy to demonstrate prejudgment by a local decision maker is substantial. *Roberts et. al. v. Clatsop County*, 44 Or. LUBA 178 (2003), *see also Becklin v. Board of Examiners for Engineering and Land Surveying*, 195 Or. App. 186 (2004). The objecting party need not demonstrate that a majority of the decision makers were influenced by the bias of one decision maker to warrant a remand; the bias of one City Councilor is enough. *Halvorson Mason Corp. v. City of Depoe Bay*, 39 Or. LUBA 702 (2001).

(2) Appearance of Bias.

Appearance of bias will not necessarily invalidate a decision. 1000 Friends of Oregon v. Wasco County Court, 304 Or. 76, 742 P.2d 39 (1987). However, the appearance of bias may call into question a decision maker's ultimate decision. Gooley v. City of Mt. Angel, 56 Or. LUBA 319, FN6 (2008) (LUBA did not opine on whether City Councilors were biased, but noted that "even the most fair-minded decision maker is likely to have some difficulty deciding...a matter based solely on the applicable criteria, when a very close relative is party to the matter"). The main objective is to maintain public confidence in public processes.

(3) Examples.

General Expressions of Opinion Do Not Invalidate Decisions. "While on a personal basis, I think the Council and I * * * don't want these businesses in the community, the fact is our personal [feeling] versus our obligation as elected officials to uphold the law is very different, and so we can't base any decisions tonight based on content." Mayor Drake commenting on a proposed adult video store in Beaverton. Oregon Entertainment Corporation v. City of Beaverton, 38 Or. LUBA 440 (2000). Statements by City officials that they would prefer a privately funded

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

convention center, rather than a publicly financed one, do not demonstrate that the City decision makers are biased and incapable of making a decision on the merits. *O'Shea v. City of Bend*, 49 Or. LUBA 498 (2005).

Mere Association with Membership Organization Not Enough. For instance, an applicant for a dog raising farm alleged that a chairperson was biased by association with Clatsop County Friends of the Animals. Applicant speculated that the chairperson gave money to this organization and that opponents to the application were also members of the association. LUBA found that there was no evidence provided of any communications and that adequate disclosure was provided by the chairperson. *Tri-River Investment Company v. Clatsop County*, 37 Or. LUBA 195 (1999).

Also, where a land use decision maker is a member of a church congregation and the church has applied for a land use permit, and the decision maker has expressed concern regarding the impact proposed conditions of approval would have on church operations but nevertheless declares that she is able to render a decision regarding the church's application based on the facts and law before her, that decision maker has not impermissibly prejudged the application. *Friends of Jacksonville v. City of Jacksonville*, 42 Or. LUBA 137 (2002).

City May Adopt Applicant's Findings In Support of Decision. A hearings officer accepting, reviewing and adopting findings from the applicant is not evidence of prejudgment or bias. *Heiller v. Josephine County*, 23 Or. LUBA 551 (1992).

Prior Recusal Does Not Prohibit Participation In Subsequent Hearing. LUBA found no error where a County Commissioner failed to excuse himself from a decision even though the commissioner voluntarily withdrew from a prior hearing involving the same matter because of his friendship with an opponent of the proposed change. Schneider v. Umatilla County, 13 Or. LUBA 281 (1985).

Councilor Prejudged Application. In the City of Depoe Bay, a councilor's prior actions and written statements amounted to prejudgment of an application for a business license to operate a real estate office within a residential planned unit development. In this case, the councilor wrote a letter to the mayor stating that there was no legal basis for permitting the office. Subsequent correspondence also revealed the antagonistic relationship between the councilor and the applicant. The Land Use Board of Appeals found that "[i]n view of his history of actively opposing the siting of a real estate sales office within the Little Whale Cove PUD, it is clear that he had prejudged the application and was incapable of rendering an impartial decision based on the application, evidence and argument submitted during the City's proceedings on the application." *Halvorson Mason Corp. v. City of Depoe Bay*, 39 Or. LUBA 702 (2001).

Councilor May Not Seek Additional Evidence. In the City of Cottage Grove, two councilors sought and obtained additional evidence not in the record and relied on that evidence to make a decision on a permit application. The Land Use Board of Appeals noted, "The role of the local government decision maker is not to *develop* evidence to be considered in deciding a quasijudicial application, but to impartially consider the evidence that the participants and City

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

planning staff submit to the decision maker in the course of the public proceedings." *Woodard v. Cottage Grove*, 54 Or. LUBA 176 (2007) (emphasis in original).

City's prior interest in purchasing subject property does not create bias. In the City of Oregon City, the fact that the City had inquired about purchasing property which became the subject of an application for a new Wal-Mart store was held to be insufficient to demonstrate bias. LUBA was unwilling to open the record for an evidentiary hearing. The Wal-Mart applicant did not allege that any member of the City Council had a personal financial interest in the property; rather, the applicant's allegation of bias "is based solely on its belief that the City as a municipal entity was interested in purchasing the subject property for future development of City buildings..." Such general allegations do not counter the City's argument that its City Commission was still capable of making an impartial decision. *Wal-Mart Stores, Inc. v. City of Oregon City*, Order on Motion to Take Evidence, LUBA No. 2004-124 (2005).

Postscript: The Oregon City Wal-Mart case went to the Court of Appeals on unrelated procedural matters. The Court of Appeals upheld the City's decision denying the application; the Oregon Supreme Court denied Wal-Mart's petition for review.⁹

BEERY ELSNER & HAMMOND, LLP LEGAL REQUIREMENTS PERTAINING TO LAND USE DECISIONMAKING

⁹ 204 Or App 359, review denied, 341 Or 80 (2006).

Staff Report

Meeting Date:	February 16, 2021
From	Tyler Deems, Deputy City Manager / Finance Director
SUBJECT:	Audit Presentation - Fiscal Year Ended June 30, 2020

BACKGROUND:

At the end of each fiscal year the City of Sandy and Sandy Urban Renewal Agency are audited in accordance with state law. In addition to the state required audits, the City is subject to a federally required audit, known as a Single Audit, if the entity expends over \$750,000 in federal funds during the year. A Single Audit was required for fiscal year 2020. The City has contracted with Merina & Co. to conduct these required annual audits.

I'm happy to report that there were no findings noted and the financial statements are presented fairly. Tonya Moffitt, Managing Partner, Merina & Co., will present the audited financial statements to the Council. The audited financial statements for the fiscal year ended June 30, 2020 have been linked below:

- <u>Comprehensive Annual Financial Report</u>
- <u>Sandy Urban Renewal Agency Financial Statements</u>
- Single Audit

MINUTES City Council Meeting Monday, February 1, 2021 6:00 PM

COUNCIL PRESENT:	Stan Pulliam, Mayor, Jeremy Pietzold, Council President, Laurie Smallwood, Councilor, Richard Sheldon, Councilor, Kathleen Walker, Councilor, Carl Exner, Councilor, Don Hokanson, Councilor, Khrys Jones, Chamber Director, and Phil Schneider, Fire Chief
COUNCIL ABSENT:	
STAFF PRESENT:	Jordan Wheeler, City Manager, Jeff Aprati, City Recorder, Tyler Deems, Deputy City Manager / Finance Director, Ernie Roberts, Police Chief, David Snider, Economic Development Manager , David Doughman, City Attorney, Mike Walker, Public Works Director, and Greg Brewster, IT/SandyNet Director

MEDIA PRESENT: Sandy Post

1. MEETING FORMAT NOTE

The City Council conducted this meeting electronically using the Zoom video conference platform. A video recording of the meeting is available on the City's YouTube channel: <u>https://www.youtube.com/channel/UCbYEclgC6VW_mV2UJGyvYfg</u>

2. CITY COUNCIL WORK SESSION - 6:00 PM

2.1. Sandy Arts Commission Next Steps

Staff Report - 0368

The **Deputy City Manager** summarized the staff report, seeking direction from the Council on the future of the Arts Commission.

Councilor Hokanson asked for clarity on the differences between advisory committees and commissions. The **Deputy City Manager** stated that the difference largely involves the authority to make decisions rather than only recommendations. **Mayor Pulliam** stated that the decision to make the body a commission was related to a desire to provide a dedicated budget. **Councilor Exner** stated that the Commission sought Council approval for major expenses. He noted that the Commission was also formed with the intention that the body would receive donations and would be responsible for

Page 1 of 16

maintaining art assets, therefore requiring increased authority.

Mayor Pulliam asked about the amount of staff time the body requires. The **Deputy City Manager** responded that it varies, but at times the amount of time required has been large.

The **Deputy City Manager** sought clarity on the level of authority the body should have in the future, regardless of its status as a committee or commission.

Councilor Exner stated one of the significant challenges the body has faced has been the lack of a specific dedicated department to interface with, as the Planning Commission has with the Development Services Department.

Councilor Walker suggested that the Community Services Department could be a better fit to support the Arts Commission. She expressed concern with the other high priorities requiring the City's attention and suggested the possibility of pausing the Arts Commission until more bandwidth is available. She stated the body should be an advisory committee rather than a commission. She suggested the membership should consist primarily of city residents, and that it may be advisable to include members who are not artists as well. She suggested ensuring that members are not allowed to receive grants.

Mayor Pulliam concurred that having enough staff time and resources to properly support this body at this time is concerning. He agreed on the importance of focusing membership on city residents, though he noted the difficulty of recruiting new members.

Council President Pietzold asked how other cities approach supporting arts committees. The **City Manager** responded that Lake Oswego's arts program is administered through an arts foundation non-profit, though other cities employ a wide variety of approaches. Regarding staff capacity, he noted that the Community Services Department would likely be tasked with supporting an Aquatics Center committee in the near future.

Councilor Smallwood emphasized the importance of an active body pursuing arts in the community, and underlined potential synergies with other City initiatives, including recreation and the Community Campus.

Councilor Exner stated that the outgoing commissioners perceived a lack of support from the City. He also stressed that the commission's

Page 2 of 16

City Council February 1, 2021

accomplishments related to arts inventories and maintenance should be continued. He agreed that arts should be incorporated into the City's work generally, and agreed with the idea of leveraging the Community Services Department.

Councilor Hokanson proposed a three month pause in filling the positions because of the large number of competing priorities. He noted that the intention of the body originally was to focus on more than the visual arts. He agreed on incorporating arts into other major projects like the Pleasant Street plan. He suggested incorporating arts into a celebration of Sandy's history.

Councilor Sheldon agreed that the City has many competing priorities, but asked what waiting would accomplish. He proposed constituting the body as an advisory board rather than a commission for accountability reasons. He advocated for moving forward with the recruitment process.

Council President Pietzold agreed that an advisory board would be preferrable. He suggested that proceeding with the recruitment and setup process will result in a 'pause' period regardless, and noted the upcoming budget process.

Councilor Exner suggested that converting the body from a commission to a board would lend itself to a 'pause' period. He stressed the importance of proactively incorporating art into the city's other planning efforts, and of maintaining the institutional memory of the commission and the arts inventory and maintenance programs. The **Deputy City Manager** confirmed this would be done.

Councilor Walker agreed on the importance of incorporating art into other efforts, including the Parks Master Plan. She underlined the time commitment involved with staffing a board. She suggested dedicating funding to complete an Arts Master Plan.

Council President Pietzold stated that the majority of members of the arts board should be city residents.

The consensus of the Council was to transition the arts body to an advisory board with the majority of members being city residents, and to relaunch the group after the budgeting process is complete. Staff noted that Title 18 of the municipal code would need to be repealed as part of the process of converting the commission to a board.

Page 3 of 16

City Council February 1, 2021

2.2. Proposed Changes to Title 13 of the Sandy Municipal Code

Staff Report - 0367

The **City Manager** stated that the proposed changes would modernize the code and allow the City to perform needed work on laterals as part of the wastewater improvement project.

Councilor Exner raised the topic of **Councilor Walker** being married to the **Public Works Director**, and asked for a statement from the **City Attorney** for the record. The **City Attorney** stated that no conflict of interest exists in this case because no actual or potential personal financial effect is involved.

The **Public Works Director** summarized the staff report, and noted that many of the relevant code language was written decades ago. He stated the primary impetus for revising the code is to address inflow and infiltration on private property, which is a significant driver of flows in the system. He stated this is also an opportunity to update antiquated language and ensure the code reflects modern practices. he noted no public comment on the changes has been received.

Councilor Hokanson asked several questions about the proposed code changes, listed below:

<u>13.04.060 Leaks-Excavation by public works superintendent</u>. Question: This section is deleted – why?

Question: References to City, city, Building Official, Public Works Director, City Engineer, etc. are not consistent in the document.

<u>13.12.010 Application for sewer connection or repair</u>. Question: Can the City legally deny utility service to a legal lot of record,

a development site with an approved land use application or an existing, conforming use inside the City?

13.12.040 Pipe specifications.

Question: The references to pipe materials and dimensions remain but the references to pipe grades and alignment are deleted – why?

13.12.070 Excavations.

Question: References to compaction practices in this section are deleted – why?

Page 4 of 16

<u>13.12.090 Separate connections</u>. Question: Proposed revision states that existing party sewers "may" be allowed – shouldn't this be a "shall"?

<u>13.14.020</u> Abatement Plans, Corrections and Actions Taken. Question: Ten days does not seem like a reasonable time frame for a property owner to correct an inflow or infiltration issue.

Question: There is nothing about pumped sewers (sizing, head, pressure, flow rates, etc.) in the existing or proposed code.

Further questions were raised by Councilor Exner:

13.04.090 Plumber-Prohibited actions.

Question: This language prevents a plumber or homeowner from turning the water on or off at the meter.

13.04.045 Changes in service.

Question: This could have been a problem during the economic downturn when there were dwellings that were vacant for more than 12 months.

The **Public Works Director** stated that staff responses to these questions and concerns will be provided at an upcoming Council meeting.

3. CITY COUNCIL REGULAR MEETING - 7:00 PM

- 4. Pledge of Allegiance
- 5. Roll Call
- 6. Changes to the Agenda

7. Public Comment

<u>Greg Becker, 14585 Bluff Rd</u>: the Public Safety Fee generates approximately \$20,000 per month. Wants to know how the money is being used. Stated there was no response to this question being asked a month ago. Asked whether the fee will cease or be reduced in the future; suggested that will not happen. Referred to the gas tax as better because it approved by voters. Asked when citizens will see value from the fee.

Page 5 of 16

City Council February 1, 2021

8. Consent Agenda

8.1. City Council Minutes

Moved by Carl Exner, seconded by Jeremy Pietzold

Adopt the consent agenda.

CARRIED. 7-0

Ayes: Stan Pulliam, Jeremy Pietzold, Laurie Smallwood, Richard Sheldon, Kathleen Walker, Carl Exner, and Don Hokanson

9. Old Business

9.1. Letter to Governor: COVID-19 Restrictions

Staff Report - 0369

The **City Manager** stated that two letter options were developed by **Councilors Smallwood, Walker, and Hokanson**. Input from the Council's January 19th meeting formed the substance of the letter draft.

Councilor Walker drew attention to the first paragraph on the second page of the letter, stating that Option A focuses more on what people are allowed to do in their private residences. She stated that broadly speaking, she can accept either letter option; she is opposed to a request to fully lift restrictions on family gatherings, but could support a request to 'ease' restrictions.

Councilor Hokanson stated support for including language about loosening restrictions on family gatherings; in the interest of compromise, he suggested amending Option A to call for 'easing' of restrictions on such gatherings, rather than lifting them entirely. He also stressed the importance of stating clearly at the beginning of the letter what the Council is requesting of the Governor, and recommended repeating some of the conclusion language in the first portion.

Mayor Pulliam asked whether the Council agreed with the proposed changes suggested by **Councilor Hokanson**. The Council indicated their agreement.

Councilor Smallwood indicated that forwarding two options for the Council's consideration was her idea.

Councilor Walker indicated her support for Option A, given the edits suggested by **Councilor Hokanson**.

15 - 16

Councilor Exner expressed support for Option A.

The **City Recorder** asked for clarification on how to reiterate the specific request of the Governor near the beginning of the letter. **Councilor Hokanson** suggested that the portion of the first paragraph on the second page that begins with "In areas currently identified" could be repeated near the beginning of the letter. The Council discussed whether this repeated language should be placed before or after the opening paragraph. The consensus of the Council was to include it after the opening paragraph.

A revised copy of the letter, reflecting the amendments approved by the Council, is attached to these minutes for reference.

Moved by Don Hokanson, seconded by Laurie Smallwood

Approve 'Option A,' amended to reiterate summary language after the opening paragraph and reword language in the fifth paragraph to call for 'easing' of restrictions on family gatherings.

CARRIED. 7-0

Ayes: Stan Pulliam, Jeremy Pietzold, Laurie Smallwood, Richard Sheldon, Kathleen Walker, Carl Exner, and Don Hokanson

Council COVID letter - as amended and approved

9.2. Public Hearing: Proposed Building Fee Increases

Staff Report - 0359

Staff Report

The **Deputy City Manager** noted that the building fee increases were originally proposed along with the general fee schedule update discussed in late 2020. The Council's policy has been to approve gradual fee increases to keep up with the cost of providing services, rather than wait multiple and enact large fee increases all at once. The City has solicited public feedback and adhered to the state's required 45 day notice period.

Public Testimony (none)

<u>Council Discussion</u> **Councilor Exner** agreed on the approach of regular, gradual fee increases.

Page 7 of 16

City Council February 1, 2021

Council President Pietzold concurred.

Councilor Sheldon concurred, and noted that growth should pay for itself.

Councilor Hokanson asked whether fee increases are anticipated to be annual. The **Deputy City Manager** stated that fees are anticipated to be reevaluated on an annual basis.

Moved by Kathleen Walker, seconded by Richard Sheldon

Close the public hearing.

CARRIED. 7-0

Ayes: Stan Pulliam, Jeremy Pietzold, Laurie Smallwood, Richard Sheldon, Kathleen Walker, Carl Exner, and Don Hokanson

Moved by Carl Exner, seconded by Laurie Smallwood

Adopt Resolution 2021-01.

CARRIED. 7-0

Ayes: Stan Pulliam, Jeremy Pietzold, Laurie Smallwood, Richard Sheldon, Kathleen Walker, Carl Exner, and Don Hokanson

10. Report from the City Manager

The City Manager reiterated comments from a previous meeting that the Public Safety Fee has been used to hire two new police officers, who have passed the academy. The lieutenant position has also been filled. He thanked the Council for their participation in the goal setting and facility tour processes. he noted that some additional goal setting discussion beyond February 13 may be needed. Mayor Pulliam stated that a tour of Fern Hill would be useful. The City Manager stated that work on the formal WIFIA application has begun. He noted that the latest alignment of the 362nd and Bell project is available. He also asked the Council for direction regarding the SandyNet Advisory Board, and whether it should be structured in a more formal manner with established bylaws, seats, and terms. Council President Pietzold explained the context of why the board was previously paused, and agreed that the board should be restarted and operated within the same framework as the City's other advisory bodies. Councilor Hokanson asked about Chapter 2.22 of the municipal code. The City Recorder stated that chapter was rescinded in 2018, and the stray reference should be removed from the website. **Councilor Walker** agreed on the importance of restarting the board, and suggested the Council could establish

Page 8 of 16

basic direction and priorities for the board. **Councilor Exner** concurred on the board's importance. **Council President Pietzold** emphasized the importance of securing available federal funding.

11. Committee /Council Reports

Councilor Sheldon stated there should be a specific time during meetings dedicated to addressing comments from the public.

Councilor Exner referred to the recent City Day at the Capitol, stating that Senate President Courtney suggested that local elected officials should attend meetings with legislative committees and other state policy making bodies to have conversations on pending issues to shape policy-making. he agreed on the need to have processes to respond to public comments. He asked about the status of the pedestrian improvements on Ten Eyck and Vista. Staff responded that the project is progressing. He noted that local watershed councils are interested in the wastewater improvement project and could provide assistance if needed. He noted that one member of the Arts Commission currently remains; he would be invited to reapply to the re-formed Board.

Councilor Walker expressed appreciation for the recent goal setting and facilities tour. She expressed concern about the amount of time left to form specific goals, given the need to focus and prioritize. She concurred that it could be effective for the Council to testify on state policy as a group. She agreed on the importance of responding to public comments in a timely manner.

Councilor Smallwood noted large piles of garbage that require the attention of Code Enforcement. She also noted the presence of an abandoned RV in the Safeway parking lot, which is concerning given that another abandoned vehicle was recently set on fire. **Mayor Pulliam** asked about the options available to address abandoned vehicles on private property. **Councilor Sheldon** agreed that addressing these issues is important, noting that the County has a chronic nuisance ordinance. He suggested a work session to explore possible solutions. **Chief Roberts** stated he is aware of the issue and will address it soon.

Council President Pietzold agreed that abandoned vehicles are an increasing problem, including just outside the city limits. **Chief Roberts** stated that in many cases, vehicle owners secure the permission of property owners to park their vehicles, which complicates the matter. **Council President Pietzold** indicated that OBAC is reviewing proposed legislation affecting state broadband policy, including preemption issues. He agreed that more time may be needed for the goal setting process, and expressed appreciation for the facilities tour. He suggested a tour of the water system. He noted the upcoming Economic Development Committee meeting.

Page 9 of 16

City Council February 1, 2021

Councilor Hokanson agreed on the usefulness of the facilities tour. He expressed his disappointment regarding the storage of assets in the aquatic center, including inflatables. He thanked staff for assisting with the letter to the Governor, and encouraged the Mayor to proactively promote the message. He emphasized the importance of forming a new Aquatic Center committee.

Mayor Pulliam noted that Senator Thompson is working on possible measures to address the abandoned vehicle issue. He stated that the 2021 Sandy Mountain Festival is being cancelled due to uncertainty related to COVID-19. He expressed appreciation for the goal setting process, and stated a desire to tour the Fernhill facility. He stated that committee liaison assignments will be forthcoming soon.

12. Staff updates

12.1. Monthly Reports

13. Adjourn

14. URBAN RENEWAL BOARD MEETING

14.1. SURA Grant Review Board Membership and Appointments

Staff Report - 0370

The **City Manager** stated that because grant applications have been received over the \$50,000 threshold, there is a need for review by the Grant Review Board. He noted that the Grant Review Board itself lacks substantial structure, and the SURA Board could take this opportunity to revisit the review process itself. The **Economic Development Manager** summarized the staff report.

Councilor Walker sought confirmation on the grant review process, and on the origin of the authority granted to the Grant Review Board. She suggested that the SURA Board should be the body reviewing and approving grants for accountability reasons, and expressed concern that not all eligible businesses were made aware of the grant opportunity. She stressed the importance of fairness and transparency in the process, and proposed a single review period in which all applications could be evaluated in a competitive process.

Council President Pietzold stated that the original intention of creating a Grant Review Board was to remove the need for the SURA Board to process relatively small grants, particularly under the Facade Grant program. He noted the budget provides a spending limit; **Mayor Pulliam** agreed.

Page 10 of 16

City Council February 1, 2021

Councilor Smallwood emphasized the need for moving forward with disbursing funds quickly.

Chief Schneider inquired about the details of the \$50,000 review threshold. Staff provided clarification.

Councilor Hokanson inquired about the source of the Grant Review Board's authority. The **City Manager** stated that the authority was delegated when the SURA Board adopted the grant review criteria. This mirrored the existing approached created originally for the Facade Grant program. **Councilor Hokanson** asked for a copy of the document delegating the authority.

Councilor Exner agreed on the need to move forward quickly, potentially approving the first grant this evening.

Councilor Sheldon noted that no details about the grant application for Sandy Family Restaurant are before the Board at this time. He stated that \$50,000 is a large amount of money to not be under the SURA Board's direct purview. He asked about the details of the grant application process, and stressed the need to advertise the grant opportunity. The **Economic Development Manager** stated he has reached out to individual businesses proactively. **Councilor Sheldon** emphasized the importance of ensuring all eligible businesses are informed of the opportunity.

Council President Pietzold stated that the approach for urban renewal grant applications for many years has been to keep application processes simple and easy to use.

Councilor Smallwood emphasized that urban renewal funds not drawn from the regular city budget. The **City Attorney** explained the details and legal constraints of tax increment financing.

Councilor Walker asked about funding being redirected to the Fire District to make them whole; **Chief Schneider** provided details on the arrangement, and the City Attorney explained the legal limits placed on these funds.

Councilor Walker referred to her experience with tax increment financing. She asked staff to confirm the details of the existing grant applications; the first is for Ria's / Sandy Family Restaurant for a total project cost of \$57,125, though there is a change order in consideration that would add about \$13,000 additional dollars. The second, yet to be finalized, is for Boring Brewing. **Councilor Walker** raised concerns about the amount of funding that will be

Page 11 of 16

available for later applicants under a first come first served approach, and stressed the need to reach out to all eligible businesses about the opportunity without delay.

Director Jones stated that the Chamber of Commerce has assisted with publicizing the grant opportunity with local businesses.

The **City Manager** noted that the program was advertised in the December city newsletter as well as the Sandy Post.

Councilor Exner suggested that these big-picture issues would have been better handled at a regular meeting, and stated that the board needs to act decisively to move the program forward. The **Economic Development Manager** stated the most urgent issue is to appoint new members of the Grant Review Board, including a Planning Commission member and an at-large member. **Mayor Pulliam** stated his expectation had been that the Board would approve applications while the work to update the review process was still underway. **Councilor Walker** noted that no applications are currently in front of the Board.

Council President Pietzold clarified the cost-sharing parameters of the grant program. He suggested that a great deal of advertisement has already occurred. He suggested that the SURA Board could reform the review process if it desires.

Mayor Pulliam suggested that Commissioner Mayton and Mr. Ernie Brache could be good choices for the Grant Review Board.

Councilor Hokanson suggested that multiple aspects of the grant program are being administered in too casual of a manner, and with insufficient transparency. He asked why some of these program administration details were not addressed on December 21st. He suggested that the Program Guidelines document be revised to specify that grant applications would be reviewed by the SURA Board directly and to remove the 'first come first served' language.

Councilor Sheldon agreed on the need to move forward with the program. **Mayor Pulliam** suggested holding a special meeting of the SURA Board in the near future to make application approval decisions. **Councilor Walker** stated that staff should ensure that every eligible businesses is notified of the grant opportunity.

Page 12 of 16

Councilor Hokanson and **Exner** agreed on the suggestion to review applications directly as the SURA Board.

Councilor Walker stressed that a deadline for further grant applications should be established so all other applications can be considered and compared at the same time.

The Board voted to remove Section XI of the Program Guidelines at this point - motion below

Councilor Sheldon agreed on the need to establish specific grant deadlines, but stated support for moving forward with the two existing applications.

Councilor Walker suggested that a new round of grant applications should be reviewed by the Board on March 1, and indicated that it should not be necessary to secure formal bids beforehand; cost estimates should be sufficient.

Councilor Smallwood asked whether March 1 is a reasonable deadline for applicants. **Councilor Walker** suggested it could be possible to hold another round of applications in the future if necessary.

Mayor Pulliam emphasized the extreme importance of moving quickly to assist businesses.

Council President Pietzold referred to the efficiencies possible by using the City's preferred designer.

Councilor Walker reiterated that cost estimates should be sufficient, rather than contracted bids.

Councilor Sheldon stated support for moving forward with the existing applications, and establishing a revised process with deadlines for all future applications.

The Board agreed to hold a special meeting on February 3rd at 6:00 p.m to review the application from Sandy Family Restaurant.

Moved by Don Hokanson, seconded by Khrys Jones

Edit Sections VIII and XI of the Permanent Outdoor Covered Structures Guidelines to specify that the SURA Board will review applications and make

Page 13 of 16

City Council February 1, 2021

award decisions directly.

awara	decisions directly.	
A	Chan Dulliam Janamu Districted Januaria Constitutioned	CARRIED. 9-0
Ayes:	Stan Pulliam, Jeremy Pietzold, Laurie Smallwood, Richard Sheldon, Kathleen Walker, Carl Exner, Don Hokanson, Khrys Jones, and Phil Schneider	
Moved	by Kathleen Walker, seconded by Richard Sheldon	
structu and Boi	th a deadline of February 25, 2021 for a new round of re grant applications, other than those already receiv ring Brewing. Applications received by this deadline SURA Board on March 1, 2021.	ved from Ria's Bar
		CARRIED. 8-1
Ayes:	Stan Pulliam, Jeremy Pietzold, Laurie Smallwood, Richard Sheldon, Kathleen Walker, Don Hokanson, Khrys Jones, and Phil Schneider	
Nays:	Carl Exner	
		Mayor, Stan Pulliam
		City Recorder, Jeff Aprati

Page 14 of 16

39250 Pioneer Blvd Sandy, OR 97055 503-668-5533

February 1, 2021

The Honorable Kate Brown Governor of Oregon State Capitol Salem, OR 97310

Dear Governor Brown,

The Sandy City Council appreciates that COVID-19 represents a significant danger, particularly to the most vulnerable among us. This is an unprecedented public health emergency that warrants an unprecedented response from government, the business community, and individuals alike. We also believe that the rule of law is of paramount importance, and we respect all lawful directives issued by the State, whether statutes passed by the Legislature or emergency orders issued by the Executive and upheld by the Judiciary.

However, in areas currently identified as Extreme Risk, which includes Sandy, we believe it is possible for businesses to reopen in a safe manner using methods such as mask requirements, reduced occupancies, proper sanitation, and advanced air filtration / air exchange technology. We also believe that restrictions on family gatherings can be similarly eased while employing proper safety measures and precautions.

We recognize that the COVID-19 restrictions issued with the intent of saving lives have also created significant burdens on local communities. Our locally-owned small businesses, which are the economic lifeblood of our town, are facing significant and inequitable strain, particularly compared to the large corporations able to fall back on financial reserves to weather the storm. Restaurants and gyms in particular continue to face enormous economic hardship, notwithstanding the recent modifications allowing limited indoor activities other than dining.

In addition, while the current restrictions seem to have been driven chiefly by physical health considerations, many residents of Sandy are suffering from months of isolation, employment loss, and disruption to their daily lives. Activities known to ease psychological distress, such as those provided by gym facilities, have been heavily curtailed during this period. The inability of extended families to gather and interact has also contributed to considerable emotional pain. The pandemic response measures and associated effectiveness metrics should account for these impacts in a more holistic manner, incorporating the physical, emotional, social, and mental health needs of community members.

During the past year, our City has taken multiple measures to alleviate the unintended negative consequences of the COVID-19 restrictions, including providing relief grants to local businesses, instituting a financing program for new outdoor seating structures, and providing additional WiFi hotspots through our municipal broadband utility, SandyNet. Our local

Page 15 of 16

SA		DY	
WHERE INNOVATI	ION MEE	ETS ELEVAT	ION

39250 Pioneer Blvd Sandy, OR 97055 503-668-5533

businesses have also gone to great lengths and incurred significant expense to ensure the safety of their patrons. These measures are reflective of our community's desire to find innovative solutions to the challenges presented by this pandemic.

We urge you to modify the pandemic response approach to allow for similarly innovative strategies that can bolster communities while protecting public health in an equitable manner. In areas currently identified as Extreme Risk, which includes Sandy, we believe it is possible for businesses to reopen in a safe manner using methods such as mask requirements, reduced occupancies, proper sanitation, and advanced air filtration / air exchange technology. We also believe that restrictions on family gatherings can be similarly eased while employing proper safety measures and precautions.

Rather than a one-size-fits-all approach, addressing this crisis with innovation and creativity, along with State-directed grants for struggling small businesses, would protect public health while ensuring that communities remain dynamic and vital now and when the pandemic concludes.

We appreciate your consideration of our request and we thank you for your leadership during this emergency.

Sincerely,

Mayor Stan Pulliam

Council President Jeremy Pietzold

Councilor Laurie Smallwood

Councilor Carl Exner

Councilor Richard Sheldon

Councilor Don Hokanson

Councilor Kathleen Walker

Page 16 of 16

Staff Report

Meeting Date:February 16, 2021FromMike Walker, Public Works Director
Renewal Of Oregon Public Works Emergency Response
Cooperative AgreementSUBJECT:Cooperative Agreement

BACKGROUND:

The City has been a party to the ODOT statewide Public Works Emergency Response Cooperative Agreement for the past 10 or 15 years. ODOT enters into these agreements with large and small agencies statewide to provide a framework for lending specialized equipment and operators or other resources between agencies that have need for these resources during emergencies or natural disasters. Fortunately, we have never had a need to request or provide emergency resources during such an event.

The agreement works in both directions, agencies or ODOT can request resources from either party. The agreement provides for insurance coverage, liability indemnification and cost recovery. Borrowed or lent resources are identified by FEMA resource typing categories which simplifies requests for reimbursement during a Federally-declared disaster or emergency.

Neither ODOT or the local agencies are obligated by the agreement to provide resources in the event of an emergency or disaster.

BUDGETARY IMPACT:

None - there is no cost to participate in the program

RECOMMENDATION:

Authorize staff to renew the Oregon Public Works Emergency Response Cooperative Agreement with ODOT.

SUGGESTED MOTION:

"I move to Authorize staff to renew the Oregon Public Works Emergency Response Cooperative Agreement with ODOT."

LIST OF ATTACHMENTS/EXHIBITS:

Agreement

OREGON PUBLIC WORKS EMERGENCY RESPONSE COOPERATIVE ASSISTANCE AGREEMENT

THIS AGREEMENT is between the government agencies (local, county, or state) that have executed the Agreement, as indicated by the signatures at the end of this document.

WITNESSETH:

WHEREAS, parties to this agreement are responsible for the construction and maintenance of public facilities such as street, road, highway, sewer, water, and related systems during routine and emergency conditions; and

WHEREAS, each of the parties owns and maintains equipment, and employs personnel who are trained to provide service in the construction and maintenance of street, road, highway, sewer, water, and related systems and other support;

WHEREAS, in the event of a major emergency or disaster as defined in ORS 40 1.025 (5), the parties who have executed this Agreement may need assistance to provide supplemental personnel, equipment, or other support; and

WHEREAS, the parties have the necessary personnel and equipment to provide such services in the event of an emergency; and

WHEREAS, it is necessary and desirable that this Agreement be executed for the exchange of mutual assistance, with the intent to supplement not supplant agency personnel;

WHEREAS, an Agreement would help provide documentation needed to seek the maximum reimbursement possible from appropriate federal agencies during emergencies;

WHEREAS, ORS Chapter 402.010 provides for Cooperative Assistance Agreement among public and private agencies for reciprocal emergency aid and resources; and

WHEREAS, ORS Chapter 190 provides for intergovernmental agreements and the apportionment among the parties of the responsibility for providing funds to pay for expenses incurred in the performance of the agreed upon functions or activities;

NOW THEREFORE, the parties agree as follows:

1. Request

If confronted with an emergency situation requiring personnel, equipment or material not available to it, the requesting party (Requestor) may request assistance from any of the other parties who have executed this Agreement.

2. Response

Upon receipt of such request, the party receiving the request (Responder) shall immediately take the following action:

- A. Determine whether it has the personnel, equipment, or material available to respond to the request.
- B. Determine what available personnel and equipment should be dispatched and/or what material should be supplied.
- C. Dispatch available and appropriate personnel and equipment to the location designated by the Requestor.
- D. Provide appropriate access to the available material.
- E. Advise the Requestor immediately in the event all or some of the requested personnel, equipment, or material is not available.

NOTE: It is understood that the integrity of dedicated funds needs to be protected. Therefore, agencies funded with road funds are limited to providing services for road activities, sewer funds are limited to providing services for sewer activities and so on.

3. Incident Commander

The Incident Commander of the emergency shall be designated by the Requestor, and shall be in overall command of the operations under whom the personnel and equipment of the Responder shall serve. The personnel and equipment of the Responder shall be under the immediate control of a supervisor of the Responder. If the Incident Commander specifically requests a supervisor of the Responder to assume command, the Incident Commander shall not, by relinquishing command, relieve the Requestor of responsibility for the incident.

4. Documentation

Documentation of hours worked, and equipment or materials used or provided will be maintained on a shift by shift basis by the Responder, and provided to the Requestor as needed.

5. Release of Personnel and Equipment

All personnel, equipment, and unused material provided under this Agreement shall be returned to the Responder upon release by the Requestor, or on demand by the Responder.

6. Compensation

It is hereby understood that the Responder will be reimbursed (e.g. labor, equipment, materials and other related expenses as applicable, including loss or damage to equipment) at its adopted usual and customary rates. Compensation may include:

- A. Compensation for workers at the Responder's current pay structure, including call back, overtime, and benefits.
- B. Compensation for equipment at Responder's established rental rate.
- C. Compensation for materials, at Responder's cost. Materials may be replaced at Requestor's discretion in lieu of cash payment upon approval by the Responder for such replacement.
- D. Without prejudice to a Responder's right to indemnification under Section 7.A. herein, compensation for damages to equipment occurring during the emergency incident shall by paid by the Requestor, subject to the following limitations:
 - 1) Maximum liability shall not **exceed** the cost of repair or cost of replacement, whichever is less.
 - 2) No compensation will be paid for equipment damage or loss attributable to natural disasters or acts of God not related to the emergency incident.
 - 3) To the extent of any payment under this section, Requestor will have the right of subrogation for all claims against parties other than parties to this agreement who may be responsible in whole or in part for damage to the equipment.

4) Requestor shall not be liable for damage caused by the neglect of the Responder's operators.

Within 30 days after presentation of bills by Responder entitled to compensation under this section, Requestor will either pay or make mutually acceptable arrangements for payment.

7. Indemnification

This provision applies to all parties only when a Requestor requests and a Responder provides personnel, equipment, or material under the terms of this Agreement. A Responder's act of withdrawing personnel, equipment, or material provided is not considered a party's activity under this Agreement for purposes of this provision.

To the extent permitted by Article XI of the Oregon Constitution and by the Oregon Tort Claims Act, each party shall indemnify, within the limits of the Tort Claims Act, the other parties against liability for damage to life or property arising from the indemnifying party's own activities under this Agreement, provided that a party will not be required to indemnify another party for any such liability arising out of the wrongful acts of employees or agents of that other party.

8. Workers Compensation Withholdings and Employer Liability

Each party shall remain fully responsible as employer for all taxes, assessments, fees, premiums, wages, withholdings, workers compensation and other direct and indirect compensation, benefits, and related obligations with respect to its own employees. Likewise, each party shall insure, self-insure, or both, its own employees as required by Oregon Revised Statutes.

9. Pre-Incident Plans

The parties may develop pre-incident plans for the type and locations of problem areas where emergency assistance may be needed, the types of personnel and equipment to be dispatched, and the training to be conducted to ensure efficient operations. Such plans shall take into consideration the proper protection by the Responder of its own geographical area.

10. The Agreement

A. It is understood that all parties may not execute this Agreement at the same time. It is the intention of the parties that any governmental entity in the State of Oregon may enter into this Agreement and that all parties who execute this Agreement will be

considered to be equal parties to the Agreement. The individual parties to this Agreement may be "Requestor" or "Responder's" as referred to in Section 1. and 2. above, to all others who have entered this Agreement.

- B. The Oregon Department of Transportation (ODOT) Maintenance and Operations Branch shall maintain the master copy of this Agreement, including a list of all those governmental entities that have executed this Cooperative Assistance Agreement. ODOT will make the list of participants available to any entity that has signed the Agreement. Whenever an entity executes the agreement, ODOT shall notify all others who have executed the Agreement of the new participant. Except as specifically provided in this paragraph, ODOT has no obligations to give notice nor does it have any other or additional obligations than any other party.
- C. This Agreement shall be effective upon approval by two or more parties and shall remain in effect as to a specific party for five years after the date that party executes this Agreement unless sooner terminated as provided in this paragraph. Any party may terminate its participation in this Agreement prior to expiration as follows:
 - 1) Written notice of intent to terminate this Agreement must be given to all other parties on the master list of parties at least 30 days prior to termination date. This notice shall automatically terminate the Agreement as to the terminating party on the date set out in the notice unless rescinded by that party in writing prior to that date.
 - 2) Termination will not affect a party's obligations for payment arising prior to the termination of this Agreement.
- 11. Non-exclusive

This Agreement is not intended to be exclusive among the parties. Any party may enter into separate cooperative assistance or mutual aid agreements with any other entity. No such separate Agreement shall terminate any responsibility under this Agreement.

12. Parties to This Agreement

Participants in this Agreement are indicated on the following pages, one party per page.

IN WITNESS WHEREOF, the parties hereto have caused this Agreement for Public Works Cooperative Assistance to be executed by duly authorized representatives as of the date of their signatures.

STATE OF OREGON DEPARTMENT OF TRANSPORTATION

Lala hora

09/03/2020

Luci Moore Statewide Maintenance Engineer

Date

IN WITNESS WHEREOF, the parties hereto have caused this Agreement for Public Works Cooperative Assistance to be executed by duly authorized representatives as of the date of their signatures.

Agency

County, Oregon

Authorized Representative

Date

Designated Primary Contact:			
Office:	Contact:	Phone Number:	
Emergency 24 Hour l	Phone Number:	Fax Number:	
E-mail address (if av	ailable):		

Staff Report

Meeting Date:	February 16, 2021
From	Kelly O'Neill, Development Services Director
SUBJECT:	Planning Commission Appointment

BACKGROUND:

The Planning Commission currently has one vacant seat (Seat 4), with a term expiring on 12/31/2024. The current membership of the commission is displayed below:

Seat #	Name	Term Begins	Term Ends
1	Jerry Crosby	01/01/2018	12/31/2021
2	Donald Carlton	01/01/2018	12/31/2021
3	Ron Lesowski	01/01/2018	12/31/2021
4	(vacant)	01/01/2021	12/31/2024
5	Steven Hook	01/01/2021	12/31/2024
6	Christopher Mayton	01/01/2021	12/31/2024
7	Hollis MacLean Wenzel	01/01/2018	12/31/2021

The City advertised the commission opening in multiple venues and collected applications from December 28, 2020 through January 15, 2021. At its meeting on January 19, 2021, the City Council selected a panel to interview applicants. The interview panel consisted of Mayor Pulliam, Council President Pietzold, Councilor Walker, and Planning Commission Chair Crosby.

Applications were received from Darren Wegener, Linda Malone, and Jan Lee. Their applications are attached for the Council's information.

Interviews were conducted on February 9, 2021.

RECOMMENDATION:

The interview panel voted 3 to 1 to recommend Jan Lee for appointment to Planning Commission Seat 4.

SUGGESTED MOTION:

If the Council concurs with the interview panel's recommendation: "I move to appoint Jan Lee to Planning Commission Seat 4."

A new submission has been received for Planning Commission Application Form at 01/04/2021 5:50 PM

First Name:	Darren
Last Name:	Wegener
Email:	
Phone:	
Address:	37720 Coralburst St
City:	Sandy
State/Province:	OR
Zip Code:	97055
Mailing address, if different (e.g., PO Box):	
Please explain why you are interested in serving on the Planning Commission:	I am interested in serving on the City of Sandy Planning Commission because I believe in public service and giving back to my community. Since starting to work for the City of Portland Bureau of Development Services, I have had the opportunity to attend Planning Commission and Historic Design Committee hearings and been able to see how the work that they do can positively impact their community. I would like to be able to give back to my community in that same way. My wife and I have chosen to raise our two kids in Sandy and I would like to do my part in planning for a city that will allow my kids, when they are grown, to love Sandy the way that we do.
What knowledge, education, or skills would you bring to the Commission?:	While my professional background is in training and public safety, I have been working with the City of Portland, Bureau of Development Services for about a year and a half now, as a Training Analyst. As part of my role, I have been able to participate in projects that I think would help me serve as a Planning Commissioner. I have: - Helped with the transfer of Planning Commission, Historical Design Committee, and Land Use Commission hearing online after COVID-19 closed city offices - Worked with planners and inspectors to launce online permitting software - Worked with Emergency Managers to design emergency procedures and processes for permitting and inspections post major natural disaster Worked on various other projects and programs that have allowed me to gain a working knowledge of the permitting process. In addition, I have a strong desire to see Sandy grow in a way that makes sense for its residents.

A new submission has been received for Planning Commission Application Form at 12/28/2020 7:20 PM

First Name: Last Name: Email: Phone: Address: City: State/Province: Zip Code: Mailing address, if different (e.g., PO Box):

Linda Malone

17740 Bluff Rd. Sandy OR 97055-0333

17740 Bluff Rd.

Please explain why you are interested in serving on the Planning Commission:

What knowledge, education, or skills would you bring to the Commission?:

I'm interested in using my experience to serve my city.

I previously served on the planning commission. I have also served the city as a city councilor and for more than 16 years as Mayor.

A new submission has been received for Planning Commission Application Form at 12/28/2020 8:38 AM

First Name:	Jan
Last Name:	Lee
Email:	
Phone:	
Address:	36702 Ichabod Street
City:	Sandy
State/Province:	OR
Zip Code:	97055
Mailing address, if different (e.g., PO Box):	Same
Please explain why you are interested in serving on the Planning Commission:	We face the challenge of growth as development will continue in our city as more commuters working in the metro area establish homes here because they appreciate our city's uniqueness and our location in one of nature's most scenic areas. How we manage that development through reasonably planned growth will determine what our city looks like in future years. We face replacing aging infrastructure and the need to upgrade and fund those facilities, as well as upgrading our road capacities. The city will be addressing a revised comprehensive plan and an updated transportation system plan as well as the additional ordinance development to meet infill requirements of HB 2001 and HB 2003 adopted in 2019 by the Oregon Legislature. We need to, as a community, address affordable housing. We are on the edge of significant change and I would like to be a part of helping to determine that direction in a responsible manner. I would look forward to working with the PC team. And as a former city councilor, I have had the opportunity to work with Director Kelly O'Neill and his staff and would look forward to continuing that engagement.
What knowledge, education, or skills would you bring to the Commission?:	Having served on the Clackamas County Planning Commission and then the last 2.5 years on the City of Sandy Council, I have an understanding of local and county land use transactions. While in the legislature I served on the Land and Water Legislative Committee and learned a lot about land use law from DLCD staff, including Oregon's Land Use Goals. As an alternate at C-4 (monthly meetings with Clackamas County and Clackamas cities) the last 2.5 years, I've been involved in land use and transportation issues. I continue to update myself by following LCDC meetings and rulemakings, more recently in regard to HBs

2001 and 2003. As a former city councilor in Sandy, I am aware of ongoing issues and projects. As an ongoing member of the city's budget committee for almost 4 years I am understanding of the city's funding capabilities and the Urban Renewal work. My masters' degree is in public administration and included some work in planning and municipal administration.

Staff Report

Meeting Date:	February 16, 2021
From	Shelley Denison, Associate Planner
SUBJECT:	20-028 The Views SUB TREE FSH PD

BACKGROUND:

This application is for a 122 lot Planned Development (PD) to the north of Highway 26 at the east end of Vista Loop Drive. Of the 122 lots, 88 lots are proposed to be single family detached homes, 32 lots are proposed to be single family attached homes (i.e. row homes), and 2 lots are proposed to include multi-family housing. The multi-family lot in the Upper Views will contain 24 dwelling units while the multi-family lot in the Lower Views will contain 15 dwelling units. This comes to a total of 159 proposed dwelling units. The applicant is also proposing a number of recreational amenities, including a dog park, basketball courts, playgrounds, and a Mt. Hood viewing plaza. The applicant is requesting a Type IV Planned Development which will include the subdivision of land into smaller parcels, two Type III Special Variances, an FSH overlay review, and tree removal.

Planned Developments

A Planned Development is a specific kind of development which allows for integrating different kinds of land uses. In this case, the applicant is proposing using mixed housing types with recreational amenities. Additionally, in a PD application, the applicant can request that certain *quantitative* code requirements be waived in order to provide outstanding design elements while still meeting the intent of the code. In this case, the applicant is requesting the following code deviations: smaller lot size, smaller minimum average lot width, smaller interior side yard setbacks, smaller rear yard setbacks, and longer block lengths. In addition, the applicant is request row homes and multi-family housing which are not typically permitted outright in the subject zoning district, but are permitted uses in a PD.

Special Variances

As part of this application, the applicant is requesting two special variances. These are variances for *qualitative* code requirements and unlike quantitative code deviations they are not allowed within the context of the PD request. The applicant is requesting that the homes which abut Highway 26 are allowed to face interior streets rather than the Highway and that sidewalks not be required along specific street frontages.

Open Space

As discussed on pages 24 and 25 of the staff report, the applicant is requesting that all private open space and recreational amenities are the responsibility of a Home Owners

Association (HOA). Staff is recommending that in the event of the HOA dissolving, open space, sidewalks, and recreational amenities shall be the responsibility of adjacent property owners, instead of the City of Sandy. Additionally, the applicant is requesting they pay a fee-in-lieu of public dedication of parkland.

History

The history of this application is outlined as follows:

- January 2019 Applicant begins discussion with City staff
- May 29, 2019 Pre-application conference
- June/July 2020 Application is received and deemed complete
- September 2020 Parks and Trails Advisory Board meeting
- November 23, 2020 First Planning Commission hearing; continuance granted
- December 16, 2020 Second Planning Commission hearing

RECOMMENDATION:

POSSIBLE MOTIONS

<u>Motion Option A</u>: Approve the requested application with conditions and findings as recommended by the Planning Commission. If you select this option, please also make a motion to either have Mayor Pulliam review the final order as drafted by staff or have the final order with the full conditions list come back before the City Council for consideration.

<u>Motion Option B</u>: Approve the application with conditions and findings determined by the City Council. If you select this option, staff recommends to have the final order with the full conditions list come back before the City Council for consideration.

<u>Motion Option C</u>: Deny the application based on code criteria that you find are not satisfied.

<u>Motion Option D</u>: Ask the applicant to revise the proposal, extend the 120-day clock, and come back before the City Council at a future date with a revised proposal. If you select this option, staff prefers not to determine the continuance date at this time.

<u>Motion Option E</u>: Continue the hearing to a future City Council date to continue Council dialogue prior to issuing a decision. If you select this option, staff prefers you choose a date for the continuance on February 16, 2021 so that additional public notice and legal notice is not required.

LIST OF ATTACHMENTS/EXHIBITS:

Attachment 1: Staff Report Attachment 2: Exhibits

39250 Pioneer Blvd Sandy, OR 97055 503-668-5533

CITY COUNCIL STAFF REPORT

TYPE IV DECISION

DATE: February 8, 2021

FILE NO.: 20-028 SUB/VAR/TREE/FSH/PD/ZC

PROJECT NAME: The Views PD

APPLICANT: Mac Even, Even Better Homes

OWNERS: Brad Picking, John Knapp

LEGAL DESCRIPTION: 25E 19, Tax Lots 200 and 500

The above-referenced proposal was reviewed concurrently as a Type IV planned development, subdivision, zoning map amendment, special variance, Flood and Slope Hazard (FSH) overlay review, and tree removal permit. The following Findings of Fact are adopted supporting approval of the plan in accordance with Chapter 17 of the Sandy Municipal Code.

EXHIBITS:

Applicant's Submittals:

- A. Land Use Application
- B. Project Narrative
- C. Supplemental Narrative for Special Variance
- D. Civil Plan Set
 - Sheet 1 Cover Sheet and Preliminary Plat Map
 - Sheet 2 Preliminary Plat Map: The Lower Views
 - Sheet 3 Preliminary Plat Map: The Upper Views
 - Sheet 4 Topographic Survey
 - Sheet 5 Topographic Survey: The Upper Views
 - Sheet 6 Tree Retention and Protection Plan
 - Sheet 7 Tree Inventory List
 - Sheet 8 Building Setbacks: The Lower Views
 - Sheet 9 Building Setbacks: The Upper Views
 - Sheet 10 Parking Analysis and Future Street Plan
 - Sheet 11 Block and Street Dimensions
 - Sheet 12 Street and Utility Plan: The Lower Views
 - Sheet 13 Street and Utility Plan: The Upper Views
 - Sheet 14 Grading and Erosion Control Plan: The Lower Views
 - Sheet 15 Grading and Erosion Control Plan: The Upper Views

20-028 The Views PD Staff Report City Council

Page 1 of 37

- Sheet 16 Sanitary Sewer Plan and Profile of Site
- Sheet 17 Sanitary Sewer Plan and Profile of Site: The Lower Views
- Sheet 18 Sanitary Sewer Plan and Profile of Site: The Upper Views
- E. Preliminary Storm Drainage Report
- F. Traffic Impact Study
- G. Arborist Report
- H. Wetland Determination Report
- I. Geotechnical Report
- J. Architectural Plans Booklet
- K. The Views Proposed Homes
- L. The Views Concept Plan
- M. Lower Views Concept Plan
- N. Upper Views Concept Plan
- O. Plant Key
- P. Plant Palette
- Q. DSL Wetland Concurrence
- R. Sound Wall Plans

Agency Comments:

- S. John Replinger, Traffic Engineer (September 14, 2020)
- T. Hassan Ibrahim, City Engineer (September 14, 2020)
- U. Sandy Fire Marshall (September 15, 2020)
- V. SandyNet (September 16, 2020)
- W. ODOT (September 17, 2020)
- X. Sandy Area Metro (September 21, 2020)
- Y. Public Works Director (November 6, 2020)
- Z. Parks & Trail Advisory Board (November 19, 2020)
- AA. John Replinger, Traffic Engineer (November 30, 2020)

Additional Documents from Staff:

- BB. Pre-application Notes from May 29, 2019
- CC. Staff Report from November 23, 2020 PC Meeting
- DD. PowerPoint Presentation from November 23, 2020 PC Meeting
- EE. Minutes from November 23, 2020 PC Meeting
- FF. Staff Report from December 16, 2020 PC Meeting
- GG. PowerPoint Presentation from December 16, 2020 PC Meeting
- HH. Minutes from December 16, 2020 PC Meeting

Additional Submission Items from the Applicant:

- II. Email from Michael Robinson (September 23, 2020)
- JJ. Memo from Tracy Brown (November 22, 2020)
- KK. Email from Michael Robinson (November 28, 2020)
- LL. Supplemental Memo (December 9, 2020)
- MM. Responses to Staff Report Questions (December 9, 2020)
- NN. Sewer Capacity Letter from Ray Moore, PE (December 9, 2020)
- OO. Sewer Capacity Letter from Michael Pinney, PE (December 9, 2020)
- PP. Right Turn Lane Memo from Michael Ard, PE (December 9, 2020)

20-028 The Views PD Staff Report City Council

Page 2 of 37

- QQ. ODOT Slip Lane Removal Plans (December 9, 2020)
- RR. Revised Materials Response from Tracy Brown (January 19, 2021)
- SS. Revised Proposal (January 19, 2021)
- TT. Revised Density Calcs (January 19, 2021)

Public Comments:

- UU. Bonnie Eichel (October 2, 2020)
- VV. Jerry Carlson (October 29, 2020)
- WW. John and Linda Bartmettler (October 29, 2020)
- XX. Dustin and Bonnie Bettencourt (November 3, 2020)
- YY. Georgina Sutherland (November 3, 2020)
- ZZ. Gerald and Judith Dittbenner (November 5, 2020)
- AAA. Tony and Kim Turin (November 6, 2020)
- BBB. John and Christine Andrade (November 7, 2020)
- CCC. Todd Springer (November 8, 2020)
- DDD. John Eskridge (November 9, 2020)
- EEE. Dan and Janine Walton (November 19, 2020)
- FFF. Ed Dewart (November 20, 2020)
- GGG. G. Manley (November 20, 2020)
- HHH. Bonnie and Robert Eichel (November 20, 2020)
- III. Georgina Sutherland (November 20, 2020)
- JJJ. Jason and Mary Dyami (November 24, 2020)
- KKK. Chris Anderson and Jason Shuler (December 7, 2020)
- LLL. Kristina Molina (December 9, 2020)
- MMM. John Andrade (December 10, 2020)
- NNN. Pamela Kim York (December 14, 2020)
- OOO. Tom Orth (December 14, 2020)
- PPP. Gerald Dittbenner (December 14, 2020)
- QQQ. John and Christin Andrade (December 14, 2020)
- RRR. Robert and Bonnie Eichel (December 14, 2020)
- SSS. Brad Picking (December 14, 2020)
- TTT. Buzz Ortiz (December 14, 2020)
- UUU. Dustin and Bonnie Bettencourt (December 14, 2020)
- VVV. John R Eskridge and Lisa Hull (December 15, 2020)
- WWW. John Bartmettler (December 15, 2020)
- XXX. Valerie Walberg (December 15, 2020)
- YYY. Lisa Hull (December 15, 2020)
- ZZZ. Ed Elm (December 17, 2020)

FINDINGS OF FACT

General Overview

1. These findings are based on the applicant's submittals received on June 26, 2020, July 29, 2020, October 28, 2020, November 22, 2020, and December 9, 2020. Staff deemed the application incomplete on July 24, 2020. The applicant submitted additional materials on July 29, 2020. The application was deemed complete on August 5, 2020 and initially a 120-

20-028 The Views PD Staff Report City Council

Page 3 of 37

day deadline of December 3, 2020 was established. However, it was later determined this application included a comprehensive plan map amendment and therefore the 120-day deadline was determined to not apply. The applicant extended the 120-day deadline by 56 days (the time between September 28 and November 23). With the new applicant submissions received on October 28, 2020 it was determined a comprehensive plan map amendment is no longer needed. The revised 120-day deadline for this application was January 28, 2021, but as explained in this document the applicant has extended the 120-day clock to March 1, 2021 (Exhibit GG).

- 2. This report is based upon the exhibits listed in this document, as well as agency comments and public testimony. This code analysis is based on the code that was in effect at the time of the application submission on June 26, 2020 and therefore the code modifications with File No. 20-023 DCA do not apply.
- 3. The subject site is approximately 32.87 acres. The site is located east and west of the eastern end of Vista Loop Drive, east of Highway 26.
- 4. The parcel has a Comprehensive Plan Map designation of Low Density Residential and a Zoning Map designation of SFR, Single Family Residential.
- 5. The applicant, Even Better Homes, requests a Type IV combined planned development review to include both conceptual and development plan reviews. A planned development is a specific kind of development which allows for integrating different kinds of land uses. In this case, the applicant is proposing using mixed housing types along with recreational amenities. Additionally, in a planned development application, the applicant can request that certain code requirements be waived in order to provide outstanding design elements while still meeting the intent of the code. The site is divided into two sections: the "Lower Views" on the east side of the site and the "Upper Views" on the west side of the site.
- 6. The applicant is proposing a 122 lot development with 120 single family home lots and 2 multi-family home lots to accommodate a total of 39 multi-family units. Additionally, the applicant is proposing open space and stormwater detention tracts. The detailed acreage with associated tract letters is as follows:

Tract Letter	Purpose	Acres
Lower Views		
А	Private active open space	1.10
В	Private active open space	0.25
С	Private active open space	0.23
D	Private open space	0.13
Е	Private active open space	0.28
F	Private drive	0.06
G	Private drive	0.04
Н	Private drive	0.04
Ι	Private open space	1.66
J	Public stormwater detention pond	0.32

20-028 The Views PD Staff Report City Council

Page 4 of 37

Κ	Private open space	5.56
L	Private open space	1.03
Р	Private open space	0.03
Upper Views		
М	Private active open space	0.92
Ν	Private active open space	0.75
0	Public stormwater detention pond	0.39

- 7. Notification of the proposed application was originally mailed to affected agencies on September 8, 2020 and to affected property owners within 500 feet of the subject property on September 8, 2020 for the originally scheduled public hearing on September 28, 2020. A legal notice was submitted to the Sandy Post on September 8, 2020 to be published on September 16, 2020 informing residents of the public hearings.
- 8. On September 23, 2020 the applicant's attorney, Michael Robinson with Schwabe Williamson and Wyatt, requested The Views PD agenda item to be removed from the September 28 Planning Commission meeting and instead included on the November 23 Planning Commission meeting agenda. The request was largely made so the applicant could revise some of their proposal as reflected in the exhibits.
- 9. On September 24, 2020 staff mailed a notice to affected property owners within 500 of the subject property stating that the public hearing scheduled for September 28, 2020 was postponed to November 23, 2020.
- On October 21, 2020 staff mailed a notice to affected property owners within 500 of the subject sites reminding people of the November 23, 2020 public hearing. On November 2, 2020 staff submitted a legal notice to the Sandy Post to be published on November 11, 2020 informing residents of the Planning Commission public hearing.
- 11. On November 2, 2020 staff provided DLCD with a revised Plan Amendment (PAPA) notice.
- 12. Agency comments were received from the City Transportation Engineer, City Engineer, Public Works, SandyNet, Public Works, ODOT, the Parks and Trails Advisory Board, Fire District No. 72, and Sandy Area Metro.
- 13. At publication of the Planning Commission staff report on February 8, 2021 there were 32 written comments from the public that were entered into the record. These can be found in Exhibits UU through ZZZ.
- 14. Public comments against the proposed development included the following themes:
 - I. Development encroaching into the Flood Slope Hazard (FSH) overlay
 - II. Concerns for capacity of fire, police, and public utilities
 - III. Increased traffic on already busy streets
 - IV. Removal of wild animal habitat

20-028 The Views PD Staff Report City Council

Page 5 of 37

- V. Significant increase in housing density
- VI. Changing the character of the area
- VII. Lowering the value of the land for existing property owners
- VIII. Lack of amenities for future residents
- IX. Safety walking along streets
- 15. Public comments for the proposed development included the following themes:
 - I. Increased public revenue
 - II. The proposed development is by a local developer rather than an "outside" developer
- 16. This application was reviewed by the Planning Commission on November 23, 2020. At that meeting, the Commission granted a continuance as requested by a resident. This application was again reviewed by the Planning Commission on December 16, 2020.
- 17. On November 28, 2020, the applicant granted an extension of the 120-day application review period (clock) by 32 days. This 120-day clock extension modified the 120-day deadline from January 28, 2021 to March 1, 2021. This clock extension was to accommodate the City Council hearing for this application on February 16, 2021.
- 18. On December 9, 2020, the applicant submitted additional information related specifically to the following: Applicant responses to staff questions (Exhibit MM); Engineering memos related to sanitary sewer capacity (Exhibits NN and OO); and an Engineering memo related to the ODOT-requested right turn lane from Highway 26 onto Vista Loop Drive (Exhibit PP). The applicant also provided an explanatory cover memo (Exhibit LL) and an ODOT document related to the closure of the slip lane from Highway 26 to Vista Loop Drive (Exhibit QQ).

Planning Commission Recommendation

19. On December 16, 2020 the Planning Commission reconvened to continue the public hearing for The Views PD. After hearing additional input from staff, the applicant, and the public, the Planning Commission made the following motion:

Motion: Motion to recommend that the City Council approve or deny the application after full consideration of the Planning Commission's issues, concerns, and recommendations below. Moved By: Commissioner Mayton Seconded By: Commissioner Maclean-Wenzel Yes votes: All Ayes No votes: None Abstentions: None

The Planning Commission was asked a series of questions in order to provide recommendations on specific requests included in this application. The questions and their votes are in the following table.

20-028 The Views PD Staff Report City Council

Page 6 of 37

Question for PC Review	Yes	No
Does the Planning Commission recommend exceeding the maximum density	N/A as	density
for the base zone by six (6) percent? To allow this density increase the	increas	e is no
Planning Commission, and ultimately the City Council, needs to find that the		being
Planned Development is outstanding in planned land use and design, and	request	ed.
provides exceptional advantages in living conditions and amenities not found	-	
in similar developments constructed under regular zoning.		
Does the Planning Commission recommend permitting row houses in the SFR	5	2
zoning district?		
Does the Planning Commission recommend permitting multi-family housing	4	3
in the SFR zoning district?		
Does the Planning Commission recommend allowing lot sizes less than 7,500	3	4
square feet?	-	-
Does the Planning Commission recommend allowing a minimum average lot	3	4
width less than 60 feet?	C	
Does the Planning Commission recommend allowing interior side yard	3	4
setbacks at 5 feet, when the typical standard is 7.5 feet?	C	
Does the Planning Commission recommend reducing the rear yard setbacks	3	4
from 20 feet to 10 feet for lots 47-56 in the Lower Views and 20 feet to 15	5	
feet for lots 84-86 and 88-102 in the Upper Views?		
Does the Planning Commission recommend allowing block lengths at 691	7	0
feet on The Views Drive from Vista Loop Drive to Bonnie Street; at 665 feet	,	U
on the north side of Bonnie Street; and at 805 feet on Knapp Street from Vista		
Loop Drive to Ortiz Street?		
Does the Planning Commission recommend approval of the request to provide	7	0
meandering walkways within private open space tracts rather than a	,	U
traditional sidewalk/planter strip in the public right-of-way with the condition		
that the tracts maintain a minimum width of 15 feet to accommodate a 5 foot		
wide walkway with an average of 5 foot wide planter strips on either side?		
Does the Planning Commission recommend approval of the request to not	7	0
provide a sidewalk on the south side of The Views Drive with the condition	/	U
that Tract E on the north side of The Views Drive be designed as proposed		
(i.e. approximately 19 feet wide with 5 feet wide of planting space on either		
side of the meandering walkway to accommodate street trees on both sides of		
the walkway)?		
Does the Planning Commission recommend approval of the request to not	7	0
provide front doors facing Highway 26 and instead allow the lot line abutting	/	0
Highway 26 to be considered the rear yard so the sound wall can be 6 feet in		
height?	7	0
Does the Planning Commission recommend phasing this development in two distinct phases as proposed by the applicant?	7	0
distinct phases as proposed by the applicant?		1
Does the Planning Commission recommend to not require a right turn lane at	6	1
the intersection of Vista Loop Drive and Highway 26, consistent with the		
City's traffic engineer and staff's recommendation?		
Does the Planning Commission recommend the proposed future street layout	0	7
north of Ortiz Street as proposed by the applicant?		

20-028 The Views PD Staff Report City Council

Page 7 of 37

Question for PC Review	Yes	No
Does the Planning Commission recommend a pedestrian connection to the	7	0
north in the vicinity of where Knapp Street intersects with Ortiz Street?		
Does the Planning Commission recommend that additional vegetation is	6	1
planted between the sound wall and the sidewalk along Highway 26 to make		
it more pedestrian friendly and to soften the large concrete wall?		
Does the Planning Commission have any additional recommendations related	6	1
to maintenance of the open space owned by a proposed Homeowner's		
Association (HOA)?		

Other comments and possible conditions recommended by the Planning Commission included the following:

- Right turn lane from Highway 26 to Vista Loop Drive should be installed by ODOT.
- Research a maintenance agreement option in lieu of the proposed Homeowners Association (HOA).
- Require a sight line analysis to determine if the apartments proposed in the Lower Views (Lot 72) will obstruct any views of Mt. Hood for existing residents in the area.
- 20. At the Planning Commission meeting, Tracy Brown and Mac Even gave applicant testimony. Chris Anderson, Cassidy Moore, Buzz Ortiz, and Lindsey Sawyer gave proponent testimony. Jason Dyami, Lisa Hull, John Barmettler, and Todd Springer gave opponent testimony. John Andrade gave neutral testimony. A summary of their testimony is included in the Planning Commission meeting minutes (Exhibits EE and HH).

<u>17.26 – Zoning District Amendments</u>

21. This chapter outlines the requirements for zoning district amendments. In accordance with Section 17.64.70, "When a Planned Development project has been approved, the official Zoning Map shall be amended by ordinance to denote the new 'PD' Planned Development overlay designation. Such an amendment is a ministerial act, and Chapter 17.26, Zoning District Amendments, shall not apply when the map is amended to denote a PD overlay."

<u>17.30 – Zoning Districts</u>

- 22. The subject site is zoned SFR, single family residential.
- 23. The total gross acreage for the entire property is 32.87 acres. After removal of the right-ofway and proposed stormwater tracts, the net site area (NSA) for the subject property is reduced to 27.475 net acres. Additionally, the site also contains a restricted development area of 279,768 square feet. When this is subtracted from the net site area, the resulting unrestricted site area (USA) is 21.03 acres.
- 24. The underlying zoning district allows a minimum of 3 and a maximum of 5.8 dwelling units per net acre of unrestricted site area. Minimum density = $21.03 \times 3 = 63.03$, rounded down to 63 units. Maximum density is the lesser of the two following formulas: NSA x 5.8 or USA x 5.8 x 1.5 (maximum allowable density transfer based on Chapter 17.60).
 - I. 27.475 x 5.8 = 159.11, rounded to 159 units

20-028 The Views PD Staff Report City Council

Page 8 of 37

II. $21.03 \times 5.8 \times 1.5 = 182.787$, rounded to 183 units

- 25. As a result of these calculations, the density range for the subject property is a minimum of 63 units and a maximum of 159 units.
- 26. It is important to note that density bonuses are allowed in Planned Developments. This means that the applicant could apply for more than 159 dwelling units even given the underlying zoning designation of Single Family Residential. However, the applicant is not applying for such a density bonus.

17.34– Single Family Residential (SFR)

- 27. Section 17.34.30 contains the development standards for this zone. The applicant is requesting multiple modifications to these development standards as part of the PD process. The applicant is also requesting uses that are not traditionally allowed in the subject zoning district. The requested modifications are outlined in the review of Chapter 17.64 below.
- 28. Section 17.34.40(A) requires that water service be connected to all dwellings in the proposed subdivision. Section 17.34.40(B) requires that all proposed dwelling units be connected to sanitary sewer service. Section 17.34.40(C) requires that the location of any real improvements to the property must provide for a future street network to be developed. Section 17.34.40(D) requires that all dwelling units must have frontage or approved access to public streets. The applicant proposes to meet all of these requirements. Each new residence constructed in the subdivision will gain access from a public street. However, six lots are proposed to gain access from three separate private drives connected to a public street.
- 29. Section 17.34.50(B) requires that lots with 40 feet or less of street frontage shall be accessed by a rear alley or shared private driveway. All of the attached single family homes have less than 40 feet of street frontage but are accessed by a rear alley. Many of the detached single family home lots do not have 40 feet of street frontage, but this is a modification being requested by the applicant as part of the PD process as reviewed in Chapter 17.64 below.

<u> 17.56 – Hillside Development</u>

30. The applicant submitted a Geotechnical Report (Exhibit I) showing that the subject site contains a small area of slope in the Lower Views exceeding 25 percent. All recommendations in the conclusions and recommendations section of the Geotechnical Report (Exhibit I) shall be conditions for development.

17.60 - Flood and Slope Hazard (FSH) Overlay District

31. Section 17.60.00 specifies the intent of the Flood and Slope Hazard (FSH) Overlay District, which is to promote the public health, safety and general welfare by minimizing public and private adverse impacts from flooding, erosion, landslides or degradation of water quality consistent with Statewide Planning Goal 6 (Air, Land and Water Resources Quality) and Goal 7 (Areas Subject to Natural Disasters and Hazards) and the Sandy Comprehensive Plan (SCP). A violation of the provisions set forth in Chapter 17.60, FSH, (e.g. tree removal without permit authorization or native vegetation removal) may result in a fine as specified in Section 17.06.80.

20-028 The Views PD Staff Report City Council

Page 9 of 37

- 32. Section 17.60.20 contains permitted uses in the FSH overlay district and Section 17.60.40 contains the FSH review procedures. The applicant is not proposing any development within the FSH overlay district. Any future development within the FSH overlay district shall require separate permit review. The applicant shall install tree protection fencing at the outer edge of the FSH overlay district prior to grading to ensure no development occurs within the FSH overlay area. The submitted Tree Plan (Exhibit D, Sheet C6) states: "All dead or dying trees or vegetation that is hazardous to the public may be removed in accordance with Section 17.60.20." However, the applicant did not provide any additional information regarding the potential location of dead or dying trees or vegetation that is hazardous to the public. Staff does not find how any vegetation would be hazardous to the public considering the area is not open to the public. The applicant shall not remove any living or dead trees or vegetation that is hazardous to the public from the FSH area without applying for an FSH review for their removal. The grading plan does not indicate any grading will take place in the FSH overlay area, so staff assumes the applicant is not proposing to grade within the FSH. The applicant shall not perform any grading activities or cut or fill in the FSH overlay area without applying for an FSH review for the grading/cut and fill. The code does not allow removal of native vegetation from the FSH overlay nor does it allow planting non-native vegetation in the FSH overlay. The applicant shall not remove any native vegetation from the FSH overlay area. The applicant shall not plant any non-native vegetation in the FSH overlay area.
- 33. Section 17.60.30 outlines required setbacks for development around FSH areas. According to the topographic survey submitted with the application dated June 24, 2020 (Exhibit D, Sheets C4 and C5), no development is proposed within any of the required setback areas.
- 34. Section 17.60.50 contains requirements for special reports, including a hydrology and soils report, a grading plan, and a native vegetation report. The applicant submitted a Grading Plan (Exhibit D, Sheets C14 and C15) and a Wetland Delineation Report by Schott and Associates, LLC dated February 17, 2020 (Exhibit H) as well as DSL concurrence for the wetland report (Exhibit Q). The applicant did not submit a native vegetation report. The Director may exempt Type II permit applications from one of more of these reports where impacts are minimal, and the exemption is consistent with the purpose of the FSH overlay zone as stated in Section 17.60.00.
- 35. Section 17.60.60 contains approval standards and conditions for development in the restricted development areas of the FSH overlay district. The applicant's narrative (Exhibit B) did not address any of the criteria in Section 17.60.60.
- 36. Section 17.60.60(A.1) pertains to cumulative impacts and states "Limited development within the FSH overlay district, including planned vegetation removal, grading, construction, utilities, roads and the proposed use(s) of the site will not measurably decrease water quantity or quality in affected streams or wetlands below conditions existing at the time the development application was submitted." The applicant submitted a wetland delineation report along with concurrence from DSL (Exhibits H and Q) for tax lot 200. The wetland report identifies two wetlands and two streams on tax lot 200; one wetland and one stream are located in proposed Tract K and one wetland and one stream are located in proposed Tract L.

20-028 The Views PD Staff Report City Council

Page 10 of 37

- 37. Section 17.60.60(A.2) pertains to impervious surface area and states, "Impervious surface area within restricted development areas shall be the minimum necessary to achieve development objectives consistent with the purposes of this chapter." No impervious surfaces shall be located within the restricted development area.
- 38. Section 17.60.60(A.3) pertains to construction materials and methods and states, "Construction materials and methods shall be consistent with the recommendations of special reports, or third-party review of special reports." Future construction or development within the FSH overlay district shall require separate FSH review.
- 39. Section 17.60.60(A.4) pertains to cuts and fills and states "Cuts and fills shall be the minimum necessary to ensure slope stability, consistent with the recommendations of special reports, or third-party review of special reports." The grading plan does not show any proposed grading within the FSH overlay area. Future grading or other development activity within the FSH overlay district shall require separate FSH review.
- 40. Section 17.60.60(A.5) pertains to minimizing wetland and stream impacts and states "Development on the site shall maintain the quantity and quality of surface and groundwater flows to locally significant wetlands or streams regulated by the FSH Overlay District." The applicant is proposing to add additional stormwater to the outflow in Tract L. **The applicant shall update the Geotech Report or submit an addendum to the Geotech Report that provides analysis of the new stormwater discharge.**
- 41. Section 17.60.60(A.6) pertains to minimizing loss of native vegetation and states "Development on the site shall minimize the loss of native vegetation. Where such vegetation is lost as a result of development within restricted development areas, it shall be replaced onsite on a 2:1 basis according to type and area. Two native trees of at least 1.5-inch caliper shall replace each tree removed. Disturbed understory and groundcover shall be replaced by native understory and groundcover species that effectively covers the disturbed area." The applicant is not proposing to remove any trees from the FSH overlay area nor is the applicant proposing to remove any native vegetation from the FSH overlay area. To better protect the vegetation within the FSH overlay area, the applicant shall install tree protection fencing at the outer edge of the FSH overlay district. The applicant shall not damage or remove any native vegetation within the FSH overlay district. The applicant shall replace any disturbed understory or groundcover with native understory or groundcover species that effectively cover the disturbed area. The applicant shall retain a qualified arborist on-site for any work done within the critical root zone (1 foot per 1 inch DBH) of retention trees including those within the FSH area to ensure minimum impact to trees and native vegetation.
- 42. Section 17.60.90 discusses water quality treatment facilities. The proposed detention ponds (Tracts J and O) are not located within the mapped FSH overlay area.
- 43. Section 17.60.100 contains density transfer provisions. Due to the density calculation from Chapter 17.30, this site does not qualify for density transfer under Chapter 17.60.

20-028 The Views PD Staff Report City Council

Page 11 of 37

<u>17.64 – Planned Developments</u>

44. Chapter 17.64 contains regulations related to Planned Developments.

- 45. In accordance with Section 17.64.70, "When a Planned Development project has been approved, the official Zoning Map shall be amended by ordinance to denote the new 'PD' Planned Development overlay designation. Such an amendment is a ministerial act, and Chapter 17.26, Zoning District Amendments, shall not apply when the map is amended to denote a PD overlay."
- 46. Section 17.64.10 allows for combined review of a Conceptual Development Plan and a Detailed Development Plan. This section requires city approval of both conceptual and detailed development plans and allows for "combined review" of both types of plans. This application is for both conceptual and detailed development plan approval as provided in Section 17.64.10(A). The applicant has met all application requirements for concept and detailed development plan review, as evidenced by the finding that the application was deemed complete on August 5, 2020.
- 47. The Sandy Development Code does not contain specific language identifying the process for completing a combined review, but rather details the specifics of individual conceptual and detailed reviews.
- 48. Section 17.64.30(A) states that dimensional and/or quantitative standards of the Sandy Development Code may be varied through the PD review process. The Development Services Director advised the applicant to prepare a detailed list of "modifications" to SDC standards. The applicant believes that the unique nature of the site and amenities offered as part of the PD application warrant this flexibility. The applicant is requesting the following modifications to the development code:
 - a. Section 17.34.10 lists permitted uses in the Single Family Residential zoning district. The applicant is proposing row houses and multi-family dwellings which are not listed as permitted outright uses. However, these uses are allowed in an approved PD.
 - b. Section 17.34.30 requires lot sizes in the Single Family Residential zoning district to be at least 7,500 square feet. The applicant is proposing a variety of lot sizes: Of the single family detached lots, the applicant is proposing 50 lots between 3,400 and 4,999 square feet; 13 lots between 5,000 and 5,999 square feet; 12 lots between 6,000 and 7,499 square feet, and 13 lots greater than 7,500 square feet. Of the lots greater than 7,500 square feet, one is greater than 15,000 square feet, which is the maximum lot size allowed under Section 17.100.220(B) without needing to arrange lots to allow further subdivision. The single family attached lots range in size from 2,160 to 2,695 square feet.
 - c. Section 17.34.30 requires a minimum average lot width to be 60 ft. The applicant is requesting a waiver to this requirement. Given that many lots do not meet the 7,500 square foot requirement, the applicant argues that this requirement is not possible to meet.

20-028 The Views PD Staff Report City Council

Page 12 of 37

- d. Section 17.34.30 requires interior yard setbacks of 7.5 feet. The applicant is requesting that this be reduced to five (5) feet on all lots.
- e. Section 17.34.30 requires that rear yard setbacks be 20 feet. The applicant is requesting that this be reduced to 10 feet for lots 47-56 in the Lower Views and 15 feet for lots 84-86 and 88-102 in the Upper Views.
- f. Section 17.100.120 requires a 400 foot maximum block length. The applicant is requesting three variances to this: a 691 foot block length on The Views Drive from Vista Loop Drive to Bonnie Street; a 665 foot block length on the north side of Bonnie Street; and an 805 foot block length on Knapp Street from Vista Loop Drive to Ortiz Street. According to the applicant, these block lengths are necessary to accommodate for the site layout.
- 49. Section 17.64.30(B) allows for a planned development to be established on any parcel of land, or on more than one parcel of land if those parcels are abutting. The subject property contains two abutting parcels. Per the definition of abutting in Chapter 17.10 of the Development Code: "Two or more lots joined by a common boundary line or point. For the purposes of this definition, no boundary line shall be deemed interrupted by a road, street, alley or public way, it being the intent of this definition to treat property lying on the opposite sides of a road, street, alley or public way as having a common boundary line or point."
- 50. Section 17.64.50, Open Space, requires that a minimum of 25 percent of the site be used as open space. The site is 32.87 acres; thus, the minimum open space dedication is 25 percent of 32.87 acres, or 8.25 acres. The applicant proposes 11.92 acres of total open space, including 8.25 acres of natural area open space and 3.68 acres of active recreation area. Rather than dedicating the open space to the City, the applicant proposes establishing a homeowner's association to own and maintain the open space areas as permitted by Section 17.86.50. All private open space tracts shall have a note on the plat that states these tracts cannot be developed. The natural area open space tracts (Tracts I, K, and L) shall also be protected by a conservation easement or similar method.
- 51. Section 17.64.60 describes allowed uses through the PD process. These uses include uses permitted in the underlying zoning district, as well as single-family detached, single-family attached dwellings (i.e. row houses), and multi-family dwellings, as proposed by the applicant.
- 52. Sections 17.64.70-90 are procedural in nature. Approval of The Views PD would result in an amendment to the Sandy Zoning Map, indicating that a PD has been approved on this SFR zoned land. The applicant and City have complied with all procedural requirements for conceptual PD approval, as discussed under Section 17.64.10, above.
- 53. The proposed public utility layout is provided solely to comply with the planned development submission requirements in Section 17.64.90(B)2. of the Sandy Municipal Code (SMC). Approval of the land use application does not connote approval of the public improvement plans (which may be submitted and reviewed later) and shall not be considered as such.

20-028 The Views PD Staff Report City Council

Page 13 of 37

54. Section 17.64.100 sets forth Planned Development approval criteria. There are two relevant criteria: (a) consistency with the intent of the PD Chapter, as found in Section 17.64.00; and (b) compliance with the general provisions, development standards and application provisions of Chapter 17.64, Planned Developments.

The "Intent" of the PD chapter is described in nine purpose statements. Staff does not interpret each of these statements as individual standards that must be met; rather, staff views these statements as goals that should be achieved through the PD review process. The purpose statements are as follows:

- I. Refine and implement village development patterns designated "V" on the Comprehensive Plan Map.
- II. Allow the relocation of zones within designated villages, provided that the overall intent of the village designation is maintained.
- III. Allow a mixture of densities between base zones within the planned development.
- IV. Promote flexibility in site planning and architectural design, placement, and clustering of structures.
- V. Provide for efficient use of public facilities and energy.
- VI. Encourage the conservation of natural features.
- VII. Provide usable and suitable recreation facilities and public or common facilities.
- VIII. Allow coordination of architectural styles, building forms and relationships.
- IX. Promote attractive and functional business environments in non-residential zones, which are compatible with surrounding development.

The proposal includes a mix of densities in the form of single family detached residences, row homes, and multi-family housing. In addition, the proposal includes three open space natural areas in the lower views, as well as multiple recreational areas in the form of private park-like spaces and wider pedestrian areas. As indicated by the proposed homes (Exhibit K), the project includes two different townhome designs and 10 different single family home designs.

- 55. Sections 17.64.110-120(A) specifies graphic and narrative requirements and procedures for review of detailed development plans. All graphic requirements are met in the maps, figures, tables, and appendices provided with this application. Staff found the application complete on August 5, 2020. The applicant has elected to submit a combined conceptual and detailed planned development application, thus providing the public, Planning Commission, and the City Council with a complete understanding of exactly what is proposed in this application.
- 56. Section 17.64.120(B) specifies additional items that must be addressed in the detailed development plan. In addition to the narrative requirements specified for a Conceptual Development Plan, the Detailed Development Plan narrative shall also include:

Proposals for setbacks or building envelopes, lot areas where land division is anticipated, and number of parking spaces to be provided (in ratio to gross floor area or number of units).

20-028 The Views PD Staff Report City Council

Page 14 of 37

g. All of the items required by this section are included with the application package as shown on the Preliminary Plats and Building Setbacks and Parking Analysis sheets (Exhibit D).

Detailed statement outlining timing, responsibilities, and assurances for all public and nonpublic improvements such as irrigation, private roads and drives, landscape, and maintenance.

h. All open space and landscape areas will be commonly owned and maintained by a Homeowner's Association. Individual homeowners will be responsible for the lot area abutting adjacent public streets.

Statement addressing compatibility of proposed development to adjacent land uses relating to such items as architectural character, building type, and height of proposed structures.

i. The Lower Views shares a common boundary with a commercial business (Johnson RV), a large lot residential property in the city limits, and vacant properties outside the UGB. The Upper Views shares a common boundary with large lot residential and vacant properties and a multi-family development all within the city limits.

Statement describing project phasing, if proposed. Phases shall be:

- Substantially and functionally self-contained and self-sustaining with regard to access, parking, utilities, open spaces, and similar physical features; capable of substantial occupancy, operation, and maintenance upon completion of construction and development.
- Properly related to other services of the community as a whole and to those facilities and services yet to be provided.
- Provided with such temporary or permanent transitional features, buffers, or protective areas as may be required to prevent damage or detriment to any completed phases and to adjoining properties not in the Planned Development.
- j. The applicant is proposing two phases. The Lower Views would be phase one and the Upper Views would be phase two. Each development site is generally independent of the other. The proposed phasing of The Views PD is discussed in further detail in Chapter 17.100 of this document.

<u> 17.66 – Adjustments & Variances</u>

57. The applicant is requesting the following two Type III Special Variances:

- Special Variance to Section 17.84.30(A) to not provide a sidewalk on multiple street frontages.
- Special Variance to Section 17.82.20(A and B) to not have the front doors of the proposed lots adjacent to Highway 26 face Highway 26 with direct pedestrian connection from the front doors to the Highway 26 sidewalk.
- 58. To be granted a Type III Special Variance, the applicant must meet one of the flowing criteria in Section 17.66.80:

20-028 The Views PD Staff Report City Council

Page 15 of 37

- A. The unique nature of the proposed development is such that:
 - 1. The intent and purpose of the regulations and of the provisions to be waived will not be violated; and
 - 2. Authorization of the special variance will not be materially detrimental to the public welfare and will not be injurious to other property in the area when compared with the effects of development otherwise permitted.
- B. The variance approved is the minimum variance needed to permit practical compliance with a requirement of another law or regulation.
- C. When restoration or replacement of a nonconforming development is necessary due to damage by fire, flood, or other casual or natural disaster, the restoration or replacement will decrease the degree of the previous noncompliance to the greatest extent possible.

59. SIDEWALK ELIMINATION

Chapter 17.84 requires sidewalk and planter strips to be included with development. The applicant is requesting that this requirement be eliminated on the south side of The Views Drive from Vista Loop Drive to the alley and on the majority of the Highway 26 frontage. In addition, the applicant is proposing pedestrian walkways within private open space tracts rather than a traditional sidewalk in the public right-of-way along the south side of Vista Loop Drive, the north side of The Views Drive, and the south side of Bonnie Street.

South side of The Views Drive

Section 17.84.30(A) requires sidewalks to be provided on both sides of the street. On a local street, such as The Views Drive, the sidewalk is required to be a minimum of 5 feet in width separated from the curb by a minimum 5 foot wide planter strip. The requested variance to not provide a sidewalk on the south side of The View Drive does not meet the intent and purpose of this regulation. However, the applicant is proposing a wider pedestrian zone along the north side of The Views Drive, which includes a meandering walkway within an approximately 19-foot wide private open space tract (Tract E). This allows for trees to be planted on both sides of the path, creating an allée-like feel and enhancing the pedestrian environment and contributing to a more outstanding design than would be included in a typical subdivision. Thus, **Planning Commission recommends City Council approve the Special Variance request to not provide a sidewalk on the south side of The Views Drive with the condition that Tract E be designed as proposed (i.e. approximately 19 feet wide with sufficient planting space of at least 5 feet on either side of the meandering walkway to accommodate street trees on both sides of the walkway) and add a note to the plat indicating that Tract E cannot be developed.**

Walkways in private tracts along The Views Drive, Vista Loop Drive, and Bonnie Street The applicant is proposing to include pedestrian amenities in the form of a meandering walkway located within a private open space tract rather than the traditional sidewalk in a public right-of-way on the following street frontages: the south side of Vista Loop Drive, the north side of The Views Drive, and the south side of Bonnie Street. The meandering walkways meet the intent of having a sidewalk and planter strip, provided sufficient space is provided for planting and the walkways are covered by a pedestrian easement. **Planning Commission recommends the City Council approve the requested special variance to provide meandering walkways within private open space tracts rather than a**

20-028 The Views PD Staff Report City Council

Page 16 of 37

traditional sidewalk/planter strip in the public right-of-way with the condition that the tracts maintain a minimum width of 15 feet to accommodate a 5 foot wide walkway with an average of 5 foot wide planter strips on either side as well as a minimum width of 16 feet on Vista Loop Drive for a 6 foot sidewalk and 5 foot planter strips as Vista Loop Drive is a collector. The applicant shall include a pedestrian easement and a note on the final plat indicating that the meandering walkway tracts are not developable. Staff also recommends a condition that the meandering walkways in the open space tracts remain the responsibility of the homeowner's association. Consistent with sidewalks along street frontages, Planning Commission recommends a plat note or restrictive covenant be recorded that if the homeowner's association dissolves the responsibility to maintain and repair the meandering walkways and associated landscaping including street trees and groundcover shall shift to the adjacent property owners.

60. FRONT DOORS NOT FACING AND CONNECTED TO A TRANSIT STREET

The requirement of building entrances oriented to transit streets, such as Highway 26, is to provide a pleasant and enjoyable pedestrian experience by connecting activities within a structure to the adjacent sidewalk where transit amenities are located. The applicant requests a special variance to Chapter 17.82.20 to allow the front door of the future homes constructed on Lots 99 and 103-121 to face the internal local street network instead of Highway 26, a designated transit street. The applicant is also proposing a sound wall along Highway 26. This variance request is essentially asking that the front lot line be along the internal street network rather than Highway 26 and that the proposed sound wall can be 6 feet in height, which would be allowed if the Highway 26 lot line is the rear lot line. Though the section of Highway 26 along the subject property is currently in a 65 mph speed zone, it will eventually become urbanized and the speed limit will be reduced. Staff recognizes that proposed Lots 99 and 103-121 will not be allowed to take access from the highway and thus, that all garages and street parking will be located in the internal local street network. While the applicant could design the houses to have two front doors, staff recognizes that the front doors facing Highway 26 would essentially be false front doors, which is not the intent of the code. Thus, Planning Commission recommends that the City Council approve the applicant's requested variance to not provide front doors facing Highway 26 with direct pedestrian connection from the front door to Highway 26 as required by Chapter 17.82. If approved, this variance request would establish Knapp Street as the front lot line for Lots 103-121 and Ortiz Street as the front lot line for Lot 99. Planning Commission recommends condition additional architectural, landscaping, and/or design features to enhance the appearance of the proposed sound wall from the Highway 26 right-of-way.

61. Approval of a variance shall be effective for a 2-year period from the date of approval, unless substantial construction has taken place. The Planning Commission (Type III) may grant a 1-year extension if the applicant requests such an extension prior to expiration of the initial time limit. The variance approvals shall be consistent with the approved timelines for the subdivision phases.

<u>17.74 – Accessory Development</u>

62. Section 17.74.40 specifies, among other things, fence and wall height in front, side and rear yards. Walls in residential zones shall not exceed 4 feet in height in the front yard, 8 feet in

20-028 The Views PD Staff Report City Council

Page 17 of 37

height in rear and side yards abutting other lots, and 6 feet in height in side and rear yards abutting a street. The proposal includes a sound wall along Highway 26, a retaining wall along the south side of The Views Drive, and a retaining wall along the north side of Lot 72. The sound wall along Highway 26 is proposed to be a 6 foot tall wall. The applicant is requesting a Special Variance to allow the front lot line for Lots 103-121 to be on Knapp Street and the front lot line for Lot 99 to be on Ortiz Street rather than Highway 26, which is reviewed in Chapter 17.66 of this document. If approved, the property line along Highway 26 would be the rear property line for Lots 103-121 and the side property line for Lot 99, both of which would permit a 6 foot tall wall.

63. The applicant proposes using a Verti-Crete wall system for the sound wall along Highway 26 in the Upper Views (Exhibit R). The wall panels have a ledge stone finish on both sides and the posts are Ashlar finished. The applicant proposes installing a six-foot tall wall. The posts are 20 inches by 20 inches. The posts and panels come to the site in a concrete gray color and are stained in the field after the wall is installed. The applicant proposes staining the wall "Nutmeg," which is a warm-toned brown. **Planning Commission recommends that additional vegetation is planted between the sound wall and the sidewalk to make it more pedestrian friendly and to soften the large concrete wall.**

17.80 – Additional Setbacks on Collector and Arterial Streets

64. Chapter 17.80 requires all residential structures to be setback at least 20 feet on collector and arterial streets. This applies to front, rear, and side yards. Vista Loop Drive is identified in the City's Transportation System Plan as a collector street. Highway 26 is a major arterial. As shown on the Block and Street Dimensions plan (Exhibit D, Sheets C8 and C9), it appears that all setbacks on lots adjacent to Vista Loop Drive and Highway 26 meet this requirement.

17.82 – Special Setbacks on Transit Streets

- 64. Section 17.82.20(A) requires that all residential dwellings shall have their primary entrances oriented toward a transit street rather than a parking area, or if not adjacent to a transit street, toward a public right-of-way or private walkway which leads to a transit street. A transit street is defined as a street designated as a collector or arterial. The Upper Views is located adjacent to Highway 26, a major arterial, and Vista Loop Drive, a collector. The lot for the multi-family structure in the Upper Views is proposed to be located adjacent to Vista Loop Drive. Adherence to this code section for the future multi-family units will be determined in a future design review process.
- 65. Twenty (20) single family homes (lots 99 and 103-121) are proposed adjacent to Highway 26. Because a substantial grade separation exists between the subject property and Highway 26 over a majority of the property, the applicant does not propose orienting these structures toward the highway but rather orienting these homes toward the internal street. The applicant is requesting a special variance to not have the front doors of the proposed houses along Highway 26 face Highway 26 with a direct pedestrian connection to the highway. The variance request is reviewed in Chapter 17.66 of this document.
- 66. Section 17.82.20(B) requires that dwellings shall have a primary entrance connecting directly between the transit street and building interior and outlines requirements for the pedestrian route. The applicant is requesting a special variance to not have the front doors of the

20-028 The Views PD Staff Report City Council

Page 18 of 37

proposed houses along Highway 26 face Highway 26 with a direct pedestrian connection to the highway. The variance request is reviewed in Chapter 17.66 of this document. Adherence to this code section for the future multi-family units will be determined in a future design review process.

67. Section 17.82.20(C) requires that primary dwelling entrances shall be architecturally emphasized and visible from the transit street and shall include a covered porch at least 5 feet in depth. The adherence to this code section for the future multi-family units will be determined in a future design review process.

<u>17.84 – Improvements Required with Development</u>

- 68. Section17.84.20(A)(1) requires that all improvements shall be installed concurrently with development or be financially guaranteed. All lots in the proposed subdivision will be required to install public and franchise utility improvements or financially guarantee these improvements prior to final plat approval. All ADA ramps shall be designed and inspected by the design engineer and constructed by the applicant to meet the most current PROWAG requirements.
- 69. Section 17.84.30(A)(1) requires that all proposed sidewalks on the local streets will be five feet wide as required by the development code and separated from curbs by a tree planting area that is a minimum of five feet in width. All sidewalks on the internal streets in the Upper Views are proposed to be five feet wide separated from curbs by a landscape strip as required. All sidewalks in the Lower Views are also proposed to be five feet wide with the exception of a six-foot sidewalk proposed on the north side of The Views Drive entrance road from Vista Loop Drive to the proposed alley. The sidewalk is designed to connect to a six-foot meandering sidewalk constructed in front of the proposed row houses. A planned development modification as discussed in Section 17.64.30 has been proposed to modify the typical street section by shifting the road alignment to the southern edge of the right-of-way in order to allow for the construction of a meandering six-foot walkway in this location. The applicant is requesting a special variance to not provide sidewalks on some local street frontages. The special variance request is discussed in Chapter 17.66 of this document. Planning Commission recommends a condition that the meandering walkways in the open space tracts remain the responsibility of the homeowner's association. Consistent with sidewalks along street frontages, Planning Commission recommends a plat note or restrictive covenant be recorded that if the homeowner's association dissolves the responsibility to maintain and repair the meandering walkways and associated landscaping including street trees and groundcover shall shift to the adjacent property owners.
- 70. As required by Section 17.84.30(A)(2), six-foot sidewalks are proposed to be constructed along arterial and collector streets. As shown on the submitted plans (Exhibit D) all sidewalks adjacent to Vista Loop Drive, a collector street, are proposed to be six-feet wide. Unlike a typical street section, the sidewalk/walkway along Vista Loop Drive is proposed to meander along the road rather than be parallel to this road. Rather than provide sidewalks in the public right-of-way, the applicant is proposing six-foot-wide walkways in Tracts M and N adjacent to Vista Loop Drive. The applicant's request to not provide sidewalks on the

20-028 The Views PD Staff Report City Council

Page 19 of 37

Vista Loop Drive frontage is a special variance. The special variance request is discussed in Chapter 17.66 of this document.

- 71. The applicant proposes a six foot wide sidewalk along the Highway 26 frontage of the site. The proposed sidewalk will be located adjacent to the proposed sound wall at the top of the slope.
- 72. In relation to Sections 17.84.30(B), 17.84.30(C), 17.84.30(D), and 17.84.30(E), the applicant is proposing sidewalk alternatives in multiple locations in the form of meandering pathways in private tracts.
- 73. Per the Public Works Director, the applicant shall improve all public street frontages (including the Highway 26 right-of-way, and the street frontage of all tracts) in conformance with the requirements of 17.84.30 and 17.84.50. The subject property contains frontage along Highway 26. The applicant's plan set shows a six-foot sidewalk is proposed to be constructed at the top of the bank along the site's entire highway frontage. The applicant's Engineer corresponded by email with the City's Public Works Director and an ODOT representative regarding if a curb will be required along the highway frontage. The Public Works Director indicated the decision on a curb is up to ODOT as they have authority over Highway 26. The ODOT representative stated that construction of a curb is not required along Highway 26 and construction of a sidewalk at the top of the bank is acceptable. With this, staff recommends the following condition: Improvements adjacent to the site's Highway 26 frontage shall consist of a six-foot wide sidewalk constructed at the top of the bank, lighting, and street trees only as approved and permitted by ODOT. The applicant requested Special Variance approval to only construct a curb on the south side of The Views Drive from the intersection of The Views Drive with Vista Loop Drive to the alley in the Lower Views.
- 74. Section 17.84.40(A) requires that the developer construct adequate public transit facilities. Per Exhibit X, the proposed development will require a concrete bus shelter pad and a green bench (Fairweather model PL-3, powder-coated RAL6028). The required pad size is 7' x 9.5' and should be located at the northernmost corner of The View Drive and Vista Loop Drive. Engineering specifications are available from the Transit Department.
- 75. Section 17.84.50 outlines the requirements for providing a traffic study. The applicant included a Traffic Impact Study (TIS) with the application (Exhibit F). The study did not identify any required mitigation. According to the traffic study, the proposed development would produce 109 peak AM trips, 136 peak PM trips, and 1,564 total daily trips. The findings from the City Transportation Engineer (Exhibit S) are expressly incorporated by reference into this document.
- 76. According to the TIS, the study intersections currently operate acceptably and are projected to continue to operate acceptably under year 2022 traffic conditions either with or without the addition of site trips from the proposed development. No queuing-related mitigations are necessary or recommended in conjunction with the proposed development. Based on the crash data, the study intersections are currently operating acceptably with respect to safety.

20-028 The Views PD Staff Report City Council

Page 20 of 37

Based on the warrant analysis, no new traffic signals or turn lanes are recommended. ODOT states (Exhibit W) that the applicant shall provide additional space on Highway 26 to accommodate westbound right turning movements from Highway 26 onto Vista Loop Drive. Ard Engineering explains in the letter from October 27, 2020 the following:

"In addition to the lack of a clear standard used to justify a request for improvements on Highway 26, it should be noted that a recent improvement has already been undertaken at the request of the Oregon Department of Transportation in anticipation of supporting residential development within the subject property. The prior configuration of the intersection of Highway 26 at Vista Loop Drive included a westbound slip lane which allowed vehicles to turn onto Vista Loop Drive at high speeds. At the request of ODOT, this slip lane was removed and the then-existing shoulder was widened by 6.75 feet immediately east of Vista Loop Drive (Exhibit QQ).

This improvement project was required as part of a lot partition and residential development. The condition of approval carried onto both the approval for the Timber Valley Subdivision, and the Johnson RV expansion that occurred on another piece of the partitioned property. Since the condition was applied to both the residential development and the Johnson RV property, the first one to develop ultimately had to make the improvements. When Johnson RV constructed their parking lot expansion, they were required to bond for the street improvements and were required to complete the improvements by October 31, 2018. As a result, the conditioned improvements for Highway 26 at Vista Loop Drive were completed approximately 2 years ago. Notably, the Timber Valley Subdivision was approved on property that is now The Views. Accordingly, the completed mitigation was specifically intended to support residential development on the subject property.

Since warrants are not met for intersection improvements at Highway 26 and Vista Loop Drive in conjunction with the proposed development and recent improvements at the intersection were specifically intended to support both development of the Johnson RV parking lot expansion and the residential development within what is now The Views property, it does not appear to be either appropriate or proportional to request a second round of intersection improvements in association with the current residential development proposal. Accordingly, we request that there be no condition of approval requiring further widening or improvements on Highway 26 at Vista Loop Drive."

Additionally, the City's traffic engineer provided further comment on November 30, 2020 (Exhibit AA) reiterating the lack of data required to warrant a dedicated right turn lane. Ard Engineering provided an additional memo on December 9, 2020 reiterating that traffic data does not show a need for a right turn lane (Exhibit PP). Staff and the City's traffic engineer agree with this analysis completed by Ard Engineering and do not recommend a condition associated with the right turning movement as requested by ODOT.

77. Intersection sight distance was evaluated for the proposed points of access along SE Vista Loop Drive. Based on the analysis it is projected that adequate site distance can be achieved for all access locations with clearing of vegetation from the roadside. No other sight distance mitigations are necessary or recommended.

20-028 The Views PD Staff Report City Council

Page 21 of 37

- 78. The proposed development does not include any long straight street segments and is thus not required to follow the standards in Sections 17.84.50(C)(1) or (2).
- 79. Section 17.84.50(C)(3) requires that cul-de-sacs should generally not exceed 400 feet in length nor serve more than 20 dwelling units. Two cul-de-sacs are proposed in the Lower Views and a single cul-de-sac is proposed in the Upper Views. All three proposed cul-de-sacs are less than 400 feet in length. Additionally, none of the cul-de-sacs will serve more than 12 lots.
- 80. Section 17.84.50(D) requires that development sites shall be provided with access from a public street improved to City standards. All homes will gain access from a public street or a public alley improved to city standards or a private drive accessed from a public street. No off-site improvements have been identified or are warranted with the construction of this subdivision.
- 81. Section 17.84.50(E) requires that public streets installed concurrent with development of a site shall be extended through the site to the edge of the adjacent property. Temporary deadends created by this requirement to extend street improvements to the edge of the adjacent properties may be installed without turn-arounds, subject to the approval of the Fire Marshal. The proposed street layout results in one temporary dead-end street at the East end of the Lower Views. This street end includes sufficient room to accommodate fire equipment to turn around. The only existing street to be extended is Ortiz Street in the Upper Views, which is proposed to be located directly across Vista Loop Drive from the existing street. The applicant submitted a future street plan (Exhibit D, Sheet C10); however, it details the area north of Ortiz Street as future apartments and does not consider this area to lend itself to a traditional subdivision.
- 82. Section 17.84.50(F) requires that no street names shall be used that will duplicate or be confused with names of existing streets. The application includes proposed street names as shown on submitted plans (Exhibit D). The applicant shall clarify if the street is intended to be named "The View Drive" or "The Views Drive" as both of these names are used on the application materials. All street names are subject to change prior to recording of the plat.
- 83. Proposed streets meet the requirements of 17.84.50(H). The future street plan (Exhibit D, Sheet 1) shows that the proposed development will facilitate and not preclude development on adjacent properties, except with the possibility of the property north of Ortiz Street (i.e. Tax Map 25E18DC, Tax Lots 1000 and 1100). This is discussed in more detail in the subdivision approval criteria in Chapter 17.100 of this document. All proposed streets comply with the grade standards, centerline radii standards, and TSP-based right-of-way improvement widths with the exception of the portion of The Views Drive from the intersection with Vista Loop Drive to approximately the public alley which is proposed to be 31 feet wide. The applicant is requesting a reduction of the right-of-way in this location in order to shift the road to the south to construct a wider sidewalk on the north side of this street within a private landscaped tract. All proposed streets are designed to intersect at right angles with the intersecting street and comply with the requirements of Section

20-028 The Views PD Staff Report City Council

Page 22 of 37

17.94.50.(H)(5). No private streets, with the exception of private drives, are proposed in the development.

- 84. The applicant has submitted a turning diagram demonstrating that there should be sufficient room for a 22 foot long vehicle to back out of a driveway (with an adjacent parked car in the driveway) and into the public alley with cars parked on the opposite side of the alley in a single motion without any conflict. **The garage face setback from the alley shall meet or exceed that shown in the turning diagram.**
- 85. The various streets and public alleys shall include a minimum four-foot wide utility and sign easement on both sides to provide enough room for street name, traffic control and regulatory signage and utility pedestals, fire hydrants, water meters, etc.
- 86. The plans detail all street intersections provide at least 50 foot tangents as required per 17.84.50(H)(5)(C). The vertical design grade for landing at all the Tee intersections where controlled with "Stop" signs shall be no greater than 8 percent for a minimum of 50 feet or two car lengths.
- 87. Section 17.84.60 outlines the requirements of public facility extensions. The applicant submitted a utility plan (Exhibit D, Sheets 12 and 13) which shows the location of proposed public water, sanitary sewer, and stormwater drainage facilities. Broadband fiber service will be detailed with construction plans. No private utilities are proposed. All public sanitary sewer and waterline mains are to be a minimum of 8 inches in diameter and storm drains are to be a minimum of 12 inches in diameter. These shall be extended to the plat boundaries where practical to provide future connections to adjoining properties. All utilities are extended to the plat boundary for future connections.
- 88. According to the applicant's supplemental memos regarding sanitary sewer capacity dated December 9, 2020 (Exhibits NN and OO), both the applicant and the city engineer anticipate adequate sewer capacity to accommodate new development:

"New commercial/residential loads are minor by comparison to the [infiltration and inflow] impact, and adding additional development has a nearly negligible impact on the system loading" (Exhibit NN).

Additionally, the applicant suggests that SDC credits associated with the development will assist in paying for the City's existing plans to update the sanitary sewer system.

- 89. Franchise utilities will be provided to all lots within the proposed subdivision as required in Section 17.84.80. The location of these utilities will be identified on construction plans and installed or guaranteed prior to final plat approval. The applicant does not anticipate extending franchise utilities beyond the site. All franchise utilities other than streetlights will be installed underground. The developer will make all necessary arrangements with franchise utility providers. The developer will install underground conduit for street lighting.
- 90. Section 17.84.90 outlines requirements for land for public purposes. The only public easements anticipated with this development are public pedestrian access easements located

20-028 The Views PD Staff Report City Council

Page 23 of 37

over sidewalks not located within a public right-of-way, trails within the private open space tracts, and the recreation area tracts. Eight-foot wide public utility easements will be provided along all lots adjacent to street rights-of-way for future franchise utility installations. All easements and dedications shall be identified on the final plat as required.

- 91. Section 17.84.100 outlines the requirements for mail delivery facilities. The location and type of mail delivery facilities shall be coordinated with the City Public Works Director and the Post Office as part of the construction plan process.
- 92. SandyNet shall receive a set of PGE utility plans to design and return a SandyNet broadband deployment plan.
- 93. There are two private storm drain lines crossing the proposed right-of-way of The Views Drive. These storm lines serve private developments to the south of the site. Private utility facilities serving single sites are not permitted in public rights-of-way. When the land use application for the private development south of the site was processed the City identified that the location of these lines would present a conflict if a public right-of-way was ever dedicated across these private lines. Staff believes there are three options available: 1) relocate these lines outside the public right-of-way; 2) Replace the existing lines with materials conforming to City standards or demonstrate that the pipeline materials comply with and were installed in conformance with City standards and dedicate these improvements as public; or, 3) Have the owner of the adjacent site served by these lines apply for a revocable permit to place private drainage facilities in a public right-of-way. **Since the exact location relative to proposed improvements in the right-of-way is unknown at this time the City will determine the most suitable option during construction plan review.**
- 94. The proposed public sidewalks located outside of the street right-of-way shall provide lighting levels in conformance with City standards.
- 95. An ODOT Permit to Occupy or Perform Operations Upon a State Highway shall be obtained for all work in the State highway right-of-way. When the total value of improvements within the ODOT right-of-way is estimated to be \$100,000 or more, an agreement with ODOT is required to address the ownership, maintenance, and operations of any improvements or alterations made in highway right-of-way. An Intergovernmental Agreement (IGA) is required for agreements involving local governments and a Cooperative Improvement Agreement (CIA) is required for private sector agreements. The agreement shall address the project standards that must be followed, compliance with ORS 276.071, which includes State of Oregon prevailing wage requirements, and any other ODOT requirements for project construction, including costs for ODOT staff time for project approvals, inspection, and completion.

<u> 17.86 – Parkland and Open Space</u>

96. The applicant intends to pay a fee in lieu of parkland dedication as outlined in the requirements of Chapter 17.86. Section 17.86.10(2) contains the calculation requirements for parkland dedication. The formula is acres = proposed units x (persons/unit) x 0.0043. For the four single family homes, acres = 120 x 3 x 0.0043 = 1.548 acres. For the proposed

20-028 The Views PD Staff Report City Council

Page 24 of 37

development of 39 multi-family units, acres = $39 \times 2 \times 0.0043 = 0.3354$ acres. Combined, this totals 1.89 acres.

- 97. The applicant proposes paying a fee in lieu of parkland dedication. Based on 1.88 acres the parks fee in-lieu shall be \$455,490 based on the City's current fee schedule if this payment is not deferred and paid prior to final plat approval, and \$500,850 if half of the payment is deferred. If deferred, one-half of this amount (\$250,425) is required to be paid prior to final plat approval with the other half (\$250,425) evenly split and paid with each building permit. Because two of the lots are proposed to contain multi-family dwellings at a later date, the applicant requests the parks fee for these units be paid with the building permit for these units rather than at the time of final plat approval. If this proposal is accepted the amount of cash-in-lieu to be paid with the final plat would be based on the area of parkland required for the single family units which is 1.55 acres. This results in the following amounts 1.55 x \$241,000 = \$373,550 if paid prior to Final plat approval and 1.55 x \$265,000 = \$410,750 if one-half of the payment is deferred. The fee associated with the multi-family units 0.34 x \$265,000 = \$90,100 would be paid with the building permit for these units if that is the ultimate decision of the City Council.
- 98. As explained in the findings for Chapter 17.64, maintenance for the dedicated open space areas will be the responsibility of a Homeowners Association. The applicant shall submit a draft agreement between the City and the HOA detailing the minimum maintenance requirements and responsibilities including a means for the City to remedy any failure to meet the agreed-upon standards. The agreement shall be finalized and recorded prior to plat approval and referenced on the face of the plat. Consistent with sidewalks along street frontages, staff recommends a plat note or restrictive covenant be recorded that if the homeowner's association dissolves the responsibility to maintain and repair the meandering walkways and associated landscaping including street trees and groundcover shall shift to the adjacent property owners.
- 99. Per Section 17.86.50(5), in the event that any private owner of open space fails to maintain it according to the standards of the Sandy Municipal Code, the City of Sandy, following reasonable notice, may demand that the deficiency of maintenance be corrected, and may enter the open space for maintenance purposes. All costs thereby incurred by the City shall be charged to those persons having the primary responsibility for maintenance of the open space.

17.90 - Design Standards

100. Chapter 17.90 contains design standards for development based on type and zone. All future buildings shall adhere to the design standards in Chapter 17.90. Single family residences and row homes will be reviewed at building permit and multi-family buildings will be reviewed with a future design review application.

17.92 – Landscaping and Screening

101. Section 17.92.10 contains general provisions for landscaping. As previously determined by the Planning Commission, the City's tree protection standards in this section do not apply to residential subdivisions. Per Section 17.92.10(L), **all landscaping shall be continually maintained, including necessary watering, weeding, pruning, and replacing.**

20-028 The Views PD Staff Report City Council

Page 25 of 37

- 102. Section 17.92.30 specifies that street trees shall be chosen from the City-approved list. As required by Section 17.92.30, the development of the subdivision requires medium trees spaced 30 feet on center along street frontages. The applicant did not submit a separate street tree plan but the conceptual plan (Exhibit L) details street trees along all of the proposed streets, except Highway 26. The applicant shall update the street tree plan to detail street trees along Highway 26. A majority of the streets include both street trees and trees in the front yards of the private property, which creates an allée of trees. The Landscape/Conceptual Plan (Exhibits L, M, and N) identifies tree species, size, and quantities of trees. The landscape/conceptual plan does not show much variety in tree species; for example, both sides of the entire length of Bonnie Street are proposed to have Japanese styrax. Staff would like to see more diversity in street tree species in general and within each block. The applicant shall update the plan set to detail a minimum of two (2) different tree species per block face for staff review and approval. In addition, the applicant is proposing red maples along The Views Drive, public alleys, and cul-de-sacs. Due to concerns with Asian Longhorn Beetle and Emerald Ash Borer, staff are not recommending maples or ashes at this time. The applicant shall update the plant palette to detail an alternate species for the red maple that is not a maple or an ash.
- 103. The applicant is proposing to mass grade the buildable portion of the site. This will remove top soil and heavily compact the soil. In order to maximize the success of the required street trees, the applicant shall aerate the planter strips and other areas proposed to contain trees to a depth of 3 feet prior to planting street trees. The applicant shall either aerate the planter strip soil at the subdivision stage and install fencing around the planter strips to protect the soil from compaction or shall aerate the soil at the individual home construction phase.
- 104. If the plan set changes in a way that affects the number of street trees (e.g., driveway locations), the applicant shall submit an updated street tree plan for staff review and approval. Street trees are required to be a minimum caliper of 1.5-inches measured 6 inches from grade and shall be planted per the City of Sandy standard planting detail. Trees shall be planted, staked, and the planter strip shall be graded and backfilled as necessary, and bark mulch, vegetation, or other approved material installed prior to occupancy. Tree ties shall be loosely tied twine and shall be removed after one growing season (or a maximum of 1 year).
- 105. Section 17.92.40 specifies that landscaping shall be irrigated, either with a manual or automatic system, to sustain viable plant life. The proposal includes numerous private tracts with landscaping. The applicant did not submit an irrigation plan nor did the applicant address Section 17.92.40 in the narrative. **The applicant shall submit an irrigation plan.**
- 106. Section 17.92.50 contains standards related to types and sizes of plant materials. The applicant submitted a plant key (Exhibit O) and landscape plans (Exhibits L, M, and N) that detail plant sizes in compliance with this section. Section 17.92.50(B) encourages the use of native plants or plants acclimatized to the PNW. The applicant is proposing two species of *Prunus* that are nuisance species: *Prunus laurocerasus* 'Otto Luyken' and *Prunus lusitanica*. The applicant shall update the plant palette to include two alternate species

20-028 The Views PD Staff Report City Council

Page 26 of 37

to replace the nuisance *Prunus* species. Chapter 17.60 requires that any plants planted in the FSH overlay area are native. The Landscape Plan shall detail native plants for all vegetation planted in the FSH overlay area and native or PNW acclimatized pollinator friendly species for all vegetation planted in the recreation tracts and private walkway tracts. Staff recommends the following native or PNW acclimatized pollinator species:

- Trees: Rhamnus purshiana, Prunus virginiana, Amelanchier alnifolia, Malus floribunda
- Shrubs: Ceanothus spp., Berberis aquifolium, Perovskia atriplicifolia, Solidago canadensis, Helenium autumnale, Agastache foeniculum
- Groundcover: Eschscholzia californica, Madia elegans, Symphyotrichum subspicatum
- 107. The applicant submitted a conceptual plan that details extensive landscaping in the proposed private open space tracts and stormwater tracts. The inclusion of the recreation area tracts and the wider, more pedestrian friendly walkways with an allée of trees are two elements that set this planned development apart from a typical subdivision. On the streets where the meandering walkways with allées of trees are not proposed, the applicant is detailing additional trees planted in the front yards of houses to continue the allée feel. In addition, the proposal details trees in the rear yards of Lots 103-121, which will help buffer the noise from the highway, and trees in the public alley and private drives. The applicant shall install landscaping in the private open space tracts, front yards, rear yards, public alleys, and private drives as detailed on the submitted conceptual plan and in accordance with the requirements for the updated landscape plan. The applicant is proposing three natural area open space tracts, one of which will have a trail, which is a permitted use in otherwise undeveloped open space. The applicant is also proposing four recreation area tracts, which are proposed to contain sports courts and/or playground equipment. The applicant shall install the proposed sports courts and playground equipment per the conceptual plan and prior to recording the plat of the associated phase. The applicant shall submit details on the sports courts and playground equipment to staff for review and approval.
- 108. Section 17.92.130 contains standards for a performance bond. The applicant has the option to defer the installation of street trees and/or landscaping for weather-related reasons. Staff recommends the applicant utilize this option rather than install trees and landscaping during the dry summer months. Consistent with the warranty period in Section 17.92.140, staff recommends a two-year maintenance and warranty period for street trees based on the standard establishment period of a tree. If the applicant chooses to postpone street tree and/or landscaping installation, the applicant shall post a performance bond equal to 120 percent of the cost of the street trees/landscaping, assuring installation within 6 months. The cost of the street trees shall be based on the average of three estimates from three landscaping contractors; the estimates shall include as separate items all materials, labor, and other costs of the required action, including a two-year maintenance and warranty period.

20-028 The Views PD Staff Report City Council

Page 27 of 37

109. Landscaping requirements for the multi-family units will be addressed with a subsequent design review application.

17.98 - Parking, Loading, and Access Requirements

- 110. Section 17.98.10(M) requires that the developer provide a Residential Parking Analysis Plan. This plan identifying the location of parking is included in Exhibit D, Sheet 10.
- 111. Section 17.98.20(A) requires that each single family dwelling unit is required to provide at least two off-street parking spaces. **Compliance with this requirement will be evaluated during building plan review. Parking for the proposed multi-family units will be evaluated as part of a future design review application.** Section 17.98.60 has specifications for parking lot design and size of parking spaces. No lots are proposed to gain access from an arterial or collector street (Section 17.98.80).
- 112. Section 17.98.100 has specifications for driveways. The minimum driveway width for a single-family dwelling shall be 10 feet and the maximum driveway approach within the public right-of-way shall be 24 feet wide measured at the bottom of the curb transition. Shared driveway approaches may be required for adjacent lots in cul-de-sacs in order to maximize room for street trees and minimize conflicts with utility facilities (power and telecom pedestals, fire hydrants, streetlights, meter boxes, etc.). As shown on the applicant's submittal (Exhibit D), allowing each cul-de-sac lot to be accessed by a separate driveway complies with the requirements of this section. Additionally, all driveways will meet vertical clearance, slope, and vision clearance requirements. All driveways appear to meet these criteria, but this will be verified at time of building permit submission and prior to excavation for the footings. Per Section 17.98.100(G), the sum of the width of all driveway approaches within the bulb of a cul-de-sac as measured in Section 17.98.100(B) shall not exceed fifty percent of the circumference of the cul-de-sac bulb. The applicant submitted additional analysis (Exhibit FF) showing that cul-de-sacs in the development comply with this standard. This requirement is satisfied. Per Section 17.98.100(I), driveways shall taper to match the driveway approach width to prevent stormwater sheet flow from traversing sidewalks.
- 113. Section 17.98.110 outlines the requirements for vision clearance. The requirements of this section will be considered in placing landscaping in these areas with construction of homes and will be evaluated with a future design review application for the multi-family units.
- 114. Section 17.98.130 requires that all parking and vehicular maneuvering areas shall be paved with asphalt or concrete. As required by Section 17.98.130, all parking, driveway and maneuvering areas shall be constructed of asphalt, concrete, or other approved material.
- 115. Section 17.98.200 contains requirements for providing on-street parking spaces for new residential development. Per Section 17.98.200, one on-street parking space at least 22 feet in length has been identified within 300 feet of each lot as required. Exhibit D, Sheet 10 shows that a minimum of 120 on-street parking spaces have been identified in compliance with this standard. No parking courts are proposed by the applicant.

20-028 The Views PD Staff Report City Council

Page 28 of 37

17.100 - Land Division

- 116. Submittal of preliminary utility plans is solely to satisfy the requirements of Section 17.100.60. Preliminary plat approval does not connote utility or public improvement plan approval which will be reviewed and approved separately upon submittal of public improvement construction plans.
- 117. A pre-application conference was held with the City on May 29, 2019 per Section 17.100.60(A). The pre-app notes are attached as Exhibit BB.
- 118. As required by Section 17.100.60(E), the proposed subdivision is designed to be consistent with the density, setback, design standards, and dimensional standards in the SFR zoning district with the exception of the requests as part of the Planned Development. Dimensional and/or quantitative variations to development standards are permitted as part of the PD process per Section 17.64.30(A). See findings for Chapter 17.64 in this document.
- 119. Section 17.100.60(E)(2) requires subdivisions to be consistent with the design standards set forth in the chapter. Consistency with design standards in this chapter are discussed under each subsection below. Conditions of approval can be adopted where necessary to bring the proposal into compliance with applicable standards.
- 120. Section 17.100.60(E)(3) requires the proposed street pattern to be connected and consistent with the Comprehensive Plan or official street plan for the City of Sandy. Given the requirements in Section 17.100.100(E), the site specific conditions of the subject property, particularly the location of the FSH overlay area, limits construction of an interconnected street system. The only existing street to be extended is Ortiz Street in the Upper Views, which is proposed to be located directly across Vista Loop Drive from the existing street. The applicant submitted a future street plan (Exhibit D, Sheet C10); however, it details the area north of Ortiz Street as future apartments and does not consider this area to lend itself to a traditional subdivision.
- 121. Section 17.100.60(E)(4) requires that adequate public facilities are available or can be provided to serve the proposed subdivision. All public utilities including water, sanitary sewer and stormwater are available or will be constructed by the applicant to serve the subdivision. As detailed on the submitted plans and because of the depth of the existing sewer line in Vista Loop, eleven lots in the Lower Views (Lots 39-46 and 61-63) and five lots (Lots 96-100) in the Upper Views will require installation of individual grinder sump systems to pump sanitary waste from these dwellings to a gravity sewer line.
- 122. Section 17.100.60(E)(5) requires all proposed improvements to meet City standards through the completion of conditions as listed within this document and as detailed within these findings. The detailed review of proposed improvements is contained in this document.
- 123. Section 17.100.60(E)(6) strives to ensure that a phasing plan, if requested, can be carried out in a manner that meets the objectives of the above criteria and provides necessary public improvements for each phase as it develops. The applicant proposes building The Lower Views as Phase 1 and The Upper Views as Phase 2.

20-028 The Views PD Staff Report City Council

Page 29 of 37

- 124. Section 17.100.80 provides standards for denial of a development application due to physical land constraints. A significant portion of the Lower Views is affected by the FSH overlay identified by the City of Sandy. The applicant does not propose any development within this area. A Geotechnical Evaluation (Exhibit I) for the property is included with the application package. Except for the areas designated as open space, all areas of the Lower Views and all of the Upper Views property are suitable for development and do not pose any issues due to flooding.
- 125. The subject property abuts Highway 26 and notification of the proposal was sent to ODOT as required by Section 17.100.90. ODOT's comments are included as Exhibit W. One of ODOT's comments reads as follows: "The proposed land use notice is to construct 128 single family residential units and 48 [sic] multi-family units within the vicinity of the US 26/Vista Loop Drive intersection. The "Upper Views" site is located adjacent to the highway. ODOT has review the Traffic Impact Study prepared by Ard Engineering for the development. The development will increase the number of vehicles turning right onto Vista Loop Drive from the highway. The posted speed on the highway is 55 mph and vehicles making this turning movement must to slow down significantly to safely make the turn. Due to the high speed of through traffic, increasing the number of vehicles turning from the through lane onto Vista Loop Drive is a safety concern. In order to separate the right turning vehicles from the through movement, ODOT recommends that the city require the applicant to provide space for right turning vehicles to utilize while turning right onto Vista Loop Drive." After additional discussion with the City Transportation Engineer, prior to conditioning additional asphalt area for turning movements, he recommends the applicant's transportation engineer provides further analysis to be reviewed by ODOT and the City of Sandy. This analysis by Ard Engineering is contained in Exhibit F and explained in further detail in Chapter 17.84 of this document.
- 126. As required by Section 17.100.100(A), a traffic impact study prepared in compliance with the City standards was submitted with the application (Exhibit F). This study does not identify any issues requiring mitigation by the applicant. The findings from the City Transportation Engineer (Exhibit S) are expressly incorporated by reference into this document. None of the special traffic generators listed in Section 17.100.100(B) are located near the subject site.
- 127. While Section 17.100.100(C) calls for a rectangular grid pattern, due to topographic constraints in the Lower Views and existing infrastructure in the Upper Views (Highway 26 and Vista Loop Drive) the site does not lend itself to creating a rectangular gridded street pattern.
- 128. Section 17.100.100(E) requires applicants to provide a future street plan within a 400 foot radius of the subject property(ies). Given the requirements in Section 17.100.100(E), the site specific conditions of the subject property, particularly the location of the FSH overlay area, limits construction of an interconnected street system. The only existing street to be extended is Ortiz Street in the Upper Views, which is proposed to be located directly across Vista Loop Drive from the existing street. The applicant submitted a future street plan (Exhibit D, Sheet C10); however, it details the area north of Ortiz Street as future

20-028 The Views PD Staff Report City Council

Page 30 of 37

apartments and does not consider this area to lend itself to a traditional subdivision. The Planning Commission needs to determine if an additional street stub or pedestrian access shall be extended north (i.e. in the location of Lots 91 and 92).

- 129. Section 17.100.120(A) requires blocks to have sufficient width to provide for two tiers of lots at appropriate depths. However, exceptions to the block width shall be allowed for blocks that are adjacent to arterial streets or natural features. All blocks within the proposed subdivision have sufficient width to provide for two tiers of lots as required in Section 17.100.120(A), with the exception of blocks along Highway 26 and blocks adjacent to the FSH overlay district. The unique character of the site does not lend itself to creating blocks with two tiers due to the existing location of Highway 26 and the FSH overlay area.
- 130. Section 17.100.120(B) requires that blocks fronting local streets shall not exceed 400 feet in length, although blocks may exceed 400 feet if approved as part of a Planned Development. Due to site specific and topographic conditions, all streets do not comply with the 400 foot block length standard. The applicant is requesting an exception to this standard as part of the Planned Development request as identified in Chapter 17.64 of this document.
- 131. Section 17.100.120(D) requires that in any block over 600 feet in length, a pedestrian and bicycle accessway with a minimum improved surface of 10 feet within a 15-foot right-of-way or tract shall be provided through the middle of the block. The applicant proposes establishing a ten foot wide sidewalk within a 15-foot wide pedestrian access easement in the middle of Knapp Street to provide a sidewalk connection from this street to Vista Loop Drive. In order to provide sufficient room for landscaping, the walkway shall be shifted to one side of the 15 foot wide pedestrian access easement to accommodate a landscaping strip that is at least 5 feet in width with trees.
- 132. As required by Section 17.100.130, eight-foot wide public utility easements will be included along all property lines abutting a public right-of-way. Eight foot wide public utility easements shall be included along all property lines abutting a public right-of-way. Only public pedestrian access easements will be needed to allow public access along some of the sidewalks located within private tracts. Staff does not believe that any other easements for public utility purposes are required but will verify this during construction plan review. Preliminary plat approval does not connote utility or public improvement plan approval including easement locations which will be reviewed and approved separately upon submittal of public improvement construction plans.
- 133. Section 17.100.140 requires that public alleys shall have a minimum width of 20 feet. A 28foot wide paved alley within a 29-foot public right-of-way is proposed in the Lower Views. This alley is designed to provide access to the 32 single family detached dwellings abutting this right-of-way. The proposed alley width is designed to accommodate public parking on the south side of the alley. The proposed alley widths include Type C vertical curb with 7 inch exposure per the street sections diagram.
- 134. Section 17.100.150 outlines requirements for residential shared private drives. A shared private drive is intended to provide access to a maximum of two dwelling units. One of the following two criteria must be met: Direct access to a local street is not possible due to

20-028 The Views PD Staff Report City Council

Page 31 of 37

physical aspects of the site including size, shape, or natural features; or the construction of a local street is determined to be unnecessary. As shown on submitted plans the Lower Views includes three private drives serving two lots each. These private drives are proposed due to the topographic constraints with the subject property. The design of the lots should be such that a shared access easement and maintenance agreement shall be established between the two units served by a shared private drive, public utility easements shall be provided where necessary in accordance with Section 17.100.130, and shared private drives shall be fully improved with an all weather surface (e.g. concrete, asphalt, permeable pavers) in conformance with city standards. The pavement width shall be 20 feet, and parking shall not be permitted along shared private drives at any time and shall be signed and identified accordingly. The proposed three private drives in the Lower Views are designed to serve only two lots each as permitted. A shared access easement and maintenance agreement shall be established for each private drive as part of the Final Plat. Public utility easements will be accommodated along these private drives as necessary to serve these lots. As shown on submitted plans each private drive is proposed to include a 20-foot wide all weather surface within a 21-foot wide tract and shall be posted "no parking."

- 135. Section 17.100.170 outlines requirements for flag lots. Lots 103 and 104 are proposed as flag lots. Both lots contain a minimum 15 feet of street frontage as required.
- 136. Section 17.100.180(A) requires that intersections are designed with right angles. All streets in the proposed subdivision have been designed to intersect at right angles to the opposing street as required.
- 137. All streets in the proposed subdivision have a minimum curve radius as required by Section 17.100.180(B).

138. A lighting plan shall be coordinated with PGE and the City as part of the construction plan process and prior to installation of any fixtures as required by Section 17.100.210.

- 139. All lots in the proposed subdivision have been designed so that no foreseeable difficulties due to topography or other conditions will exist in securing building permits on these lots as required by Section 17.100.220(A).
- 140. Section 17.100.220(B) requires that the lot dimensions shall comply with the minimum standards of the Development Code. When lots are more than double the minimum lot size required for the zoning district, the applicant may be required to arrange such lots to allow further subdivision and the opening of future streets to serve such potential lots. As allowed by Chapter 17.64 for Planned Developments, the applicant has proposed modifications to the minimum lot size and dimension standards specified in the Single Family Residential zone. Only Lot 62 (16,694 square feet) is proposed to contain more than double the minimum lot size (7,500 square feet) in the SFR zone. Due to its location and topographic constraints no further division of this lot is possible and therefore staff supports the proposed square footage of Lot 62.
- 141. Section 17.100.220 states that all new lots shall have at least 20 feet of street frontage. All lots in the proposed subdivision contain at least 20 feet of frontage along a public street with

20-028 The Views PD Staff Report City Council

Page 32 of 37

the exception of one flag lot and the six lots that are proposed to be accessed by three private drives.

- 142. Only Lots 99 and 103-121 are designed to have frontage on both an internal local street (Knapp Street) and Highway 26. This configuration is unavoidable because of the location of Highway 26 and limitations for access to this roadway and is thus allowed as required by Section 17.100.220(D).
- 143. The applicant shall install all water lines and fire hydrants in compliance with the applicable standards in Section 17.100.230, which lists requirements for water facilities.
- 144. The applicant intends to install sanitary sewer lines in compliance with applicable standards in Section 17.100.240. As noted above, because of the depth of the existing sanitary sewer in Vista Loop, 11 lots in the Lower Views (Lots 39-46 and 61-63) and five lots (Lots 96-100) in the Upper Views will require installation of a grinder sump system installed at each of these dwellings to pump sanitary sewer waste from these dwellings to a gravity sanitary sewer line in the development.
- 145. Section 17.100.250(A) details requirements for stormwater detention and treatment. A stormwater water quality and detention facility is proposed to be located in the eastern portion of the Lower Views and the western area of the Upper Views as shown on submitted plans. These facilities have been sized and located to accommodate public stormwater generated by the subdivision. A stormwater report (Exhibit E) is included with this application as required. Stormwater calculations are found to meet the water quality/quantity criteria as stated in the City of Sandy Development Code 13.18 Standards and the 2016 City of Portland Stormwater Management Manual Standards that were adopted by reference into the Sandy Development Code. However, a detailed final report stamped by a licensed professional shall be submitted for review with the final construction plans.
- 146. The detention ponds shall be constructed to meet the requirements of the 2016 City of Portland Stormwater Management Manual for landscaping Section 2.4.1 and escape route Section 2.30. The access to the detention ponds shall be paved of an all-weather surface to a minimum of 12-foot in width per the 2016 City of Portland Stormwater Management Manual.
- 147. Section 17.100.260 states that all subdivisions shall be required to install underground utilities. The applicant shall install utilities underground with individual service to each lot.
- 148. Section 17.100.270 requires that sidewalks shall be installed on both sides of a public street and in any special pedestrian way within the subdivision. Sidewalks will be installed on both sides of all streets with the exception that a sidewalk is proposed to be constructed on only the north side of The View Drive from its intersection with Vista Loop Drive to the proposed public alley. The applicant is proposing this design to allow the road surface to be shifted to the south side of the public right-of-way to construct a six-foot sidewalk within a widened landscaped buffer. The applicant believes this design will provide a more aesthetically pleasing and desirable environment for pedestrians walking between the upper

20-028 The Views PD Staff Report City Council

Page 33 of 37

and lower parts of the development. The roadway width in this location will be 28 feet wide in compliance with city standards.

- 149. Planter strips will be provided along all frontages as required in Section 17.100.290. Street trees in accordance with City standards will be provided in these areas. **The applicant shall provide a revised street tree plan with alternative species as explained in Chapter 17.92 of this document.**
- 150. Grass seeding shall be completed as required by Section 17.100.300. Grass seeding will be completed as required by this section. The submitted erosion control plan (Exhibit D) provides additional details to address erosion control concerns. A separate Grading and Erosion Control Permit will be required prior to any site grading.

<u>17.102 – Urban Forestry</u>

- 151. Section 17.102.20 contains information on the applicability of Urban Forestry regulations. An Arborist Report by Todd Prager of Teragan & Associates (ASCA Registered Consulting Arborist #597, ISA Board Certified Master Arborist, WE-6723B, ISA Qualified Tree Risk Assessor) is included as Exhibit G. The arborist inventoried approximately 530 trees. The inventory is included in Exhibit D, Sheet 6 and the proposed retention trees are shown in Exhibit D, Sheet 7.
- 152. The property contains 32.87 acres requiring retention of 99 trees 11 inches and greater DBH (32.87 x 3 = 98.61). The submitted Tree Retention Plan (Exhibit D Sheets C6 and C7) identifies 219 trees that will be retained. Of the 219 trees proposed for retention, 105 are 11 inches DBH or greater and in good condition as required. Five (5) of the proposed retention trees are nuisance species: Tree #149 is an English holly and Trees #223, 224, 225, and 227 are sweet cherries. In addition, 76 of the 105 trees (72 percent) are conifer species as preferred by Section 17.102.50(4). The applicant submitted a supplemental Tree Protection Plan and Table prepared by the project arborist that details an additional seven (7) retention tree standards and aren't nuisance species. With these additional seven retention trees, the applicant is proposing to retain 101 trees that meet the retention standards and aren't nuisance species.
- 153. No trees are proposed to be removed within the FSH overlay area. The applicant shall not remove any trees from the FSH overlay area.
- 154. The Arborist Report (Exhibit G) provides recommendations for protection of retained trees including identification of the recommended tree protection zone for these trees. The requirements of Section 17.102.50(B) will be complied with prior to any grading or tree removal on the site. Per the Pacific Northwest International Society of Arboriculture (ISA), the ISA defines the critical root zone (CRZ) as "an area equal to a 1-foot radius from the base of the tree's trunk for each 1 inch of the tree's diameter at 4.5 feet above grade (referred to as diameter at breast height)." Often the drip-line is used to estimate a tree's CRZ; however, it should be noted that a tree's roots typically extend well beyond its drip-line. In addition, trees continue to grow, and roots continue to extend. Thus, a proactive approach to tree protection would take into consideration the fact that the tree and its root

20-028 The Views PD Staff Report City Council

Page 34 of 37

zone will continue to grow. The submitted arborist report details a root protection zone radius of 1 foot per 1 inch DBH and a minimum construction setback radius of 0.5 feet per 1 inch DBH. The applicant shall install tree protection fencing at the critical root zone of 1 foot per 1 inch DBH to protect the 101 retention trees on the subject property as well as all trees on adjacent properties. The tree protection fencing shall be 6 foot tall chain link or no-jump horse fencing and the applicant shall affix a laminated sign (minimum 8.5 inches by 11 inches) to the tree protection fencing indicating that the area behind the fence is a tree retention area and that the fence shall not be removed or relocated. No construction activity shall occur within the tree protection zone, including, but not limited to, dumping or storage of materials such as building supplies, soil, waste items, equipment, or parked vehicles. The applicant shall request an inspection of tree protection measures prior to any tree removal, grading, or other construction activity on the site. Up to 25 percent of the area between the minimum root protection zone of 0.5 feet per 1-inch DBH and the critical root zone of 1 foot per 1 inch DBH may be able to be impacted without compromising the tree, provided the work is monitored by a qualified arborist. The applicant shall retain an arborist on site to monitor any construction activity within the critical root protection zones of the retention trees or trees on adjacent properties that have critical root protection zones that would be impacted by development activity on the subject property. The applicant shall submit a post-construction report prepared by the project arborist or other TRAQ qualified arborist to ensure none of the retention trees were damaged during construction.

To ensure protection of the required retention trees, the applicant shall record a tree protection covenant specifying protection of all retention trees, including trees in the FSH Overlay per the recommendations of the applicant's arborist report of 1 foot per 1 inch DBH. The tree protection covenant shall specify limiting removal of the retention trees without submittal of an Arborist's Report and City approval. This document shall include a sketch identifying the required retention trees and a 1 foot per 1 inch DBH radius critical root zone around each tree consistent with the applicant's arborist report. All trees marked for retention shall be retained and protected during construction regardless of desired or proposed building plans; plans for future houses on the proposed lots within the subdivision shall be modified to not encroach on retention trees and associated tree protection fencing.

155. The arborist report contains additional recommendations related to tree protection, directional felling, stump removal, tree crown protection, monitoring of new grove edges, and sediment fencing. The applicant shall follow the recommendations outlined in the arborist report related to tree protection, directional felling, stump removal, tree crown protection, monitoring of new grove edges, and sediment fencing.

15.30 - Dark Sky

156. Chapter 15.30 contains the City of Sandy's Dark Sky Ordinance. The applicant will need to install street lights along all street frontages wherever street lighting is determined necessary. The locations of these fixtures shall be reviewed in detail with construction plans. Full cut-off lighting shall be required. Lights shall not exceed 4,125 Kelvins or 591 nanometers in order to minimize negative impacts on wildlife and human health.

20-028 The Views PD Staff Report City Council

Page 35 of 37

<u>15.44 – Erosion Control</u>

- 157. The applicant submitted a Geotechnical Report (Exhibit I) prepared by Redmond Geotechnical Services dated May 15, 2020. The applicant shall retain appropriate professional geotechnical services for observation of construction of earthwork and grading activities. The grading setbacks, drainage, and terracing shall comply with the Oregon Structural Specialty Code (OSSC) requirements and the geotechnical report recommendations and conclusions as indicated in the report. When the grading is completed, the applicant shall submit a final report by the Geotechnical Engineer to the City stating that adequate inspections and testing have been performed on the lots and all of the work is in compliance with the above noted report and the OSSC. Site grading should not in any way impede, impound or inundate the adjoining properties.
- 158. All the work within the public right-of-way and within the paved area should comply with American Public Works Association (APWA) and City requirements as amended. The applicant shall submit a grading and erosion control permit and request an inspection of installed devices prior to any additional grading onsite. The grading and erosion control plan shall include a re-vegetation plan for all areas disturbed during construction of the subdivision. All erosion control and grading shall comply with Section 15.44 of the Municipal Code. The proposed subdivision is greater than one acre which typically requires approval of a DEQ 1200-C Permit. The applicant shall submit confirmation from DEQ if a 1200-C Permit will not be required.
- 159. Section 15.44.50 contains requirements for maintenance of a site including re-vegetation of all graded areas. The applicant's Erosion Control Plan shall be designed in accordance with the standards of Section 15.44.50.
- 160. Development at both the Zion Meadows subdivision and the remodel of the Pioneer Building (former Sandy High School) have sparked unintended rodent issues in the surrounding neighborhoods. Prior to development of the site, **the applicant shall have a licensed pest control agent evaluate the site to determine if pest eradication is needed.**

POSSIBLE MOTIONS

- 1) Motion Option A: Approve the requested application with conditions and findings as recommended by the Planning Commission. If you select this option, please also make a motion to either have Mayor Pulliam review the final order as drafted by staff or have the final order with the full conditions list come back before the City Council for consideration.
- 2) Motion Option B: Approve the application with conditions and findings determined by the City Council. If you select this option, staff recommends to have the final order with the full conditions list come back before the City Council for consideration.
- 3) Motion Option C: Deny the application based on code criteria that you find are not satisfied.

20-028 The Views PD Staff Report City Council

Page 36 of 37

- 4) Motion Option D: Ask the applicant to revise the proposal, extend the 120-day clock, and come back before the City Council at a future date with a revised proposal. If you select this option, staff prefers not to determine the continuance date at this time.
- 5) Motion Option E: Continue the hearing to a future City Council date to continue Council dialogue prior to issuing a decision. If you select this option, staff prefers you choose a date for the continuance on February 16, 2021 so that additional public notice and legal notice is not required.

20-028 The Views PD Staff Report City Council

Page 37 of 37

EXHIBIT A

				1 page
Name of Project:	HE VIEWS PLA	NNED DEVELOP	PMENT	
Location or Address:	ISTA LOOP DRI	VE		
Map & Tax Lot # T: 28	F	₹: 5E	Section: 19	Tax Lot (s): 200 & 500
Request: 122 LOT PLANNE	D DEVELOPINE			
I am the (check one) 🗌 own are in all	er 🗆 lessee of respects true, co	the property liste	d above, and the statements	s and information contained herein dge and belief.
are in all	respects true, co	omplete and corre	d above, and the statements ect to the best of my knowled Wyner Bradford Picking	s and information contained herein dge and belief.
are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF	respects true, co	omplete and corre	ect to the best of my knowled	dge and belief.
I am the (check one) □ own are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF Address P.O. Box 2021 City/State/Zip GRESHAN	respects true, co vner) R HOMES, INC.)	omplete and corre	ect to the best of my knowled Winer Bradford Picking	dge and belief.
are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF Address P.O. Box 2021 City/State/Zip GRESHAN	respects true, co vner) R HOMES, INC.) A, OR 97030	pomplete and correct	ect to the best of my knowled Dwner Bradford Picking Address ⁷⁷⁻⁶⁵¹⁶ Alii dr #9 Ka	dge and belief. ilua-Kona HI 96740
are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF Address P.O. Box 2021	respects true, co vner) R HOMES, INC.) A, OR 97030	omplete and corre	ect to the best of my knowled Dwner Bradford Picking Address 77-6516 Alii dr #9 Ka City/State/Zip	dge and belief. ilua-Kona HI 96740
are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF Address P.O. Box 2021 City/State/Zip GRESHAN Email mac@evenbetter	respects true, co vner) R HOMES, INC.) A, OR 97030	pomplete and corre	ect to the best of my knowled Dwner Bradford Picking Address 77-6516 Alii dr #9 Ka Dity/State/Zip Email Janzberry12@gmail.co Phone 503-807-4376	dge and belief. ilua-Kona HI 96740
are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF Address P.O. Box 2021 City/State/Zip GRESHAN Email mac@evenbetter Phone 503-348-5602 Signature	respects true, co vner) R HOMES, INC.) A, OR 97030 homes.com	omplete and corre	ect to the best of my knowled Dwner Bradford Picking Address 77-6516 Alii dr #9 Ka City/State/Zip Email Janzberry12@gmail.co Phone 503-807-4376 ignature Brad Picku, se Only	dge and belief. ilua-Kona HI 96740
are in all Applicant (if different than ov MAC EVEN (EVEN BETTEF Address P.O. Box 2021 City/State/Zip GRESHAN Email mac@evenbetter Phone 503-348-5602 Signature	respects true, co vner) R HOMES, INC.) A, OR 97030 Thomes.com	omplete and corre	ect to the best of my knowled Dwner Bradford Picking Address 77-6516 Alii dr #9 Ka Dity/State/Zip Dimail Janzberry12@gmail.co Phone 503-807-4376 Ignature Brad Picki, se Only Planner:	dge and belief. ilua-Kona HI 96740

				l page
Name of Project:	THE VIEWS	PLANNED DEVE	LOPMENT	
Location or Addre	ess: VISTA LOOF	P DRIVE		
Map & Tax Lot #	T: 2S	R: 5E	Section: 19	Tax Lot (s): 200 & 500
Request: 122 LOT	PLANNED DEVELO	OPMENT		
		1		
I am the (check one	e) owner lesse are in all respects tr	ee of the property rue, complete and c	listed above, and the statements a correct to the best of my knowledg	nd information contained herein e and belief.
	are in all respects tr	rue, complete and c	Correct to the best of my knowledg	nd information contained herein e and belief.
Applicant (if differer MAC EVEN (EVEN	are in all respects tr nt than owner) I BETTER HOMES,	rue, complete and c	correct to the best of my knowledg	ind information contained herein re and belief.
Applicant (if differen MAC EVEN (EVEN Address P.O. Bo)	are in all respects tr nt than owner) BETTER HOMES, x 2021	INC.)	Correct to the best of my knowledg	ind information contained herein re and belief.
I am the (check one Applicant (if differer MAC EVEN (EVEN Address P.O. Bo) City/State/Zip GR Email mac@eve	are in all respects tr nt than owner) I BETTER HOMES, x 2021 ESHAM, OR 9	INC.)	Owner John Knapp Address PO Box 1360	e and belief.
Applicant (if differen MAC EVEN (EVEN Address P.O. Bo) City/State/Zip GR Email mac@eve	are in all respects tr nt than owner) I BETTER HOMES, x 2021 ESHAM, OR 9 enbetterhomes.	INC.)	Owner John Knapp Address PO Box 1360 City/State/Zip Sandy OR 97055	e and belief.
Applicant (if differer MAC EVEN (EVEN Address P.O. Bo) City/State/Zip GR	are in all respects tr nt than owner) I BETTER HOMES, x 2021 ESHAM, OR 9 enbetterhomes.	INC.)	Owner John Knapp Address ^{PO Box 1360} City/State/Zjp Sandy OR 97055 Email skylinechristmastrees@g Phone503-819-4037	e and belief.
Applicant (if differen MAC EVEN (EVEN Address P.O. Box City/State/Zip GR Email mac@eve Phone 503-348-5	are in all respects tr nt than owner) I BETTER HOMES, x 2021 ESHAM, OR 9 enbetterhomes.	INC.) 7030 com	Owner John Knapp Address PO Box 1360 City/State/Zip Sandy OR 97055 Email skylinechristmastrees@g Phone503-819-4037	e and belief.
Applicant (if differen MAC EVEN (EVEN Address P.O. Box City/State/Zip GR Email mac@eve Phone 503-348-5	are in all respects tr nt than owner) I BETTER HOMES, x 2021 ESHAM, OR 9 enbetterhomes.	INC.) 7030 com	City/State/Zjp City/State/Zjp Email skylinechristmastrees@g Phone503-819-4037 Signature Joluw Kuopp	e and belief.
Applicant (if differer MAC EVEN (EVEN Address P.O. Box City/State/Zip GR Email mac@eve Phone 503-348-5 Signature	are in all respects tr nt than owner) I BETTER HOMES, x 2021 ESHAM, OR 9 enbetterhomes.	INC.) 7030 com	City/State/Zip City/State/Zip City/State/Zip City/State/Zip Email skylinechristmastrees@g Phone503-819-4037 Signature Jolux Kuapp	mail.com

EXHIBIT B

Project Narrative For

The Views Planned Development SE Vista Loop Drive Sandy, Oregon 97055

Prepared by Tracy Brown Planning Consultants, LLC June 2020 (page left blank intentionally)

Project Details

Project Location:	East and west of the eastern end of Vista Loop Drive, east of Highway 26
Legal Description:	Map 25E 19, Tax Lots 200 and 500
Zoning District	SFR, Single Family Residential
<u>Site Size:</u>	Tax Lot 200 - 23.318 acres (41717 SE Vista Loop Drive) Tax Lot 500 - 9.552 acres (No site address) Total Site 32.87 acres (1,431,813 sq. ft.)

Applicant Mac Even Even Better Homes, Inc. P.O. Box 2021 Gresham, OR. 97030 Phone: 503-348-5602 Email: mac@evenbetterhomes.com

Representative:

<u>Civil Engineer / Surveyor</u> Ray Moore, P.E., P.L.S. All County Surveyors & Planners, Inc. P.O. Box 955 Sandy, OR 97055 Phone: 503-668-3151 Fax: 503-668-4730 Email: ray@allcountysurveyors.com

> <u>Consultant Team:</u> <u>Planning</u>

Tracy Brown Tracy Brown Planning Consultants, LLC 17075 Fir Drive Sandy, OR 97055 Phone: 503-781-0453 Email: tbrownplan@gmail.com (page intentionally left blank)

<u>Geotechnical Engineer</u> Daniel M. Redmond, P.E., G.E. **Redmond Geotechnical Services, LLC** P.O. Box 20547 Portland, Oregon 97294 Phone: 503-285-0598 Fax: 503-286-7176 Cell: 503-545-9055 Email: RedmondGeotechnicalServices@gmail.com

<u>Traffic Engineer</u> Mike Ard Ard Engineering 21370 SW Langer Farms Parkway, Suite 142 Sherwood, OR 97140 Phone: 503-537-8511 Email: mike.ard@gmail.com

<u>Wetland Consultant</u> Kim Biafora Schott & Associates 21018 NE Highway 99E Aurora, OR. 97002 Phone: 503-678-6007 Email: kim@schottandassociates.com

> <u>Arborist</u> Todd Praeger Teragan & Associates 3145 Westview Circle Lake Oswego, OR. 97034 Phone: 971-295-4835 Email: todd@teragan.com

Landscape Architect Mears Design Group Troy Mears P.O. Box 23338 Portland, OR 97281 Phone: 503-601-4516 Email: troym@mearsdesigngroup.com (page intentionally left blank)

I. General Project Description

The project site consists of two parcels located at Township 2 South, Range 5 East, Section 19, tax lots 200 and 500. The property contains a total area 32.87 acres and contains an existing single family home and accessory structures.

Both parcels are zoned SFR, Single Family Residential. The applicant proposes constructing a 122 lot planned development in order to build 120 single family dwellings and 48 multi-family dwellings on two separate lots. The following dwelling unit types are proposed: 32 single family attached dwellings (Lots 1 - 32), 88 single family detached dwellings (Lots 33 - 71 and 73 - 121), and 48 multi-family dwellings (24 units each on Lots 72 and 122).

The two parcels proposed for this project are abutting each other and separated only by Vista Loop Drive. Tax lot 200 referred to in this application as the "Lower Views" shares a common property line with the existing Johnson RV recreational vehicle business. This property contains about 23.32 acres and is proposed to gain access by construction of a local street ("The Views Drive") intersecting Vista Loop Drive. Two existing home and a barn currently located on this property will be removed following land use approval. The portion of the property proposed as buildable contains gentle to moderate slopes. A considerable portion of the rest of the property falls within the FSH Overlay with slopes greater than 25 percent. The Lower Views is proposed to contain three housing types: 32 units single family attached dwellings, 39 single family detached dwellings, and one lot to contain 24 multi-family dwelling units. The Lower Views is also proposed to include a wide variety of amenities including play structures, a half-court basketball court, a viewpoint plaza, and trails within the private open spaces.

Tax lot 500 referred to as the "Upper Views" is located directly across Vista Loop Drive from the Lower Views. This property contains about 9.55 acres and is bordered on one side by Vista Loop Drive and the other by Highway 26. The property is gently sloping with about 40 feet of elevation difference between the South and north property lines. The Upper Views is proposed to contain two housing types: 49 detached single family dwelling units and one lot to contain 24 multi-family dwelling units. Additional features proposed in the Upper Views include a half-court basketball court, play structure, tot lot, dog park, and sidewalk system.

A pre-application conference was held with the City to review the project on May 29, 2019. Based on input received at this meeting modifications were made to the project layout.

The Views PD

Page 1 of 62

II. Application Approval Requests

The applicant requests the following approvals with this application:

• Type IV Combined Planned Development Review to include both Conceptual and Development Plan reviews;

III. Items Submitted With This Application

Exhibit A - Land Use Application

- Exhibit B Notification List and Mailing Labels
- Exhibit C Pre-application Notes
- Exhibit D Project Narrative
- Exhibit E Architectural Plans Booklet
- Exhibit F Storm Drainage Report
- Exhibit G Traffic Impact Analysis

Exhibit H - Arborist Report

Exhibit I - Geotechnical Report

Exhibit J - DSL Wetland Delineation Concurrence

Exhibit K - Civil Plans (under separate cover)

- Sheet C1 Cover Sheet
- Sheet C2 Preliminary Plat The Lower Views
- Sheet C3 Preliminary Plat The Upper Views
- Sheet C4 Topographic Survey The Lower Views
- Sheet C5 Topographic Survey The Upper Views
- Sheet C6 Tree Retention and Protection Plan
- Sheet C7 Tree Inventory List
- Sheet C8 Building Setbacks The Lower Views
- Sheet C9 Building Setbacks The Upper Views
- Sheet C10 Parking Analysis and Future Street Plan
- Sheet C11 Block and Street Dimensions
- Sheet C12 Street and Utility Plan The Lower Views
- Sheet C13 Street and Utility Plan The Upper Views
- Sheet C14 Grading and Erosion Control Plan The Lower Views
- Sheet C15 Grading and Erosion Control Plan The Upper Views
- Sheet C16 Sanitary Sewer Plan and Profile Offsite
- Sheet C17 Sanitary Sewer Plan and Profile The Lower Views
- Sheet C18 Sanitary Sewer Plan and Profile The Upper Views

Exhibit L - Landscape Concept Plans (under separate cover)

- Sheet L1 Overall Concept Plan
- Sheet L2 Lower Views Concept Plan
- Sheet L3 Upper Views Concept Plan

Exhibit M - Architectural Plans Display Sheet (under separate cover)

IV. Review of Applicable Approval Criteria

Development applications are required to meet development standards set forth in the City of Sandy Development Code. This section addresses all applicable review criteria. Pertinent code provisions are cited below in regular text followed by a

The Views PD

Page 2 of 62

response describing how the proposal complies with this standard in *italics*. The following code chapters have been reviewed in this narrative:

<u>Chapter</u> <u>Title</u>

17.30 - Zoning District

- 17.34 Single Family Residential (SFR)
- 17.56 Hillside Development
- 17.60 Flood and Slope Hazard Overlay
- 17.64 Planned Development
- 17.80 Additional Setbacks on Collector and Arterial Streets
- 17.82 Special Setbacks on Transit Streets
- 17.84 Improvements Required with Development
- 17.86 Parkland and Open Space
- 17.90 Design Standards
- 17.92 Landscaping and Screening
- 17.98 Parking, Loading, and Access Requirements
- 17.100 Land Division
- 17.102 Urban Forestry
- 15.30 Dark Sky Ordinance

CHAPTER 17.30 - ZONING DISTRICTS

17.30.20 - RESIDENTIAL DENSITY CALCULATION PROCEDURE

The number of dwelling units permitted on a parcel of land is calculated after the determination of the net site area and the acreage of any restricted development areas (as defined by Chapter 17.60). Limited density transfers are permitted from restricted development areas to unrestricted areas consistent with the provisions of the Flood and Slope Hazard Area Overlay District, Chapter 17.60.

Response: The applicant proposes developing a 122 lot Planned Development and subdivision to include 120 lots to accommodate single-family dwellings and two lots to accommodate 48 multi-family units for a total of 168 dwelling units. In addition, the proposal includes three private drives (Tracts F, G, and H), two public stormwater detention and water quality facilities (Tracts J and O), eight private open space tracts to be maintained by a Homeowner's Associations (Tracts A - E, I, K, L) in the Lower Views and two private open space tracts (Tracts M,N) in the Upper Views. The table to the right provides a list of all proposed tracts and the proposed purpose and area of each.

Tract Number	Purpose	Area (sq. ft.)	Acres
Lower Views			
A	Private Active Open Space	49,686	1.14
в	Private Active Open Space	10,782	0.25
с	Private Active Open Space	9,895	0.23
D	Private Open Space	5,791	0.13
E	Private Active Open Space	11,985	0.28
F	Private Drive	2,820	0.06
G	Private Drive	1,883	0.04
н	Private Drive	1,716	0.04
1	Private Open Space	72,119	1.66
J	Public Stormwater Detention Pond	13,954	0.32
к	Private Open Space	240,970	5.53
L	Private Open Space	45,051	1.03
Upper Views			
м	Private Active Open Space	39,940	0.92
N	Private Active Open Space	32,655	0.75
0	Public Stormwater Detention Pond	16,839	0.39

The subject property contains a gross site area of 32.87 acres. After deducting public rights-of-way (4.73 acres) and

The Views PD

Page 3 of 62

stormwater tracts (0.707 acres) proposed to be dedicated to the City, the net site area (NSA) is 27.433 acres. Because the subject property contains restricted development areas (RDA) as defined by Chapter 17.60 these areas are also deducted from the net site area to determine the unrestricted site area (USA). The formula used in this calculation is: NSA - RDA = USA.

The subject property contains 279,768 square feet (6.423 acres) of restricted development area (RDA). Subtracting this area from the net site area (NSA) results in an unrestricted site area (USA) containing 21.010 acres.

The SFR zone allows a minimum of 3 and a maximum of 5.8 units per net acre. The minimum density is calculated by multiplying the USA x the required minimum density (21.010 acres x 3 = 63.03 units round down to <u>63 units</u>)

The maximum density is determined by using the lesser number of units in the following two formulas.

a. NSA (in acres) x Maximum Density of Zoning District (units/acre).

(27.433 acres x 5.8 units/acre = 159.11 (rounded to 159 units))

or,

b. USA (in acres) x Maximum Density of Zoning District (units/acre) x 1.5 (maximum allowable density transfer based on Chapter 17.60)

(21.01 x acres x 5.8 units/acre x 1.5 density transfer = 182.787 (rounded to 183 units)

As a result of these calculations the density range for the subject property is a <u>minimum of 63 units and a maximum of 159 dwelling units</u>.

As discussed in more detail below, Chapter 17.64, Planned Developments, Section 17.64.40(C), allows the density to be increased by up to 25% of the number of dwelling units upon a finding that the Planned Development is outstanding in planned land use and design, and provides exceptional advantages in living conditions and amenities not found in similar developments constructed under regular zoning.

Multiplying the maximum density above by 25% results in 39.75 (rounded to 40 dwellings units) additional dwelling units. With this provision, the maximum density for the subject property can be increased to **199 dwelling units** (159 maximum allowed x .25 = 40. 159 + 40 units = 199 maximum as allowed by Chapter 17.64). The applicant proposes constructing **168 dwelling units**, nine units more than allowed by Chapter **17.30** and **31 units fewer than allowed by** Chapter **17.64**. This represents an increase in the number of units by six percent over the maximum allowed by Chapter 17.30. The details of this request is discussed in Chapter 17.64 below.

The Views PD

Page 4 of 62

CHAPTER 17.34 - SINGLE-FAMILY RESIDENTIAL (SFR) 17.34.00 - INTENT

The district is intended to implement the Low Density Residential Comprehensive Plan designation by providing for low-density residential development in specific areas of the city. The purpose of this district is to allow limited development of property while not precluding more dense future development, as urban services become available. Density shall not be less than 3 or more than 5.8 units per net acre.

Response: As discussed in Chapter 17.30 above, the proposal to construct 168 units exceeds the density range allowed in the SFR zone but is less than the maximum number of units (199 units) permitted by Chapter 17.64 as discussed below. The proposed planned development represents an overall density of 6.12 units per net acre.

17.34.10 - PERMITTED USES

- A. Primary Uses Permitted Outright:
 - 1. Single detached dwelling subject to design standards in Chapter 17.90; *Response:* The applicant proposes constructing 32 single family attached dwellings, 88 single family detached dwellings, 48 multi-family dwelling units. All of the proposed housing types are allowed as part of a Planned Development application per Section 17.64.60(A)(2) below.

17.34.30 - DEVELOPMENT STANDARDS

Response: As shown on the plan set, a number lots in the proposal do not contain at least 7,500 square feet, are at least 60 feet wide, and provide minimum setbacks required by this section. As discussed in Section 17.64.30(A) below, the proposal includes a request to vary these development standards that are dimensional and/or quantitative as allowed by this section. Required off-street parking is shown in the plan set and is reviewed in Chapter 17.98 below.

17.34.40 - MINIMUM REQUIREMENTS

- A. Must connect to municipal water.
 Response: The applicant proposes extending water service to serve all dwellings in the development.
- B. Must connect to municipal sewer if service is currently within 200 feet of the site. Sites more than 200 feet from municipal sewer, may be approved to connect to an alternative disposal system provided all of the following are satisfied:
 - 1. A county septic permit is secured and a copy is provided to the city;
 - The property owner executes a waiver of remonstrance to a local improvement district and/or signs a deed restriction agreeing to complete improvements, including but not limited, to curbs, sidewalks, sanitary sewer, water, storm sewer or other improvements which directly benefit the property;

The Views PD

Page 5 of 62

- 3. The minimum size of the property is one acre or is a pre-existing buildable lot, as determined by the city;
- 4. Site consists of a buildable parcel(s) created through dividing property in the city, which is less than five acres in size. **Response:** The existing dwelling is currently served by a septic system. This system will be decommissioned in accordance with applicable regulations and the applicant will provide proof of the decommissioned system with construction documents.
- C. The location of any real improvements to the property must provide for a future street network to be developed. *Response:* A new street network will be constructed to serve each dwelling as required.
- D. Must have frontage or approved access to public streets. **Response:** Each new residence constructed in the subdivision will gain access from a public street however six lots will gain access from three separate private drives connected to a public street.

17.34.50 - ADDITIONAL REQUIREMENTS

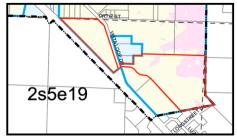
- A. Design review as specified in Chapter 17.90 is required for all uses. **Response:** The Residential Design Standard of Section 17.90.150, are applicable to residential development. The applicant is not proposing to submit for design review of the proposed multi-family structures on Lots 72 and 122 at this time.
- B. Lots with 40 feet or less of street frontage shall be accessed by a rear alley or a shared private driveway.

Response: All proposed lots contain greater than 40 feet of street frontage except six lots proposed to be accessed by private drives (Lots 41, 42, 57, 58,61 and 62), two flag lots (Lots 103,104), and all attached dwelling units (Lots 1-32) which will be accessed by a rear alley.

CHAPTER 17.56 - HILLSIDE DEVELOPMENT 17.56.00 - INTENT

The intent of this chapter is to comply with Statewide Planning Goal 7 (Natural Hazards) by minimizing seismic and landslide hazards, and soil erosion associated with development on steep or unstable slopes. Development may be permitted on potentially hazardous areas, provided that the recommendations of approved studies are implemented as conditions of building permit or land use approval.

17.56.10 - APPLICABILITY


These regulations shall apply to any parcel with slopes greater than twenty-five percent (25%) as shown on the Hillside Development Overlay District Map or with slope hazards mapped by the Department of Geology and Mineral Industries

The Views PD

Page 6 of 62

(DOGAMI). This chapter shall apply only to activities and uses that require a building, grading, tree removal and/or land use permit.

Response: As shown on the figure to the right from the City's Hillside Overlay District Map and as shown on the Existing Conditions Plan submitted with this application, a small area of the Lower Views contains slopes greater than 25 percent.

A. General. No person shall develop property in areas designated by SDC

17.56.10, without first demonstrating compliance with this chapter.

- 1. As a condition of permit issuance or land use approval, the applicant shall agree to implement the recommendations of approved studies and to allow all inspections to be conducted.
- 2. Where a bond, letter of credit or other guarantee is required, the permit shall not be issued until the bond or guarantee has been obtained and approved.

Response: A Geotechnical Report has been included with this application.

- B. Exemptions:
 - 1. An activity or use that avoids slopes of 25% or greater, DOGAMI slope hazard areas, natural drainageways and potentially hazardous analysis areas as defined in Section 17.56.30.A.

Response: As shown on the submitted plans only limited development is proposed on slopes 25 percent or greater. No development is proposed on DOGAMI slope hazard areas, natural drainageways, or hazardous analysis areas.

CHAPTER 17.60 - FLOOD AND SLOPE HAZARD (FSH) OVERLAY 17.60.10 - INTERPRETATION AND MAPPING

The Director has the ultimate responsibility for maintaining the FSH Overlay District on the City of Sandy Zoning Map, determining on-site measuring methods, and otherwise interpreting the provisions of this chapter. Technical terms used in this chapter are defined in Chapter 17.10, Definitions. This chapter does not regulate development on lots or parcels entirely outside the FSH Overlay District.

A. <u>FSH Overlay District</u>. The only areas subject to the restrictions and

prohibitions of the FSH overlay district are those indicated on the City of Sandy Zoning Map on file in the Planning Department. This chapter does not regulate lots or parcels entirely outside the FSH Overlay District.

Response: As shown on the city's Zoning Map and submitted plans, a portion of the Lower Views is encumbered by the FSH Overlay District. No development is proposed to occur within any part of this overlay.

The Views PD

Page 7 of 62

B. <u>Development Approval Required</u>. No development shall occur within the FSH overlay district without first obtaining City approval under the provisions of this chapter. The Director shall notify the Oregon Division of State Lands whenever any inventoried wetland is proposed for development, in accordance with ORS 227.350. In riverine situations, the Director shall notify adjacent communities and the State Coordinating Office prior to any alteration or relocation of a watercourse, and submit copies of such notification to the administrator.

Response: As shown on submitted plans, no portion of any lot is proposed to be platted within the FSH overlay district.

- C. <u>Applicant Responsibilities</u>. The applicant for alteration or development within the FSH overlay district shall be responsible for preparing a survey of the entire site, based on site specific field surveys or Corps of Engineers data that precisely maps and delineates the following areas:
 - The name, location and dimensions of affected streams or rivers, and the tops of their respective banks.
 Response: No rivers or streams are located on the subject property. As noted in the section above, no development is proposed within the FSH overlay district on the subject property.
 - 2. 100-year floodplain and floodway boundaries and elevations as determined by the June 17, 2008 FIS for Clackamas County and Incorporated Areas. *Response: The Lower Views contains a small wetland/drainage as shown on submitted plans.*
 - 3. The City of Sandy FSH overlay district boundary as depicted on the City of Sandy FSH Map.
 - 4. The water quality and slope setback area(s) as defined in Section 17.60.30.
 - 5. The size and location of locally significant wetlands shall be determined based on the City of Sandy Locally Significant Wetland Inventory (2002) unless modified by a wetland delineation approved by the Oregon Division of State Lands and submitted to the City. Wetland delineations that have formal concurrence from the Division of State Lands shall be valid for the period specified in that agency's administrative rules.
 - 6. Steep slope areas where the slope of the land is 25% or greater within the FSH overlay district boundary.
 - 7. The area enclosed by a continuous line, measured 25 feet horizontally, parallel to and upland from the top of a steep slope area, where the top of the steep slope is within the FSH overlay district boundary.
 - 8. Existing public rights-of-way, structures, roads and utilities.
 - 9. Natural vegetation, including trees or tree clusters and understory within the FSH Overlay District boundary.
 - 10. Existing and proposed contours at 2-foot intervals.

The Views PD

Page 8 of 62

Response: All of this information is included on submitted plans. A portion of the Lower Views is encumbered by the FSH Overlay and a wetland has been delineated on this property as well. An existing storm drainage pipe and outfall is located within the delineated wetland area that will remain. No development is proposed in the FSH Overlay as shown on submitted plans.

17.60.20 - PERMITTED USES AND ACTIVITIES

- A. <u>Restricted Development Areas</u>. Restricted development areas within the FSH overlay district as shown on the City of Sandy Zoning Map include:
 - 1. Slopes of 25% or greater that (a) encompass at least 1,000 square feet and (b) have an elevation differential of at least 10 feet.
 - 2. Protected water features, including locally significant wetlands, wetland mitigation areas approved by the Division of State Lands, and perennial streams.
 - 3. Required setback areas as defined in section 17.60.30. *Response:* As shown on submitted plans portion of the Lower Views is located within a restricted development area.
- B. <u>Permitted Uses</u>. Permitted uses within restricted development areas are limited to the following:

Response: The only uses proposed within any restricted development area are permitted uses: trail construction, removal of non-native plants, and planting native plants.

C. <u>Platting of New Lots</u>. No new lot shall be platted or approved for development that is exclusively in restricted development areas as defined in subsection 17.60.20.A.

Response: No portion of any lot is proposed to be platted within the FSH overlay or restricted development area.

17.60.30 - REQUIRED SETBACK AREAS

A. <u>Required Setbacks</u>. The required special setback(s) shall be:

- 1. 70 feet from the top of bank of Tickle Creek;
- 3. 25 feet around the edge of any mapped locally significant wetland; and
- 4. 25 feet from the top of any 25% slope break where the slope break occurs within the FSH overlay district as mapped by the city. **Response:** The Topographic Survey submitted with the application includes this information as applicable. No development is proposed within any of these areas.
- B. <u>Minimize Impacts</u>. Natural vegetation shall be preserved and enhanced and excavation minimized within required water quality setback areas. *Response:* No disturbance or development is proposed within water quality setback areas on the subject property.

The Views PD

Page 9 of 62

17.60.40 - REVIEW PROCEDURES

Review of development requests within the FSH Overlay District shall occur subject to the following procedures. Unless otherwise indicated below, the Director may approve Type I permits over the counter or following a field check. Type II and III development applications shall be reviewed to ensure consistency with Section 17.60.60-70. Section 17.60.50 special reports shall also be required, unless specifically exempted by the Director.

Response: As noted above, no development is proposed within the FSH Overlay District and no special reports have been identified by the Director.

17.60.80 - NOTIFICATION TO OTHER ENTITIES AND RECORD KEEPING

- A. Whenever a watercourse is to be altered or relocated, notification shall be sent to Clackamas County and DLCD prior to such alteration or relocation of a watercourse, and submit evidence of such notification to the Federal Insurance Administrator through appropriate notification means (i.e. submittal of a Letter of Map Revision (LOMR)), and assure that the flood carrying capacity of the altered or relocated portion of said watercourse is maintained.
- B. Base Flood Elevations may increase or decrease resulting from physical changes affecting flooding conditions. As soon as practicable, but not later than six months after the date such information becomes available, the Director shall notify the Federal Insurance Administrator of the changes by submitting technical or scientific data in accordance with Volume 44 Code of Federal Regulations Section 65.3. Such a submission is necessary so that upon confirmation of those physical changes affecting flooding conditions, risk premium rates and floodplain management requirements will be based upon current data.
- C. Notify the Federal Insurance Administrator in writing of acquisition by means of annexation, incorporation or otherwise, of additional areas of jurisdiction.
- D. Obtain and maintain the following for public inspection and make available as needed:
 - 1. Obtain and record the actual elevation (in relation to the mean sea level) of the lowest floor (including basements) of all new or substantially improved structures, and whether or not the structure contains a basement.
 - 2. For all new or substantially improved floodproofed structures:a. Verify and record the actual elevation (in relation to mean sea level), andb. Maintain the floodproofing certifications required in Section 17.60.70(F).
 - Obtain and maintain certification for flood openings when certification is required under Section 17.60.70(E)(5).
 Response: As noted above, no development is proposed within the FSH Overlay District

17.60.90 - WATER QUALITY TREATMENT FACILITIES

Tickle Creek, the Sandy River and associated natural drainage ways are vital to Sandy's recreationally based economy and to the quality of life of Sandy residents. Placement of water quality facilities shall be limited as follows:

The Views PD

Page 10 of 62

- A. The water quality facility shall not be constructed in restricted development areas, except where necessary to serve approved development within restricted development areas (e.g., a road) and where no reasonable alternative exists in buildable areas of the site.
- B. Where the approval authority determines that a more efficient and effective regional site exists within the sub-basin, the water quality facility may be constructed off-site.

Response: The proposed water quality facilities on Tract J and O are located outside the FSH overlay.

17.60.100 - DENSITY TRANSFER PROVISIONS

Residential density transfer may be approved subject to the following:

- A. Required Setback Areas. Density may be transferred from restricted development areas (i.e., steep slopes, protected water features and required setbacks) to buildable portions of the site. *Response:* As detailed in Chapter 17.30 above, the density for the site does not allow a density transfer per Chapter 17.60.
- B. Density Maximum. The maximum gross density for the buildable area of the site shall not exceed 150% of the maximum density allowed by the underlying zoning district for that buildable area. *Response:* As detailed in Chapter 17.30 above, the maximum density is based on the lesser of the two methods of calculating density. As a result, the maximum density permitted is 159. The applicant proposes increasing the density by nine units to 168 units as discussed in Chapter 17.64.
- C. Housing Types Not Permitted in Underlying Zoning District. Housing types not permitted in the underlying zoning district may only be approved through the PD (planned development) or SAP (specific area plan) process. *Response:* The applicant proposes constructing 32 single-family attached dwellings and two multi-family buildings to include 24 units each. Both of these dwelling types are not otherwise allowed in the SFR zoning district however they are through the PD approval process as discussed in Chapter 17.64 below.
- D. Transfer Area. Transfer of density may only occur within the same property and/or to properties contiguous to the primary property. The terms "primary property" identify the legal lot from which density is to be transferred to "secondary property(s)". Further development or land use action on the primary or secondary properties shall be reviewed together in the same application.

Response: As noted above the proposal is not permitted to transfer density per the provisions of Chapter 17.30.

The Views PD

Page 11 of 62

CHAPTER 17.64 - PLANNED DEVELOPMENT 17.64.00 - INTENT

The Planned Development regulations are intended to:

- A. Refine and implement village development patterns designated "V" on the Comprehensive Plan Map.
- B. Allow the relocation of zones within designated villages, provided that the overall intent of the village designation is maintained.
- C. Allow a mixture of densities between base zones within the planned development.
- D. Promote flexibility in site planning and architectural design, placement, and clustering of structures.
- E. Provide for efficient use of public facilities and energy.
- F. Encourage the conservation of natural features.
- G. Provide usable and suitable recreation facilities and public or common facilities.
- H. Allow coordination of architectural styles, building forms and relationships.
- Promote attractive and functional business environments in non-residential zones, which are compatibility with surrounding development.
 Response: The proposed Planned Development is intended to further the intent of this chapter. The proposal includes a mixture of housing types and densities; a request for variations to setbacks to promote flexibility in site planning; conservation of natural features by not platting any lots within the FSH or restricted development areas and restricting development within restricted development areas to only permitted uses (trail construction, removal and planting native plants); an array of recreational amenities for the use and enjoyment of residents of The Views; and interesting and functional building designs intended to create a high quality and diverse residential neighborhood.

17.64.10 - GENERAL PROVISIONS

- A. Combined Review. The procedures of this chapter require review of both a Conceptual Development Plan and a Detailed Development Plan. Requests may be made sequentially or for a combined review. In the event of a combined review, the Planning Commission shall forward a recommendation regarding the plans to the City Council, and the City Council shall make a final decision approving, approving with conditions or denying the application. *Response: The submitted application requests a combined review of both Conceptual and Detailed Development Plans.*
- B. Development Permit Issuance. Development permits are only issued following approval of a Detailed Development Plan. *Response: The applicant is aware of this requirement.*

17.64.20 - AREAS OF APPLICATION

Planned developments are allowed in all zones.

The Views PD

Page 12 of 62

Response: The subject property is zoned Single Family Residential Zone and a Planning Development is proposed as permitted in all zones.

17.64.30 - DEVELOPMENT STANDARDS

A. Variation from Development Code Standards Generally. The development standards of the base zone, overlay zone or planned development overlay apply unless they are superseded by the standards of this chapter, or are modified during a Planned Development review. The Planned Development and Specific Area Plan review processes allow modification of development code standards that are dimensional and/or quantitative, however a base zone's minimum density is not eligible for modification under any circumstances, including a modification under Chapter 17.66.

Response: Due to the unique physical characteristics of the site including extensive restricted development areas, the applicant is requesting several variations to Development Standards with the application. The majority of these items have been proposed in order to provide additional flexibility in designing and placing homes on the lots. The applicant believes the requested variations are the minimum necessary for a successful project.

- 1. Minimum Lot Size The SFR zone requires lots for single family dwellings to contain a minimum of 7,500 sq. ft. Because of the unique physical aspects of the subject property including large areas in the Lower restricted by the FSH Overlay and the location of existing transportation facilities (Vista Loop Drive and Highway 26) impacting the Upper Views, compliance with the minimum lot size standard is challenging and still allow the project to be financially successful. For this reason the proposal includes a variety of lots sizes. The proposed Planned Development includes four lot categories for the 88 single-family detached lots: 50 lots (3,400 - 4,999 sq. ft.), 13 lots (5,000 - 5,999 sq. ft.), 12 lots (6,000 - 7,499 sq. ft.) and 13 lots (7,500 sq. ft. and greater). The proposed single family attached lots range in size from 2,160 sq. ft. - 2,695 sq. ft. Each category of lot is intended to provide an opportunity to construct a different housing product type.
- 2. Minimum Average Lot Width (60 ft.) Lower Views Lots 1-39, 65, and 68-70. Upper Views Lots - all except Lots 73, 83, 87, 99, 100, and 121. This variation is requested to provide flexibility in the design and placement of homes. The applicant believes the unique nature of the site and amenities offered as part of the PD application warrant an extra degree of flexibility in site design and home design selection this request provides.
- 3. Interior Side Yard Setbacks The applicant proposes reducing the interior side yard setback on all lots to five feet. This variation is requested to provide greater flexibility in building design and placement. The applicant believes the unique nature of the site and amenities offered as part of the

The Views PD

Page 13 of 62

PD warrant an extra degree of flexibility in placing homes on these lots and selecting home designs.

- 4. Rear yard setbacks All lots will provide a 20 foot rear yard setback with the exception a 10 foot setback is proposed for Lots 47 - 56 abutting the public open space in the Lower Views and a 15 foot rear setbacks is proposed for Lot 84 - 86 and Lots 88 - 102 in the Upper Views. This variation is requested to provide greater flexibility in building design and placement. The applicant believes the unique nature of the site and amenities offered as part of the PD warrant an extra degree of flexibility in placing homes on these lots and selecting home designs.
- 5. Maximum Block Length Due to the unique physical characteristics of the Lower Views (steep slope, restricted development areas) and the Upper Views (Vista Loop Drive and Highway 26) compliance with the 400 foot maximum block length standard in Section 17.100.120 is not possible. For this reason the applicant is requesting a variation to this standard as part of the PD process. The specific streets segments requested included: The Views Drive from Vista Loop Drive to Bonnie Street, north side of Bonnie Street, and Knapp Street from Ortiz Street to Vista Loop. The Lower Views is contained by steep slopes and restricted development making street connectivity and block lengths impossible. Because of the location of Highway 26 and Vista Loop Drive the Upper Views street design is logical given these constraints.
- 6. Eliminate sidewalk/planter The applicant also requests approval to eliminate the requirement to construct a sidewalk and planter along the following street frontages: south side of The Views Drive from Vista Loop Drive to the alley and the majority of the Highway 26 frontage. The details and reasons for this request is explained in Chapter 17.84 below.
- B. Minimum Site Area. A planned development may be established on any parcel of land, or on more than one parcel of land if those parcels are abutting. *Response:* The subject property contains two abutting parcels totaling 32.87 acres in compliance with this section.

17.64.40 - DENSITY CALCULATION

The maximum number of allowable dwelling units shall be the sum of densities allowed by the underlying zone(s) unless an increase is authorized as otherwise allowed in this chapter.

A. Residential Zones. The calculation is based on a determination of gross site area and the acreage of any restricted development areas (as defined by Chapter 17.60). A specific determination of density shall be made pursuant to Chapter 17.30. When a PD is located in more than one "R" zone, the total

The Views PD

Page 14 of 62

allowed number of units is the sum of the number of units allowed by each zone. The dwelling units may be placed without regard to zone boundaries. **Response:** The subject property contains only property zoned Single Family Residential. As reviewed in Chapter 17.30 above, the density range for the property is a minimum of 63 units and a maximum of 159 units. The applicant to increase the maximum density by nine units to 168 units.

C. Increase in Density. An increase in density of up to 25% of the number of dwelling units may be permitted upon a finding that the Planned Development is outstanding in planned land use and design, and provides exceptional advantages in living conditions and amenities not found in similar developments constructed under regular zoning. Response: As noted above the maximum density allowed by the SFR and Chapter 17.30 is 159 units and the applicant proposes 168 units. The applicant proposes increasing density as permitted by this section by nine units, an increase of six percent. The applicant believes the proposed density increase is justified given the unique nature of the property and the amenities offered with this proposal. As detailed on submitted plans, 19.5 percent (6.42 acres) of the 32.87 acre property is contained within restricted development areas and the Planned Development proposal includes the designation of 36.3 percent (11.92 acres) of the site as open space. In addition, no part of any lot will be platted within the FSH or a restricted development area. Other features of the proposal include a mix of housing types and densities; a request to vary development standards to promote flexibility in site planning; an innovative townhouse design exceeding the residential design standards including a two car rear-loaded detached garage and open courtyard; and constructing an array of recreational amenities for the use and enjoyment of the residents of the Planned Development. As a package the applicant believes there is sufficient justification to find that the Planned Development is outstanding in planned land use and design and provides exceptional advantages in living conditions and amenities not found in similar developments constructed in the SFR zone in order to justify this request.

D. Density Transfer. A transfer of density may be allowed by the Planning Commission when consistent with the review criteria of Chapter 17.64.100 C. Density may be transferred across zone district boundaries. *Response: The subject property is located in the SFR zoning district only and a density transfer is not requested.*

17.64.50 - OPEN SPACE AND PARKLAND

All Planned Developments shall provide a minimum percentage of the total area in open space as specified below. In addition to required open space, all Planned Developments that include residential housing shall also provide a required parkland dedication as specified in Chapter 17.86.

A. Residential Zones. A minimum of 25% of the total site area.

The Views PD

Page 15 of 62

Response: This section requires the Planned Development proposal to provide 25 percent of the total site area in open space. The subject property contains 32.87 acres requiring 8.22 acres of open space. As shown on submitted plans, the proposal includes 11.92 acres of open space with 10.25 acres in the Lower Views (8.22 acres within FSH Overlay restricted development areas, 1.9 acres of active open space, and 0.13 acres of additional open space) and 1.67 acres in the Upper Views. The proposed 11.92 acres of open space represents 36 percent of the total site area in compliance with this section.

- B. Commercial or Industrial Zones. A minimum of 15% of the total tract area. *Response:* This section is not applicable.
- C. Payment in Lieu of Dedication. At the city's discretion only, the city may accept payment of a fee in lieu of land dedication. The amount of the fee in lieu of land dedication (in dollars per acre) shall set by City Council Resolution or determined by a current land appraisal. The City may also allow open space land donation requirements to be fulfilled on another parcel. *Response: The applicant does not propose dedicating any open spaces areas to the city, instead these areas will be held as private open space to be owned and maintained by a homeowner's association.*
- D. The following factors shall be used in the choice of whether to accept land or cash in lieu:
 - a. The topography, geology, access to, parcel size, and location of land to be dedicated;
 - b. Potential adverse/beneficial effects on environmentally sensitive areas;
 - c. Compatibility with the Parks Master Plan, Public Facilities element of the Comprehensive Plan, and the City of Sandy Capital Improvements Program in effect at the time of dedication;
 - d. Availability of previously acquired property; and
 - e. The feasibility of dedication.

Response: At noted above, the applicant does not propose dedicating any park or open spaces areas to the city.

- E. The types of open space that may be provided are as follows:
 - a. Natural Areas: areas of undisturbed vegetation, steep slopes, stream corridors, wetlands, wildlife habitat areas or areas replanted with native vegetation after construction.
 - b. Greenways: linear green belts linking residential areas with other open space areas. These greenways may contain bicycle paths or footpaths. Connecting greenways between residences and recreational areas are encouraged.

Response: As shown on submitted plans, the proposed 11.92 acres of open space includes 8.22 acres within FSH Overlay restricted development areas.

The Views PD

Page 16 of 62

F. Dedication Procedures. Open space as part of Planned Development application shall be dedicated according to the requirements of Section 17.86.50. *Response:* The applicant does not propose dedicating any open space to the City of Sandy. Instead the applicant proposes establishing a homeowner's association to own and maintain these areas as permitted by Section 17.86.50.

17.64.60 - ALLOWED USES

A. Residential Districts:

- 1. Uses permitted in the underlying district
- 2. Housing types may include, but are not limited to, single family dwellings, duplexes, row houses, clustered dwelling units, multiple family dwellings, or manufactured dwellings.
- 3. Related commercial uses as part of the development
- 4. Related community service uses as part of the development
- 5. Accessory buildings and uses

Response: The proposed PD includes 88 lots to accommodate single-family detached dwellings, 32 lots for single-family attached dwellings, and two lots to allow construction of up to 48 multi-family dwellings in the future. A variety dwelling types have been proposed to provide diverse housing choices to accommodate a range of income levels.

17.64.70 - OFFICIAL ZONING MAP

When a Planned Development project has been approved, the official Zoning Map shall be amended by ordinance to denote the new "PD" Planned Development overlay designation. Such an amendment is a ministerial act, and Chapter 17.26, Zoning District Amendments, shall not apply when the map is amended to denote a PD overlay.

Response: The applicant understands the City will complete a zone change as a ministerial act to denote a "PD", Planned Development Overlay designation on the property during the approval process. Since no parkland is proposed to be dedicated to the city a Zoning District Amendment is not required with this application.

17.64.80 - CONCEPTUAL DEVELOPMENT PLAN PROCEDURE

- A. The Planning Commission shall review the Conceptual Development Plan at a public hearing and forward a recommendation for approval, approval with modifications, or denial of the application to the City Council for consideration. *Response:* The applicant is aware of the review process for this application.
- B. The City Council shall review the recommendation at a public hearing and take action based on the Planning Commission recommendation. The City Council may approve, approve with modifications, or deny the application. Approval of the Conceptual Development Plan shall be limited to the tentative acceptability of the land uses proposed and their interrelationships and shall

The Views PD

Page 17 of 62

not be construed to endorse precise locations of uses nor engineering feasibility.

Response: The applicant requests the proposal be approved as presented.

C. If an affirmative decision is made, the City Council shall adopt findings that specify how the application has or has not complied with this chapter's standards, as well as any other relevant standards, and approve the request by an ordinance that amends the Zoning Map.

Response: The applicant is aware the Council will need to adopt findings stating how the proposal complies with relevant code standards and approving the proposal.

D. Within 12 months of approval of the Conceptual Development Plan, the applicant shall file a Detailed Development Plan. The Detailed Development Plan shall incorporate any modification or condition required by approval of the Conceptual Development Plan.

Response: The applicant has submitted an application for a combined review of both Conceptual and Detailed Development Plans.

17.64.90 - CONCEPTUAL DEVELOPMENT PLAN APPLICATION

A Conceptual Development Plan is intended as a general guide to land use, transportation and utility placement within a planned development. A Conceptual Development Plan application requires significantly less detail than a Detailed Development Plan.

A. Application Requirements. An application for Conceptual Development Plan review shall be made on forms provided by the Director. The person filing the application must be the owner or a person having an interest in the land to be included in the Planned Development. If the Planned Development is to include land in more than one ownership, the application must be submitted jointly by all of the owners or persons having an interest in each of the separately owned properties to be included.

The application shall be accompanied by the following:

- 20 copies of the required narrative.
- 20 sets of full-scaled black line drawings of the conceptual development plan graphic(s) drawn at a typical engineering scale.
- One set of plans reduced to 8 1/2" by 11" sheets of paper. Graphics and related names/numbers must be legible on this sheet size.
- List and mailing labels of all affected property owners within 300 feet.
- List of all proposed deviations from City development standards.

Response: All of the items required by this section are included with the application package.

B. Additional Submittals. A Conceptual Development Plan shall include the following information where applicable:

The Views PD

Page 18 of 62

1. Existing land use map (typically a topographic map that extends at least 300 feet beyond the site). The map shall include building footprints and make a distinction between single-family, multi-family, commercial and industrial uses, as well as other significant features such as roads, drainage ways, parks and schools.

Response: The proposal includes a future street plan containing the items in this section.

- 2. Site plan(s) and other graphics drawn to scale. The site plan(s) shall contain the following:
 - a) Title sheet, date, north arrow, and legend
 - b) Existing site conditions including contours at 10-foot intervals, watercourses, floodplains and natural features.
 - c) Boundary of the proposed Planned Development and any interior boundaries related to proposed development phases or land divisions.
 - d) General location of existing and proposed land uses, including residential densities and non-residential building types. An indication of approximate building envelopes may be required where necessary to evaluate building relationships.
 - e) General location and size of areas to be conveyed, dedicated, or reserved as common open spaces, public parks, recreational areas, school sites, and similar public and semi-public uses.
 - f) Existing and proposed general circulation system including collector and arterial streets and major points of access to public rights-of-way and adjacent property. Notations of proposed ownership (public or private) should be included where appropriate.
 - g) General pedestrian and bicycle circulation system, including its interrelationship with the motor vehicular system and indicating proposed treatments at existing or potential points of conflict.
 - h) Existing and proposed utility systems including sanitary sewer, water, storm sewer, and drainage ways.
 - Sufficient information on land areas within at least 300 ft. of the subject property to indicate their relationships with the proposed development including land uses, lot lines, circulation systems (including potential for connectivity of streets and pedestrian ways), public facilities, and unique natural features of the landscape.

The Director may waive any of the above requirements or require additional information when deemed necessary to properly evaluate the proposed Planned Development.

Response: All of the items in this section have been submitted as detailed in the pre-application conference for this project.

C. Narrative Requirements for a Conceptual Development Plan. A written statement shall be provided, including the following information:

The Views PD

Page 19 of 62

- 1. Statement of objectives to be achieved by the Planned Development. This statement should indicate:
 - A description of the character of the proposed development.
 - The rationale behind the design assumptions and choices made.
 - The rationale behind any design change to an existing Village and reasons why the proposal is superior.
 - A discussion indicating how the application meets the review criteria in 17.64.100 below.

Response: The submitted narrative describes the character of the proposed development, the rationale for the proposed design, and discusses how the proposal complies with the review criteria in Section 17.64.100 below. The subject property is not located within a Village designation.

2. Statement of intentions with regard to future sale or lease of all or portions of the Planned Development.

Response: Single family dwellings will be constructed on all lots by the applicant and offered for sale with the exception that two lots are proposed to contain multi-family structures to offer units for rent.

- 3. Quantitative data for the following, where appropriate:
 - Total number and type of dwelling units
 - Parcel size(s)
 - Proposed lot coverage of buildings and structures where known
 - Gross densities per acre
 - Total amount of open space (lands not designated for buildings or vehicle parking and maneuvering areas)
 - Total amount of nonresidential construction

Response: The details of this section are shown in table below.

Total number and type of dwelling units	88 - single family detached32 - single family attached48 - multi-family on two lots
Parcel size(s)	Tax Lot 200 - 23.318 acres Tax Lot 500 - 9.552 acres Total Site - 32.87 acres (1,431,813 sq. ft.)
Proposed lot coverage of buildings and structures where known	Unrestricred site area = 21.01 acres
Gross densities per acre	5.11 units/acre (168 units/32.87 acres)
Total amount of open space (lands not designated for buildings or vehicle parking and maneuvering areas)	11.92 acres
Total amount of nonresidential construction	None

The Views PD

Page 20 of 62

4. General statement of intentions concerning timing, responsibilities, and assurances for all public and non-public improvements, such as parks, open space improvements, pedestrian connections, irrigation, private roads and drives, landscape, and maintenance. *Response:* The applicant intends to complete necessary improvements following land use approval. The applicant hopes to begin constructing

public improvements in the Spring/Summer 2021 and complete improvement in the Fall 2021.

5. Description of how the Planned Development contributes to the completion and connectivity of the pedestrian and vehicular circulation system. *Response:* The location of the Planned Development does not provide a significant contribution towards the completion and connectivity of a pedestrian and vehicular circulation system. Primary contributing features include new sidewalks along a portion of Vista Loop Drive and sidewalks along the local street in the Upper Views to connect to a future sidewalk along Highway 26 and trails within proceed open space areas.

17.64.100 - CONCEPTUAL DEVELOPMENT PLAN REVIEW PROCESS

- A. Acceptance of Application. The Director shall review the application in accordance with Chapter 17.18 Processing Applications. *Response:* The Director will need to process the application in conformance with the requirements of Chapter 17.18.
- B. Staff Evaluation. The Director shall prepare a report that evaluates whether the Conceptual Development Plan complies with the review criteria below. The report shall also include a recommendation for approval or denial and, if needed, a list of conditions for the Planning Commission to consider if an approval is granted.

Response: The Director will prepare a staff report for the Planning Commission and Council to consider.

- C. Review Criteria for Conceptual Development Plan. Requests for approval of a Conceptual Development Plan shall be reviewed to:
 - 1. Assure consistency with the Intent of this chapter; *Response:* The intent statements in Chapter 17.64 relevant to the proposed PD include:
 - D. Allow a mixture of densities between base zones within the planned development.
 - E. Promote flexibility in site planning and architectural design, placement, and clustering of structures.
 - F. Provide for efficient use of public facilities and energy.
 - G. Encourage the conservation of natural features.
 - H. Provide usable and suitable recreation facilities and public or common facilities.

The Views PD

Page 21 of 62

1. Allow coordination of architectural styles, building forms and relationships.

The proposal includes lots proposed to contain three housing types: 88 single-family detached, 32 single-family attached dwellings, and two lots to contain 48 multi-family structures. As shown on the submitted architectural renderings, the proposal includes a range of building designs as well. The proposed townhouse design in unique to the city in that all of these homes includes a rear-loaded detached two-car garage and a courtyard between the garage and the back of the home.

The proposed PD encourages the conservation of natural features by exceeding the 25 percent open space requirement. The proposal includes 36 percent (11.92 acres) of the total site area as open space, including 8.22 of within the FSH Overlay. All of these areas will be held in perpetuity and maintained by a homeowners association.

The proposal also includes 1,490 linear feet of trails located within these natural open space areas. Additional amenities tot lots, play structures, dog park, two half-court basketball courts, and a Mt. Hood viewing plaza.

- 2. Assure compliance with the General Provisions, Development Standards and Application provisions of this chapter; and **Response**: As reviewed in this document the proposal generally complies with all provisions and development standards. As detailed in this document the applicant proposes several variations to these standards as permitted by Section 17.64.30(A). The proposed variations are justified given the unique physical characteristics of the site and the amenities provided.
- 3. When located in a Village, assure consistency with the appropriate Comprehensive Plan policies for Village designations. *Response: The proposal is not located within a designated Village.*

17.64.110 - DETAILED DEVELOPMENT PLAN PROCEDURE

- A. If the Detailed Development Plan will involve the subdivision of land, the applicant shall prepare and submit a tentative subdivision plat along with the Detailed Development Plan to be considered at the same time. **Response:** The proposed Detailed Development Plan also involves a subdivision application. All materials required for this application have been submitted.
- B. The Planning Commission shall review the Detailed Development Plan at a public hearing and may approve, approve with modifications or deny the application.

Response: The applicant understands the proposal will be reviewed by both the Planning Commission and City Council because the application a Combined

The Views PD

Page 22 of 62

review application of both the Conceptual and Detailed Development Plans has been requested.

17.64.120 - DETAILED DEVELOPMENT PLAN APPLICATION

A Detailed Development Plan is intended as a master plan for land use, transportation and utility placement within a planned development. A Detailed Development Plan application follows an approved Conceptual Development Plan or both applications may be submitted simultaneously. Where land divisions are proposed, the Detailed Development Plan shall be combined with a Tentative Subdivision Plat application according the requirements of Chapter 17.100. An application for a Detailed Development Plan shall be reviewed in accordance with the following procedures:

Response: The proposal includes sufficient detail to address the requirements of this section.

- A. Application Requirements. An application filed for a Detailed Development Plan shall follow the requirements specified for a Conceptual Development Plan as listed above and shall also include the following:
 - 1. Graphic Requirements
 - a) Topographic contours at two-foot intervals for slopes under 15 percent and at five-foot intervals for slopes at or greater than 15 percent. A grading plan is required to show how runoff or surface water from the subject property will be managed, including ultimate disposal of surface waters.

Response: Two foot contour intervals are provided over the entire site as required as shown on submitted plans.

 b) Location and floor area of existing and proposed structures and other improvements, including maximum heights, building types, gross density per acre (for residential developments).

Response: The plan set shows proposed building setbacks for all lots. The other information required by this section is included in this narrative and as shown in the architectural plan booklet submitted with the application package.

- c) Detailed utility plan indicating how sanitary sewer, water, storm sewer, and drainage systems will function.
 Response: A detailed utility plan is included for both the Lower and Upper Views areas.
- d) Location of existing utilities, including existing fire hydrants, overhead utility lines in the abutting right of way, easements and walkways. *Response:* All existing utilities are shown as required.

The Views PD

Page 23 of 62

e) Typical elevations of buildings and structures (which may be submitted on additional sheets) sufficient to indicate the architectural intent and character of the proposed development.
 Response: Architectural renderings are provided on both a full sheet and in a booklet format. These drawings show the general design elements for a number of homes proposed for the site including details of the proposed townhome units.

f) Landscape plan drawn to scale showing location of existing trees and vegetation proposed to be removed from or to be retained on the site, location and design of proposed landscaped areas, quantities, varieties, quantities, and sizes of trees and plant materials to be planted, other landscape features including walks and fences, and irrigation systems required to maintain plant materials. *Response: A Landscape Plan has been provided showing concept planning for all proposed site amenities and plantings.*

- g) Circulation plan showing street, driveway, parking area, service area, loading area, pedestrian way and bikeway improvements, their dimensions and connectivity to surrounding parcels, existing and proposed streets.
 Response: The submitted Preliminary Plat sheets and the Future Street Plan include this information.
- h) Location and dimensions of all areas to be conveyed, dedicated, or reserved as common open spaces, public parks, recreational areas, school sites, and similar public and semipublic areas.
 Response: The only areas proposed to be conveyed to the city are two public stormwater facilities and all public rights-of-way. All open space areas are proposed to be conveyed to and maintained by a homeowner's association established for the project as shown on submitted plans.
- i) Exterior lighting plan indicating the location, size, height, typical design, material, and method and direction of illumination.
 Response: The project will include street lighting. The requirements of this section will be provided with construction plans.
- j) Concurrent Design Review graphic elements. **Response:** The application package includes architectural renderings and landscape design graphics detailing amenities proposed with this development.
- B. Narrative Requirements for a Detailed Development Plan. In addition to the narrative requirements specified for a Conceptual Development Plan, the Detailed Development Plan narrative shall also include:

The Views PD

Page 24 of 62

1. Proposals for setbacks or building envelopes, lot areas where land division is anticipated, and number of parking spaces to be provided (in ratio to gross floor area or number of units)

Response: All of the items required by this section are included with the application package as shown on the Preliminary Plats and Building Setbacks and Parking Analysis sheets.

2. Detailed statement outlining timing, responsibilities, and assurances for all public and non-public improvements such as irrigation, private roads and drives, landscape, and maintenance.

Response: All open space and landscape areas will be commonly owned and maintain by a Homeowner's Association. Individual homeowners will be responsible for the lot area abutting adjacent public streets.

3. Statement addressing compatibility of proposed development to adjacent land uses relating to such items as architectural character, building type, and height of proposed structures.

Response: The Lower Views shares a common boundary with a commercial business (Johnson RV), a large lot residential property in the city limits, and vacant properties outside the UGB. The Upper Views shares a common boundary with large lot residential and vacant properties and a multi-family development all within the city limits. The proposal is generally compatible with these uses in terms of architectural character, building type, and height of proposed structures.

- 4. Statement describing project phasing, if proposed. Phases shall be:
 - a) Substantially and functionally self-contained and self-sustaining with regard to access, parking, utilities, open spaces, and similar physical features; capable of substantial occupancy, operation, and maintenance upon completion of construction and development.
 Response: The applicant has not determined if the Lower Views and Upper Views will be constructed in a single phase or two separate phases. The applicant prefers having the flexibility of developing and platting the Upper and Lower Views as separate phases if it is deemed necessary based on construction timing and economic factors. Each development site is generally independent of the other and should have no problem being developed and platted separately.
 - b) Properly related to other services of the community as a whole and to those facilities and services yet to be provided.
 Response: The location and configuration of the Lower and Upper Views require the extension of sanitary sewer and water service independent of the other phase.
 - c) Provided with such temporary or permanent transitional features, buffers, or protective areas as may be required to prevent damage or

The Views PD

Page 25 of 62

detriment to any completed phases and to adjoining properties not in the Planned Development.

Response: The location of the Lower and Upper Views properties are separate and independent of each other and can be developed without any transitional features, buffer, or protective areas to prevent damage to the other phase.

5. Statement of "substantial compliance" with the Conceptual Development Plan. *Response:* The applicant has requested a Combined Review of both the Conceptual and Detailed Development Plans.

17.64.140 - EFFECTIVE PERIOD OF APPROVAL

A. Conceptual Development Plan. Approval of a Conceptual Development Plan shall be valid for a 12-month period from the date of approval, with possible six-month extension(s) when requested in writing and granted by the Director for good cause.

Response: The applicant is aware of the timeline stated in this section. The proposal includes a combined review of both the Conceptual and Detailed Development Plans.

- B. Detailed Development Plan.
- 1. Approval of a Detailed Development Plan shall be valid for a 24-month period from the date of approval, with possible six-month extension(s) when requested in writing and granted by the Director for good cause. **Response:** The applicant is aware of the timeline stated in this section.
- 2. When a Detailed Development Plan is submitted and approved for a single phase, 24-month periods are allowed for submission of each subsequent phase. If the applicant has not begun construction within this time frame, all approvals shall expire.

Response: The applicant is aware of the timeline stated in this section.

- 3. When shown that conditions have not changed, the Commission may extend the approval for two additional years at its discretion and without a public hearing. *Response: The applicant is aware of this section.*
- 4. Total elapsed time for submission of Detailed Plans for all phases of a Planned Development shall not exceed ten years from the date of Conceptual Development Plan approval (or the initial Detailed Development Plan approval in the case of a concurrent application), including extensions. **Response:** The applicant is aware of the timeline stated in this section.

The Views PD

Page 26 of 62

CHAPTER 17.80 - ADDITIONAL SETBACKS ON COLLECTOR AND ARTERIAL STREETS

17.80.00 - INTENT

The requirement of additional special setbacks for development on arterial or collector is intended to provide better light, air and vision on more heavily traveled streets. The additional setback, on substandard streets, will protect collector and arterial streets and permit the eventual widening of streets. **Response:** Vista Loop Drive is identified in the City's Transportation System Plan as a collector street. Highway 26 is a major arterial.

17.80.10 - APPLICABLITY

These regulations apply to all collector and arterial streets as identified in the latest adopted Sandy Transportation System Plan (TSP). The Central Business District (C-1) is exempt from Chapter 17.80 regulations.

Response: Vista Loop Drive is identified in the City's Transportation System Plan as a collector street. Highway 26 is a major arterial.

17.80.20 - SPECIFIC SETBACKS

Any structure located on streets listed above or identified in the Transportation System Plan as arterials or collectors shall have a minimum setback of 20 feet measured from the property line. This applies to applicable front, rear and side yards.

Response: All structures adjacent to Vista Loop Drive and Highway 26 will be setback at least 20 feet from the property line abutting these streets.

CHAPTER 17.82 - SPECIAL SETBACKS ON TRANSIT STREETS 17.82.00 - INTENT

The intent is to provide for convenient, direct, and accessible pedestrian access to and from public sidewalks and transit facilities; provide a safe, pleasant and enjoyable pedestrian experience by connecting activities within a structure to the adjacent sidewalk and/or transit street; and, promote the use of pedestrian, bicycle, and transit modes of transportation.

17.82.10 - APPLICABILITY

This chapter applies to all residential development located adjacent to a transit street. A transit street is defined as any street designated as a collector or arterial, unless otherwise designated in the Transit System Plan.

Response: The Upper Views is located adjacent to Highway 26, a major arterial and Vista Loop Drive is designation a collector in the City's Transportation System Plan.

17.82.20 - BUILDING ORIENTATION

A. All residential dwellings shall have their primary entrances oriented toward a transit street rather than a parking area, or if not adjacent to a transit street, toward a public right-of-way or private walkway which leads to a transit street.

The Views PD

Page 27 of 62

Response: The lot for the multi-family structure in the Upper Views is proposed to be located adjacent to Vista Loop Drive and 20 single family residences are proposed adjacent to Highway 26. Although the details of the apartment design has not been submitted with this application, the applicant anticipates providing entrances oriented to Vista Loop Drive on this structure. Because a substantial grade separation exists between the subject property and Highway 26 over a majority of the property, the applicant does not propose orienting these structures towards the highway but rather orienting these homes towards the internal street. The applicant proposes constructing a decorative sound reducing wall along the back of these homes to soften the noise impact from this facility as shown on the Landscape Concept Plan.

- B. Dwellings shall have a primary entrance connecting directly between the street and building interior. A clearly marked, convenient, safe and lighted pedestrian route shall be provided to the entrance, from the transit street. The pedestrian route shall consist of materials such as concrete, asphalt, stone, brick, permeable pavers, or other materials as approved by the Director. The pedestrian path shall be permanently affixed to the ground with gravel subsurface or a comparable subsurface as approved by the Director. **Response:** As noted in Subsection A above, only the proposed future apartment building will be located along and oriented towards Vista Loop Drive. The details of this design will be reviewed during a subsequent design review application.
- C. Primary dwelling entrances shall be architecturally emphasized and visible from the street and shall include a covered porch at least 5 feet in depth. *Response:* The details of the design for the proposed apartment building will be determined during a subsequent design review application for this structure.
- D. If the site has frontage on more than one transit street, the dwelling shall provide one main entrance oriented to a transit street or to a corner where two transit streets intersect.

Response: The Upper Views portion of the property technically contains frontage on two transit streets (Vista Loop Drive and Highway 26). Due to the grade separation between the property and Highway 26 and speeds along this road, only the proposed apartment building adjacent to Vista Loop Drive will be oriented to this street. The details of this design will be included with a future design review application.

CHAPTER 17.84 - IMPROVEMENTS REQUIRED WITH DEVELOPMENT 17.84.20 - TIMING OF IMPROVEMENTS

A. All improvements required by the standards in this chapter shall be installed concurrently with development, as follows:

The Views PD

Page 28 of 62

1. Where a land division is proposed, each proposed lot shall have required public and franchise utility improvements installed or financially guaranteed in accordance with the provisions of Chapter 17 prior to approval of the final plat. *Response:* All lots in the proposed development will install public and

franchise utility improvements or financially guaranteed these improvements prior to final plat approval.

2. Where a land division is not proposed, the site shall have required public and franchise utility improvements installed or financially guaranteed in accordance with the provisions of Chapter 17 prior to temporary or final occupancy of structures.

Response: This section is not applicable because a land division is proposed.

B. Where specific approval for a phasing plan has been granted for a planned development and/or subdivision, improvements may similarly be phased in accordance with that plan.

Response: The applicant requests the flexibility to construct the Lower Views and Upper Views as two separate phases if it deemed necessary or desirable.

17.84.30 - PEDESTRIAN AND BICYCLIST REQUIREMENTS

- A. Sidewalks shall be required along both sides of all arterial, collector, and local streets, as follows:
 - 1. Sidewalks shall be a minimum of 5 ft. wide on local streets. The sidewalks shall be separated from curbs by a tree planting area that provides separation between sidewalk and curb, unless modified in accordance with Subsection 3 below.

Response: All sidewalks on the internal streets in the Upper Views are proposed to be five feet wide separated from curbs by a landscape strip as required. All sidewalks in the Lower Views are also proposed to be five feet wide with the exception a six-foot sidewalk is proposed on the North side of The Views entrance road from Vista Loop Drive to the proposed alley. This sidewalk is designed to connect to a six-foot meandering sidewalk constructed in front of the proposed row homes. A Planned Development variation as discussed in Section 17.64.30 has been proposed to modify the typical street section by shifting the road alignment to southern edge of the right-of-way in order to allow for the construction of a meandering six foot walkway in this location. The applicant is proposing this design because he believes it will create a more aesthetically pleasing pedestrian experience for residents of The Views to walk between the upper and lower parts of the development. This design is also increases the area on the north side of this road to plant additional landscape materials, further enhancing this design. The applicant has also proposed the Homeowner's Association established for the development be responsible for maintaining this area because as the entrance to the Lower

The Views PD

Page 29 of 62

Views he is concerned maintenance of a planter strip along the south side of this road would not receive the same level of care he prefers.

2. Sidewalks along arterial and collector streets shall be separated from curbs with a planting area, except as necessary to continue an existing curb-tight sidewalk. The planting area shall be landscaped with trees and plant materials approved by the City. The sidewalks shall be a minimum of 6 ft. wide.

Response: As shown on submitted plans all sidewalks adjacent to Vista Loop Drive are proposed to be six-feet wide. This sidewalk is proposed to meander along the road rather than be parallel to this road as is typical. The applicant does not propose constructing a six foot sidewalk along the majority of the Highway 26 frontage because an internal street with sidewalks is proposed to be constructed parallel the highway and he feels a facility along the highway would be redundant. In addition, the applicant believes a sidewalk in this location is unnecessary given the location of the subject property and a sidewalk along the highway is unsafe and would be unpleasant for pedestrians to use. Instead, the applicant proposes constructing a sidewalk connection off the end of the cul-de-sac to the highway right-of-way to facilitate a connection to a sidewalk constructed on the property west if the city chooses to require this facility with development of this property in the future. The applicant believes this proposal is superior to requiring construction of a sidewalk either at the highway grade or at the top of the bank and along the back of the lots abutting Highway 26.

- 3. Sidewalk improvements shall be made according to city standards, unless the city determines that the public benefit in the particular case does not warrant imposing a severe adverse impact to a natural or other significant feature such as requiring removal of a mature tree, requiring undue grading, or requiring modification to an existing building. Any exceptions to the standards shall generally be in the following order.
 - a) Narrow landscape strips
 - b) Narrow sidewalk or portion of sidewalk to no less than 4 feet in width
 - c) Eliminate landscape strips
 - d) Narrow on-street improvements by eliminating on-street parking
 - e) Eliminate sidewalks

Response: As discussed above, the applicant proposes constructing a sidewalk and planter strip on the North side of The View Drive only. The right-of-way in this area is proposed to be narrowed and shifted to the southern edge of the right-of-way to allow for the construction of a sixfoot meandering sidewalk on the North side only. This facility will be contained within a widened private tract maintained by the homeowners association. The purpose of this facility is to create a more appealing and pleasant pedestrian experience for residents and visitors of The Views to travel between the Upper and Lower Views.

The Views PD

Page 30 of 62

In addition as noted above, the applicant does not propose constructing a sidewalk along Highway 26 but instead this facility is proposed to be located on the internal street constructed in the Upper Views parallel to the highway.

- 4. The timing of the installation of sidewalks shall be as follows:
 - a) Sidewalks and planted areas along arterial and collector streets shall be installed with street improvements, or with development of the site if street improvements are deferred.
 - b) Sidewalks along local streets shall be installed in conjunction with development of the site, generally with building permits, except as noted in (c) below.
 - c) Where sidewalks on local streets abut common areas, drainageways, or other publicly owned or semi-publicly owned areas, the sidewalks and planted areas shall be installed with street improvements. **Response:** The applicant intends constructing all sidewalk improvements as required by this section. The applicant is open to the city deciding which of these improvements will need to be completed prior to final plat approval. Sidewalks along the local streets will be constructed at the time of home construction.
- B. Safe and convenient pedestrian and bicyclist facilities that strive to minimize travel distance to the extent practicable shall be provided in conjunction with new development within and between new subdivisions, planned developments, commercial developments, industrial areas, residential areas, public transit stops, school transit stops, and neighborhood activity centers such as schools and parks, as follows:
 - 1. For the purposes of this section, "safe and convenient" means pedestrian and bicyclist facilities that: are reasonably free from hazards which would interfere with or discourage travel for short trips; provide a direct route of travel between destinations; and meet the travel needs of pedestrians and bicyclists considering destination and length of trip.

Response: The majority of bicycle and pedestrian facilities are located along streets. The Upper Views also includes a widened mid-block sidewalk providing a connection between the sidewalk along Vista Loop and Knapp Street. All facilities are intended to be "safe and convenient" to encourage pedestrian use.

2. To meet the intent of "B" above, right-of-ways connecting cul-de-sacs or passing through unusually long or oddly shaped blocks shall be a minimum of 15 ft. wide with 8 feet of pavement.

Response: The proposed facility specified above will require a minimum 15 foot wide easement and construction of an eight-foot wide paved sidewalk or as required by the city.

The Views PD

Page 31 of 62

- 3. 12 feet wide pathways shall be provided in areas with high bicycle volumes or multiple use by bicyclists, pedestrians, and joggers. *Response:* There are no high volume pathways in this development.
- 4. Pathways and sidewalks shall be encouraged in new developments by clustering buildings or constructing convenient pedestrian ways. Pedestrian walkways shall be provided in accordance with the following standards:
 - a) The pedestrian circulation system shall be at least five feet in width and shall connect the sidewalk on each abutting street to the main entrance of the primary structure on the site to minimize out of direction pedestrian travel.
 - b) Walkways at least five feet in width shall be provided to connect the pedestrian circulation system with existing or planned pedestrian facilities which abut the site but are not adjacent to the streets abutting the site.
 - c) Walkways shall be as direct as possible and avoid unnecessary meandering.
 Response: The requirements of this section have been satisfied.

Response: The requirements of this section have been satisfied with the applicant's proposal.

- d) Walkway/driveway crossings shall be minimized. Internal parking lot design shall maintain ease of access for pedestrians from abutting streets, pedestrian facilities, and transit stops.
- e) With the exception of walkway/driveway crossings, walkways shall be separated from vehicle parking or vehicle maneuvering areas by grade, different paving material, painted crosshatching or landscaping. They shall be constructed in accordance with the sidewalk standards adopted by the City. (This provision does not require a separated walkway system to collect drivers and passengers from cars that have parked on site unless an unusual parking lot hazard exists).
- f) Pedestrians amenities such as covered walk-ways, awnings, visual corridors and benches will be encouraged. For every two benches provided, the minimum parking requirements will be reduced by one, up to a maximum of four benches per site. Benches shall have direct access to the circulation system.

Response: The majority of the requirements of these sections are not applicable to the proposed subdivision. A street crossing feature on Bonnie Street is proposed to connect the viewpoint plaza with the sidewalk on the West side of this street.

C. Where a development site is traversed by or adjacent to a future trail linkage identified within the Transportation System Plan, improvement of the trail linkage shall occur concurrent with development. Dedication of the trail to the City shall be provided in accordance with 17.84.80. *Response:* No trails are identified in the City's Transportation System Plan are located on the subject property.

The Views PD

Page 32 of 62

- D. To provide for orderly development of an effective pedestrian network, pedestrian facilities installed concurrent with development of a site shall be extended through the site to the edge of adjacent property(ies).
 Response: All sidewalks will be extended to the edge of the subject property as required.
- E. To ensure improved access between a development site and an existing developed facility such as a commercial center, school, park, or trail system, the Planning Commission or Director may require off-site pedestrian facility improvements concurrent with development.

Response: No off-site pedestrian improvements have been identified.

17.84.40 - TRANSIT AND SCHOOL BUS TRANSIT REQUIREMENTS

A. Development sites located along existing or planned transit routes shall, where appropriate, incorporate bus pull-outs and/or shelters into the site design. These improvements shall be installed in accordance with the guidelines and standards of the transit agency. School bus pull-outs and/or shelters may also be required, where appropriate, as a condition of approval for a residential development of greater than 50 dwelling units where a school bus pick-up point is anticipated to serve a large number of children.

Response: The proposal includes greater than 50 dwelling units. During the pre-application conference the city Transit Manager requested a transit amenity be constructed along Vista Loop Drive. This facility will be shown with construction plans.

- B. New developments at or near existing or planned transit or school bus transit stops shall design development sites to provide safe, convenient access to the transit system, as follows:
 - 1. Commercial and civic use developments shall provide a prominent entrance oriented towards arterial and collector streets, with front setbacks reduced as much as possible to provide access for pedestrians, bicycles, and transit.
 - 2. All developments shall provide safe, convenient pedestrian walkways between the buildings and the transit stop, in accordance with the provisions of 17.84.30 B. *Response:* The proposed residential subdivision complies with the requirements of this section.

17.84.50 - STREET REQUIREMENTS

- A. Traffic evaluations may be required of all development proposals in accordance with the following:
 - 1. A proposal establishing the scope of the traffic evaluation shall be submitted for review to the City Engineer. The evaluation requirements shall reflect the magnitude of the project in accordance with accepted

The Views PD

Page 33 of 62

traffic engineering practices. Large projects should assess all nearby key intersections. Once the scope of the traffic evaluation has been approved, the applicant shall present the results with and an overall site development proposal. If required by the City Engineer, such evaluations shall be signed by a Licensed Professional Civil Engineer or Licensed Professional Traffic Engineer licensed in the State of Oregon.

- If the traffic evaluation identifies level-of-service conditions less than the minimum standard established in the Transportation System Plan, improvements and funding strategies mitigating the problem shall be considered concurrent with a development proposal.
 Response: A Traffic Impact Study is included with this application as requested by the City. This study does not identify any required mitigation.
- B. Location of new arterial streets shall conform to the Transportation System Plan in accordance with the following:
 - 1. Arterial streets should generally be spaced in one-mile intervals.
 - Traffic signals should generally not be spaced closer than 1500 ft. for reasonable traffic progression.

Response: No new arterial streets are required as part of this project.

- C. Local streets shall be designed to discourage through traffic. NOTE: for the purposes of this section, "through traffic" means the traffic traveling through an area that does not have a local origination or destination. To discourage through traffic and excessive vehicle speeds the following street design characteristics shall be considered, as well as other designs intended to discourage traffic:
 - 1. Straight segments of local streets should be kept to less than a quarter mile in length. As practical, local streets should include traffic calming features, and design features such as curves and "T" intersections while maintaining pedestrian connectivity.
 - Local streets should typically intersect in "T" configurations rather than 4way intersections to minimize conflicts and discourage through traffic. Adjacent "T" intersections shall maintain a minimum of 150 ft. between the nearest edges of the 2 rights-of-way.
 Response: The proposed street design is dependent on the location of Vista Loop Drive and Highway 26 in the Upper Views and topographic considerations in the Lower Views. No street segments greater than a quarter mile in length are proposed and all intersections are a minimum of

150 feet apart. The proposal complies with the requirements of this section.

3. Cul-de-sacs should generally not exceed 400 ft. in length nor serve more than 20 dwelling units, except in cases where existing topography, wetlands, or drainage systems or other existing features necessitate a

The Views PD

Page 34 of 62

longer cul-de-sac in order to provide adequate access to an area. Cul-desacs longer than 400 feet or developments with only one access point may be required to provide an alternative access for emergency vehicle use only, install fire prevention sprinklers, or provide other mitigating measures, determined by the City.

Response: Due to topographic constraints, two cul-de-sacs are proposed in the Lower Views and because of the location of Highway 26, a single culde-sac is proposed in the Upper Views. All of these cul-de-sacs are less than 400 feet in length. In the Lower Views, five lots are proposed to have frontage on the Mt. Hood Court cul-de-sac and two lots will be accessed from a private drive at the end of this cul-de-sac for a total of seven lots served by this cul-de-sac. The other cul-de-sac in the Lower Views will provide direct access to eight lots and four additional lots served by two private drives for a total of 12 lots served. The single cul-de-sac in the Upper Views is proposed to serve 11 lots. The proposal complies with this section.

- D. Development sites shall be provided with access from a public street improved to City standards in accordance with the following:
 - Where a development site abuts an existing public street not improved to City standards, the abutting street shall be improved to City standards along the full frontage of the property concurrent with development. *Response:* All homes will gain access from a public street or a public alley improved to city standards in compliance with this section or a private drive accessed from a public street.
 - Half-street improvements are considered the minimum required improvement. Three quarter-street or full-street improvements shall be required where traffic volumes generated by the development are such that a half-street improvement would cause safety and/or capacity problems. Such a determination shall be made by the City Engineer.
 Response: All new streets are proposed as full street improvements with the exception of Vista Loop Drive abutting the Upper Views.
 - 3. To ensure improved access to a development site consistent with policies on orderly urbanization and extension of public facilities the Planning Commission or Director may require off-site improvements concurrent with development. Off-site improvement requirements upon the site developer shall be reasonably related to the anticipated impacts of the development. *Response:* No off-site improvements have been identified or are warranted with construction of this subdivision.
 - 4. Reimbursement agreements for 3/4 street improvements (i.e., curb face to curb face) may be requested by the developer per Chapter 12 of the SMC. *Response: Except for the section of The Views Drive from the intersection of Vista Loop Drive to the alley no 3/4 streets are proposed.*

The Views PD

Page 35 of 62

- 5. A ½ street improvement includes curb and pavement 2 feet beyond the center line of the right-of-way. A ¾ street improvement includes curbs on both sides of the side and full pavement between curb faces. Response: As noted above only the frontage adjacent to Vista Loop Drive will require 1/2 street improvements and the sidewalk/planter is proposed to be eliminated on the South side of The Views Drive.
- E. As necessary to provide for orderly development of adjacent properties, public streets installed concurrent with development of a site shall be extended through the site to the edge of the adjacent property(ies) in accordance with the following:
 - 1. Temporary dead-ends created by this requirement to extend street improvements to the edge of adjacent properties may be installed without turn-arounds, subject to the approval of the Fire Marshal.
 - In order to assure the eventual continuation or completion of the street, reserve strips may be required.
 Response: The proposed street layout results in one temporary dead-end street at the East end of the Lower Views. This street end includes sufficient room to accommodate fire equipment to turn around. A secondary fire access to the Lower Views is provided by an easement through the Johnson RV site. If this easement is deemed by the Fire Marshall to be insufficient or an alternative secondary access cannot be obtained, some of the homes in the Lower Views may require installation of fire sprinklers.
- F. Where required by the Planning Commission or Director, public street improvements may be required through a development site to provide for the logical extension of an existing street network or to connect a site with a nearby neighborhood activity center, such as a school or park. Where this creates a land division incidental to the development, a land partition shall be completed concurrent with the development. **Response:** The applicant does not anticipate any public street improvements will be required beyond the site boundaries. No such improvements were

will be required beyond the site boundaries. No such improvements were identified at the pre-application conference.

- G. Except for extensions of existing streets, no street names shall be used that will duplicate or be confused with names of existing streets. Street names and numbers shall conform to the established pattern in the surrounding area and be subject to approval of the Director. **Response:** The application includes proposed street names as shown on submitted plans.
- H. Location, grades, alignment, and widths for all public streets shall be considered in relation to existing and planned streets, topographical conditions, public convenience and safety, and proposed land use. Where topographical conditions present special circumstances, exceptions to these

The Views PD

Page 36 of 62

standards may be granted by the City Engineer provided the safety and capacity of the street network is not adversely affected. The following standards shall apply:

1. Location of streets in a development shall not preclude development of adjacent properties. Streets shall conform to planned street extensions identified in the Transportation Plan and/or provide for continuation of the existing street network in the surrounding area. *Response: A future street plan is included with this application. This plan*

shows that the proposal will facilitate and not preclude development on adjacent properties. No roads identified on the TSP are shown on the subject property.

- Grades shall not exceed 6 percent on arterial streets, 10 percent on collector streets, and 15 percent on local streets.
 Response: As shown on submitted plans all streets in the proposed development are local streets and all street grades are less than the maximum allowed by this section. The steepest grade is 11 percent for the Mt. Hood Court cul-de-sac. No other street grade is greater than eight percent (east end of Bonnie Street) with most other streets at about two percent grade.
- 3. As far as practical, arterial streets and collector streets shall be extended in alignment with existing streets by continuation of the street centerline. When staggered street alignments resulting in "T" intersections are unavoidable, they shall leave a minimum of 150 ft. between the nearest edges of the two rights-of-way. **Response:** No arterial or collector streets are required to be extended

Response: No arterial or collector streets are required to be extended with this application.

- Centerline radii of curves shall not be less than 500 ft. on arterial streets, 300 ft. on collector streets, and 100 ft. on local streets.
 Response: All proposed streets in the subdivision are designed in compliance with this standard.
- 5. Streets shall be designed to intersect at angles as near as practicable to right angles and shall comply with the following:
 - a) The intersection of an arterial or collector street with another arterial or collector street shall have a minimum of 100 ft. of straight (tangent) alignment perpendicular to the intersection.
 - b) The intersection of a local street with another street shall have a minimum of 50 ft. of straight (tangent) alignment perpendicular to the intersection.
 - c) Where right angle intersections are not possible, exceptions can be granted by the City Engineer provided that intersections not at right angles have a minimum corner radius of 20 ft. along the right-of-way lines of the acute angle.

The Views PD

Page 37 of 62

d) Intersections with arterial streets shall have a minimum curb corner radius of 20 ft. All other intersections shall have a minimum curb corner radius of 10 ft.

Response: All proposed streets are designed to insect at a right angle with the intersecting street and comply with the requirements of this section.

6. Right-of-way and improvement widths shall be as specified by the Transportation System Plan. Exceptions to those specifications may be approved by the City Engineer to deal with specific unique physical constraints of the site.

Response: All right-of-way widths are proposed to be 50 feet wide with the exception of the portion of The View Drive from the intersection with Vista Loop Drive to about the public alley which is proposed to be 31 feet wide. The applicant is requesting a reduction of the right-of-way in this location in order to shift the road to the South to construct a wider sidewalk on the North side of this street within a private landscaped tract.

J. Private streets may be considered within a development site provided all the following conditions are met: *Response:* No private streets are proposed.

17.84.60 - PUBLIC FACILITY EXTENSIONS

- A. All development sites shall be provided with public water, sanitary sewer, broadband (fiber), and storm drainage.
 Response: The submitted Utility Plan shows the location of proposed public water, sanitary sewer, and stormwater drainage facilities. Broadband fiber service will be detailed in construction plans.
- B. Where necessary to serve property as specified in "A" above, required public facility installations shall be constructed concurrent with development. *Response:* All of the utilities identified above will be constructed concurrent with each phase of the development.
- C. Off-site public facility extensions necessary to fully serve a development site and adjacent properties shall be constructed concurrent with development. *Response:* The applicant will extend all utilities as necessary to serve the development as required by this section.
- D. As necessary to provide for orderly development of adjacent properties, public facilities installed concurrent with development of a site shall be extended through the site to the edge of adjacent property(ies).
 Response: As shown on submitted Utility Plans, all public facilities are proposed to be extended through the site to edge of adjacent properties.

The Views PD

Page 38 of 62

E. Private on-site sanitary sewer and storm drainage facilities may be considered provided all the following conditions exist: *Response:* No private utilities are proposed.

17.84.70 - PUBLIC IMPROVEMENT PROCEDURES

Response: The applicant is aware of and intends to comply with the requirements of this section.

17.84.80 - FRANCHISE UTILITY INSTALLATIONS

These standards are intended to supplement, not replace or supersede, requirements contained within individual franchise agreements the City has with providers of electrical power, telephone, cable television, and natural gas services (hereinafter referred to as "franchise utilities").

A. Where a land division is proposed, the developer shall provide franchise utilities to the development site. Each lot created within a subdivision shall have an individual service available or financially guaranteed prior to approval of the final plat.

Response: Franchise utilities will be provided to all lots within the proposed development as required. The location of these utilities will be identified on construction plans and installed or guaranteed prior to final plat approval.

B. Where necessary, in the judgment of the Director, to provide for orderly development of adjacent properties, franchise utilities shall be extended through the site to the edge of adjacent property(ies), whether or not the development involves a land division.

Response: The applicant does not anticipate extending franchise utilities beyond the site.

- C. The developer shall have the option of choosing whether or not to provide natural gas or cable television service to the development site, providing all of the following conditions exist:
 - 1. Extension of franchise utilities through the site is not necessary for the future orderly development of adjacent property(ies);
 - 2. The development site remains in one ownership and land division does not occur (with the exception of land divisions that may occur under the provisions of 17.84.50 F above); and
 - 3. The development is non-residential.

Response: The applicant anticipates installing natural gas and cable television service as required.

D. Where a land division is not proposed, the site shall have franchise utilities required by this section provided in accordance with the provisions of 17.84.70 prior to occupancy of structures.

Response: A land division is proposed and this section is not applicable.

The Views PD

Page 39 of 62

- E. All franchise utility distribution facilities installed to serve new development shall be placed underground except as provided below. The following facilities may be installed aboveground:
 - 1. Poles for street lights and traffic signals, pedestals for police and fire system communications and alarms, pad mounted transformers, pedestals, pedestal mounted terminal boxes and meter cabinets, concealed ducts, substations, or facilities used to carry voltage higher than 35,000 volts;
 - 2. Overhead utility distribution lines may be permitted upon approval of the City Engineer when unusual terrain, soil, or other conditions make underground installation impracticable. Location of such overhead utilities shall follow rear or side lot lines wherever feasible.

Response: All franchise utilities will be installed underground with the exception of street lights as allowed by this section.

F. The developer shall be responsible for making necessary arrangements with franchise utility providers for provision of plans, timing of installation, and payment for services installed. Plans for franchise utility installations shall be submitted concurrent with plan submittal for public improvements to facilitate review by the City Engineer.

Response: The developer will make all the necessary arrangements with franchise utility providers as required by this section.

- G. The developer shall be responsible for installation of underground conduit for street lighting along all public streets improved in conjunction with the development in accordance with the following:
 - 1. The developer shall coordinate with the City Engineer to determine the location of future street light poles. The street light plan shall be designed to provide illumination meeting standards set by the City Engineer.
 - 2. The developer shall make arrangements with the serving electric utility for trenching prior to installation of underground conduit for street lighting. *Response:* The developer will install underground conduit for street lighting in accordance with the requirements of this section.

17.84.90 - LAND FOR PUBLIC PURPOSES

- A. Easements for public sanitary sewer, water, storm drain, pedestrian and bicycle facilities shall be provided whenever these facilities are located outside a public right-of-way in accordance with the following:
 - 1. When located between adjacent lots, easements shall be provided on one side of a lot line.
 - 2. The minimum easement width for a single utility is 15 ft. The minimum easement width for two adjacent utilities is 20 ft. The easement width shall be centered on the utility to the greatest extent practicable. Wider easements may be required for unusually deep facilities.

The Views PD

Page 40 of 62

Response: The only public easements anticipated with this development are public pedestrian access asements located over sidewalks not located within a public right-of-way.

- B. Public utility easements with a minimum width of 5 feet shall be provided adjacent to all street rights-of-way for franchise utility installations. **Response:** Despite the language in this section, eight foot wide public utility easements will be provided along all lots adjacent to street rights-of-way for future franchise utility installations.
- C. Where a development site is traversed by a drainageway or water course, a drainage way dedication shall be provided to the City.
 Response: No public dedication for the purposes in this section are anticipated.
- D. Where a development is traversed by, or adjacent to, a future trail linkage identified within the Transportation System Plan, dedications of suitable width to accommodate the trail linkage shall be provided. This width shall be determined by the City Engineer, considering the type of trail facility involved. *Response:* No future trails are identified in the TSP or other adopted plans on the subject property.
- E. Where existing rights-of-way and/or easements within or adjacent to development sites are nonexistent or of insufficient width, dedications may be required. The need for and widths of those dedications shall be determined by the City Engineer.

Response: The only existing right-of-ways adjacent to the development are Vista Loop Drive and Highway 26. No additional dedication is required for these roads.

F. Where easement or dedications are required in conjunction with land divisions, they shall be recorded on the plat. Where a development does not include a land division, easements and/or dedications shall be recorded on standard document forms provided by the City Engineer.
 Response: All easements and dedications will be identified on the plat as required.

17.84.100 - MAIL DELIVERY FACILITIES

Response: The location and type of mail delivery facilities will be coordinated with the City Engineer and the Post Office as part of the construction plan process.

The Views PD

Page 41 of 62

CHAPTER 17.86 - PARKLAND and OPEN SPACE 17.86.00 - INTENT

The availability of parkland and open space is a critical element in maintaining and improving the quality of life in Sandy. Land that features trees, grass and vegetation provides not only an aesthetically pleasing landscape but also buffers incompatible uses, and preserves sensitive environmental features and important resources. Parks and open space, together with support facilities, also help to meet the active and passive recreational needs of the population of Sandy. This chapter implements policies of Goal 8 of the Comprehensive Plan and the Parks Master Plan by outlining provisions for parks and open space in the City of Sandy. **Response:** The City's adopted Parks Master Plan does not show any parks or trails on the subject property.

17.86.10 - MINIMUM PARKLAND DEDICATION REQUIREMENTS

Parkland Dedication: New residential subdivisions, planned developments, multifamily or manufactured home park developments shall be required to provide parkland to serve existing and future residents of those developments. **Response:** The proposed residential subdivision is subject to the provisions of this chapter.

- 1. The required parkland shall be dedicated as a condition of approval for the following:
 - a. Tentative plat for a subdivision or partition;
 - b. Planned Development conceptual or detailed development plan;
 - c. Design review for a multi-family development or manufactured home park; and
 - d. Replat or amendment of any site plan for multi-family development or manufactured home park where dedication has not previously been made or where the density of the development involved will be increased. *Response:* No public parkland has been identified on the tentative plat.
- 2. Calculation of Required Dedication: The required parkland acreage to be dedicated is based on a calculation of the following formula rounded to the nearest 1/100 (0.00) of an acre:

Required parkland dedication (acres) = (proposed units) x (persons/unit) x 0.0043 (per person park land dedication factor)

Response: The proposed 120 single family units and 48 multi-family units results in the following formal: 120 (proposed s.f. units) x 3 (persons/unit) x 0.0043 (per person park land dedication factor) = 1.548 rounded to 1.55 acres plus 48 (proposed m.f. units) x 2 (persons/unit) x 0.0043 (per person park land dedication factor) = 0.4128 rounded to 0.41 acres. The total required parkland is then 1.55 + 0.41 = 1.96 acres.

The Views PD

Page 42 of 62

17.86.20 - MINIMUM PARKLAND STANDARDS

Land required or proposed for parkland dedication shall be contained within a continuous unit and must be suitable for active use as a neighborhood or minipark, based on the following criteria:

Response: The applicant does not propose dedicating any parkland with this development.

17.86.40 - CASH IN LIEU OF DEDICATION

At the city's discretion only, the city may accept payment of a fee in lieu of land dedication. The city may require payment in lieu of land when the park land to be dedicated is less than 3 acres. A payment in lieu of land dedication is separate from Park Systems Development Charges, and is not eligible for a credit of Park Systems Development Charges. The amount of the fee in lieu of land dedication (in dollars per acre) shall be set by City Council Resolution, and it shall be based on the typical market value of developed property (finished lots) in Sandy net of related development costs.

Response: The applicant proposes paying a fee in lieu of parkland dedication. The amount of this fee will be \$472,360 based on the City's current fee schedule if this payment is not deferred and paid prior to final plat approval and \$519,400 if it is deferred based on 1.96 acres of parkland as calculated in Section 17.86.10(2) above. If deferred one-half of this amount (\$259,700) is required to be paid prior to final plat approval with the other half (\$259,700) evenly split and paid with each building permit. Because two of the lots are proposed to contain multi-family dwellings at a later date, the applicant requests the parks fee for these units be paid with the building permit for these units rather than at the time of final plat approval. If this proposal is accepted the amount of cash-inlieu to be paid with the final plat would be based on the area of parkland required for the single family units which is 1.55 acres. This results in the following amounts 1.55 x \$241,000 = \$373,550 if paid prior to Final plat approval and $1.55 \times $265,000 = $410,750$ is one-half is deferred. The fee associated with the multi-family units 0.41 x \$241,000 = \$98,810 would be paid with the building permit for these units.

17.86.50 - MINIMUM STANDARDS FOR OPEN SPACE DEDICATION

The applicant through a subdivision or design review process may propose the designation and protection of open space areas as part of that process. This open space will not, however, be counted toward the parkland dedication requirement of Sections 17.86.10 through 17.86.40.

1. The types of open space that may be provided are as follows:

- a. Natural Areas: areas of undisturbed vegetation, steep slopes, stream corridors, wetlands, wildlife habitat areas or areas replanted with native vegetation after construction.
- b. Greenways: linear green belts linking residential areas with other open space areas. These greenways may contain bicycle paths or footpaths. Connecting greenways between residences and recreational areas are encouraged.

The Views PD

Page 43 of 62

Response: The proposal includes the designation of 11.92 acres of private open space to be owned and maintained by a Homeowner's Association. This includes 8.22 acres of natural areas, 3.57 acres of active open space, and 0.13 acres of additional open space.

- 2. A subdivision or design review application proposing designation of open space shall include the following information as part of this application:
 - a. Designate the boundaries of all open space areas; and
 - b. Specify the manner in which the open space shall be perpetuated, maintained, and administered; and
 - c. Provide for public access to trails included in the Park Master Plan, including but not limited to the Tickle Creek Path. *Response:* All of this information is provided. The applicant proposes maintaining all open space areas by forming a homeowner's association.
- 3. Dedication of open space may occur concurrently with development of the project. At the discretion of the city, for development that will be phased, the open space may be set aside in totality and/or dedicated in conjunction with the first phase of the development or incrementally set aside and dedicated in proportion to the development occurring in each phase. *Response:* The applicant intends that all open space areas will be owned and maintained by a homeowner's association.
- 4. Open space areas shall be maintained so that the use and enjoyment thereof is not diminished or destroyed. Open space areas may be owned, preserved, and maintained by any of the following mechanisms or combinations thereof:
 - a. Dedication to the City of Sandy or an appropriate public agency approved by the City, if there is a public agency willing to accept the dedication. Prior to acceptance of proposed open space, the City may require the developer to submit a Phase I Environmental Site Assessment completed by a qualified professional according to American Society of Testing and Materials (ASTM) standards (ASTM E 1527). The results of this study shall indicate a clean environmental record.
 - b. Common ownership by a homeowner's association that assumes full responsibility for its maintenance;
 - c. Dedication of development rights to an appropriate public agency with ownership remaining with the developer or homeowner's association. Maintenance responsibility will remain with the property owner; and/or
 - d. Deed-restricted private ownership preventing development and/or subsequent subdivision and providing for maintenance responsibilities.

The Views PD

Page 44 of 62

Response: As noted above, all open space areas will be owned and maintained by a homeowner's association as permitted by this section. The applicant feels this is the best ownership entity to ensure maintenance of these areas in perpetuity.

5. In the event that any private owner of open space fails to maintain it according to the standards of this Code, the City of Sandy, following reasonable notice, may demand that the deficiency of maintenance be corrected, and may enter the open space for maintenance purposes. All costs thereby incurred by the City shall be charged to those persons having the primary responsibility for maintenance of the open space. *Response: The applicant does not anticipate this section being applicable.*

CHAPTER 17.92 - LANDSCAPING AND SCREENING GENERAL STANDARDS -ALL ZONES

Response: This chapter has limited applicability to subdivisions so only those applicable sections are reviewed in this submittal.

17.92.10 - GENERAL PROVISIONS

- A. Where landscaping is required by this Code, detailed planting plans shall be submitted for review with development applications. No development may commence until the Director or Planning Commission has determined the plans comply with the purposes clause and specific standards in this chapter. All required landscaping and related improvements shall be completed or financially guaranteed prior to the issuance of a Certificate of Occupancy.
- B. Appropriate care and maintenance of landscaping onsite and landscaping in the adjacent public right-of-way is the right and responsibility of the property owner, unless City ordinances specify otherwise for general public and safety reasons. If street trees or other plant materials do not survive or are removed, materials shall be replaced in kind within 6 months.
- C. Significant plant and tree specimens should be preserved to the greatest extent practicable and integrated into the design of a development. Trees of 25-inches or greater circumference measured at a height of 4-1/2 ft. above grade are considered significant. Plants to be saved and methods of protection shall be indicated on the detailed planting plan submitted for approval. Existing trees may be considered preserved if no cutting, filling, or compaction of the soil takes place between the trunk of the tree and the area 5-ft. outside the tree's drip line. Trees to be retained shall be protected from damage during construction by a construction fence located 5 ft. outside the dripline. *Response:* As previously determined by the Planning Commission, the City's tree protection standards in this section do not apply to residential subdivisions. The regulations of Chapter 17.102, Urban Forestry relevant to this proposal are reviewed below.

The Views PD

Page 45 of 62

17.92.20 - MINIMUM IMPROVEMENTS - LANDSCAPING AND SCREENING

Response: The Single Family Residential zone is not listed in this section requiring compliance with minimum landscaping requirements. Landscaping requirements for the multi-family units will be addressed with a subsequent design review application.

CHAPTER 17.98 - PARKING, LOADING, AND ACCESS REQUIREMENTS 17.98.10 - GENERAL PROVISIONS

- M. <u>Residential Parking Analysis Plan</u>. A Residential Parking Analysis Plan shall be required for all new residential planned developments, subdivisions, and partitions to include a site plan depicting all of the following:
 - a. Location and dimension of required parking spaces as specified in Section 17.98.200.
 - b. Location of areas where parking is not permitted as specified in Sections 17.98.200(A)(3) and (5).
 - c. Location and design of parking courts (if applicable). *Response:* A Residential Parking Analysis Plan as required by this section is included in the plan set.

17.98.80 - ACCESS TO ARTERIAL AND COLLECTOR STREETS

Response: No lots are proposed to gain access from an arterial or collector street.

17.98.90 - ACCESS TO UNIMPROVED STREETS

Response: All streets proposed in the subdivision will be improved to city standards.

17.98.100 - DRIVEWAYS

- A. A driveway to an off-street parking area shall be improved from the public roadway to the parking area a minimum width of 20 feet for a two-way drive or 12 feet for a one-way drive but in either case not less than the full width of the standard approach for the first 20 feet of the driveway. *Response:* All lots will have a standard 24 foot wide curb cut and driveway approach.
- B. A driveway for a single-family dwelling shall have a minimum width of 10 feet. *Response:* All lots single family detached lots will have a standard 24 foot wide curb cut and driveway approach. All single family attached lots will have an approximately 18 foot wide curb cut.
- C. A driveway for a two-family dwelling shall have a minimum width of 20 feet. A driveway approach must be constructed in accordance with applicable city standards and the entire driveway must be paved with asphalt or concrete. **Response:** All of the proposed lots will be constructed with a single family dwellings or multi-family dwelling. This section is not applicable.

The Views PD

Page 46 of 62

- D. Driveways, aisles, turnaround areas and ramps shall have a minimum vertical clearance of twelve feet for their entire length and width but such clearance may be reduced in parking structures. *Response:* All driveways will be designed in compliance with this standard.
- E. No driveway shall traverse a slope in excess of 15 percent at any point along the driveway length.

Response: All driveways will be designed in compliance with this standard.

F. The location and design of the driveway shall provide for unobstructed sight per the vision clearance requirements. Requests for exceptions to these requirements will be evaluated by the City Engineer considering the physical limitations of the lot and safety impacts to vehicular, bicycle, and pedestrian traffic.

Response: All driveways will be designed in compliance with this standard.

17.98.110 - VISION CLEARANCE

A. Except within the Central Business District, vision clearance areas shall be provided at intersections of all streets and at intersections of driveways and alleys with streets to promote pedestrian, bicycle, and vehicular safety. The extent of vision clearance to be provided shall be determined from standards in Chapter 17.74 and taking into account functional classification of the streets involved, type of traffic control present at the intersection, and designated speed for the streets.

Response: The subject property is located in the SFR zone requiring compliance with this section. The requirements of this section will be considered in placing landscaping in these areas with construction of homes.

B. Traffic control devices, streetlights, and utility installations meeting approval by the City Engineer are permitted within vision clearance areas. **Response:** The exceptions contained in this section will be considered in the design and placement of these structures.

17.98.200 - RESIDENTIAL ON-STREET PARKING REQUIREMENTS

- A. Residential On-Street Parking Requirements. Residential on-street parking shall conform to the following standards:
 - 1. In addition to required off-street parking, all new residential planned developments, subdivisions and partitions shall provide one (1) on-street parking space within 200 feet of each dwelling except as provided in Section 17.98.200(A)(6) below.
 - 2. The location of residential on-street parking shall be reviewed for compliance with this section through submittal of a Residential Parking Analysis Plan as required in Section 17.98.10(M).

The Views PD

Page 47 of 62

- 3. Residential on-street parking shall not obstruct required clear vision areas and shall not violate any local or state laws.
- 4. Parallel residential on-street parking spaces shall be 22 feet minimum in length.
- 5. Residential on-street parking shall be measured along the curb from the outside edge of a driveway wing or curb cut. Parking spaces must be set back a minimum of 15 feet from an intersection and may not be located within 10 feet of a fire hydrant.

Response: A Residential On-Street Parking Analysis designed in compliance with the requirements of this section is included with the application package. The proposed 71 single family dwellings in the Lower Views require 71 on-street parking spaces. One on-street parking space at least 22 feet in length has been identified within 300 feet of each of the 71 lots. An additional 66 on-street parking spaces have also been identified in the Lower Views as shown on the Parking Plan. The 49 lots in the Upper Views require 49 on-street parking spaces. As shown on submitted plans, 50 onstreet parking spaces can be provided. The proposed plan complies with this standard.

6. Portions of residential on-street parking required by this section may be provided in parking courts that are interspersed throughout a development when the following standards are met: **Response:** No parking courts are proposed.

CHAPTER 17.100 - LAND DIVISION

17.100.20 - LAND DIVISION CLASSIFICATION - TYPE I, II OR III PROCEDURES

- C. Type II Land Division (Major Partition or Subdivision). A major partition or subdivision shall be a Type II procedure when a street is extended, satisfactory street conditions exist and the resulting parcels/lots comply with the standards of the zoning district and this chapter. Satisfactory street conditions exist when the Director determines one of the following:
 - 1. Existing streets are stubbed to the property boundaries and are linked by the land division.
 - 2. An existing street or a new proposed street need not continue beyond the land division in order to complete an appropriate street system or to provide access to adjacent property.
 - 3. The proposed street layout is consistent with a street pattern adopted as part of the Comprehensive Plan or an officially adopted City street plan. *Response:* The proposal will be processed as a Planned Development. This process allows a degree of flexibility and variation of design standards. All of the proposed variations are discussed in more detail in Chapter 17.64 above. The Planned Development requires the application to be processed as a Type IV quasi-judicial review.

The Views PD

Page 48 of 62

17.100.60 - SUBDIVISIONS

Approval of a subdivision is required for a land division of 4 or more parcels in a calendar year. A two-step procedure is required for subdivision approval: (1) tentative plat review and approval; and (2) final plat review and approval. *Response:* The proposal is a 122 lot Planned Development and subdivision.

A. Preapplication Conference. The applicant for a subdivision shall participate in a preapplication conference with city staff to discuss procedures for approval, applicable state and local requirements, objectives and policies of the Sandy Comprehensive Plan, and the availability of services.

Response: A pre-application conference was held with the city on May 29, 2019.

B. Application Requirements for a Tentative Plat. Subdivision applications shall be made on forms provided by the planning department and shall be accompanied by:

Response: All of the items required by this section are included with the submittal.

- E. Approval Criteria. The Director or Planning Commission shall review the tentative plat for the subdivision based on the classification procedure (Type II or III) set forth in Section 17.12 and the following approval criteria:
 - 1. The proposed subdivision is consistent with the density, setback and dimensional standards of the base zoning district, unless modified by a Planned Development approval.

Response: As reviewed in the narrative above, variations to development standards as permitted as part of the Planned Development process. The proposed 168 dwelling units count is consistent with the increase in density provisions approved through the PD process. As detailed in Chapter 17.64, the applicant has proposed several variations to development standards as permitted by this chapter.

2. The proposed subdivision is consistent with the design standards set forth in this chapter.

Response: Except as noted in Chapter 17.64 as approved through the Planned Development process, the proposal generally complies with the design standards in this chapter.

3. The proposed street pattern is connected and consistent with the Comprehensive Plan or official street plan for the City of Sandy. *Response:* As illustrated on the submitted Future Street Plan, the proposed street system is consistent with the City's Transportation System Plan and Comprehensive Plan. Due to topographic constraints on the Lower Views and the location of Vista Loop Drive and Highway 26 on the Upper Views, street connectivity around the entire development is not possible.

The Views PD

Page 49 of 62

4. Adequate public facilities are available or can be provided to serve the proposed subdivision.

Response: The City of Sandy has indicated that all public facilities have capacity to serve the proposed subdivision. As detailed on submitted plans, because of the depth of the existing sewer line in Vista Loop, eleven lots in the Lower Views (Lots 39-46 and 61-63) and five lots (Lots 96-100) in the Upper Views will require installation of individual grinder sump systems to pump sanitary waste from these dwellings to a gravity sewer line.

- 5. All proposed improvements meet City standards. *Response:* With the exception of variations as identified in Chapter 17.64, *Planned Developments above, all improvements in the proposed development are designed in compliance with City standards.*
- 6. The phasing plan, if requested, can be carried out in a manner that meets the objectives of the above criteria and provides necessary public improvements for each phase as it develops.

Response: The applicant requests flexibility in developing the Lower and Upper Views as two separate phases as necessary.

17.100.80 - CHARACTER OF THE LAND

Land which the Director or the Planning Commission finds to be unsuitable for development due to flooding, improper drainage, steep slopes, rock formations, adverse earth formations or topography, utility easements, or other features which will reasonably be harmful to the safety, health, and general welfare of the present or future inhabitants of the partition or subdivision and the surrounding areas, shall not be developed unless adequate methods are formulated by the subdivider and approved by the Director or the Planning Commission to solve the problems created by the unsuitable land conditions.

Response: A significant portion of the Lower Views is affected by the FSH overlay identified by the City of Sandy. The applicant does not propose any development within this area. A Geotechnical Evaluation for the property is included with the application package. Except for the areas designated as open space, all areas of the Lower Views and all of the Upper Views property are suitable for development and do not pose any issues due to flooding, etc as stated in this section.

17.100.90 - ACCESS CONTROL GUIDELINES AND COORDINATION

A. Notice and coordination with ODOT required. The city will coordinate and notify ODOT regarding all proposals for new or modified public and private accesses on to Highways 26 and 211.

Response: The project Transportation Engineer coordinated the scope of the submitted Traffic Study regarding Highway 26 with ODOT. No direct access to Highway 26 is proposed and a VNAR is likely to be required along this roadway.

The Views PD

Page 50 of 62

17.100.100 - STREETS GENERALLY

- A. <u>Transportation Impact Studies</u>. Transportation impact studies may be required by the city engineer to assist the city to evaluate the impact of development proposals, determine reasonable and prudent transportation facility improvements and justify modifications to the design standards. Such studies will be prepared in accordance with the following:
 - 1. A proposal established with the scope of the transportation impact study shall be coordinated with, and agreed to, by the city engineer. The study requirements shall reflect the magnitude of the project in accordance with accepted transportation planning and engineering practices. A professional civil or traffic engineer registered in the State of Oregon shall prepare such studies.
 - If the study identifies level-of-service conditions less than the minimum standards established in the Sandy Transportation System Plan, improvements and funding strategies mitigating the problem shall be considered as part of the land use decision for the proposal. *Response:* A traffic impact study prepared in compliance with city and ODOT standards by a Transportation Engineer is included with the application package. This study does not identify any issues requiring mitigation by the applicant.
- B. <u>Topography and Arrangement.</u> All streets shall be properly related to special traffic generators such as industries, business districts, schools, and shopping centers and to the pattern of existing and proposed land uses. *Response:* None of special traffic generators listed in this section are located near the subject property. All existing and proposed residential uses have been considered in development of the proposed street pattern. A future street plan included with this application shows how streets could be extended beyond the subject property in the future.
- C. <u>Street Spacing</u>. Street layout shall generally use a rectangular grid pattern with modifications as appropriate to adapt to topography or natural conditions. *Response*: Due to topographic constraints in the Lower Views and existing infrastructure in the Upper Views (Highway 26 and Vista Loop Drive) the site does not lend itself to creating a rectangular gridded street pattern.
- D. <u>Future Street Plan.</u> Future street plans are conceptual plans, street extensions and connections on acreage adjacent to land divisions. They assure access for future development and promote a logical, connected pattern of streets. It is in the interest of the city to promote a logical, connected pattern of streets. All applications for land divisions shall provide a future street plan that shows the pattern of existing and proposed future streets within the boundaries of the proposed land divisions, proposed connections to abutting properties, and extension of streets to adjacent parcels within a 400 foot radius of the study area where development may practically occur.

The Views PD

Page 51 of 62

Response: A future street plan designed in compliance with the requirements of this section is included as part of the application package. This plan provides assurances that access for future development promotes a logical and connected pattern of streets.

E. <u>Connections.</u> Except as permitted under Exemptions, all streets, alleys and pedestrian walkways shall connect to other streets within the development and to existing and planned streets outside the development and to undeveloped properties which have no future street plan. Streets shall terminate at other streets or at parks, schools or other public land within a neighborhood.

Where practicable, local roads shall align and connect with other roads when crossing collectors and arterials.

Proposed streets or street extensions shall be located to provide direct access to existing or planned transit stops, and existing or planned neighborhood activity centers, such as schools, shopping areas and parks. **Response:** The site specific conditions of the subject property limits construction of an interconnected street system. The only existing street to be extended is Ortiz Street in the Upper Views which proposed to be located directly across Vista Loop Drive from this existing street.

17.100.120 - BLOCKS AND ACCESSWAYS

- A. <u>Blocks.</u> Blocks shall have sufficient width to provide for two tiers of lots at appropriate depths. However, exceptions to the block width shall be allowed for blocks that are adjacent to arterial streets or natural features. *Response:* The unique character of the site does not lend itself to creating blocks with two tiers.
- B. <u>Residential Blocks.</u> Blocks fronting local streets shall not exceed 400 feet in length, unless topographic, natural resource, or other similar physical conditions justify longer blocks. Blocks may exceed 400 feet if approved as part of a Planned Development, Specific Area Plan, adjustment or variance. *Response:* As reviewed in Chapter 17.64 above, due to site specific and topographic conditions, all streets do not comply with the 400 foot block length standard. The applicant has requested a variation to this dimensional standard as permitted by Section 17.64.0(A).
- D. <u>Pedestrian and Bicycle Access Way Requirements.</u> In any block in a residential or commercial district over 600 feet in length, a pedestrian and bicycle accessway with a minimum improved surface of 10 feet within a 15-foot right-of-way or tract shall be provided through the middle of the block. To enhance public convenience and mobility, such accessways may be required to connect to cul-de-sacs, or between streets and other public or semipublic lands or through greenway systems.

The Views PD

Page 52 of 62

Response: The applicant proposes establishing a ten foot wide sidewalk with a 15-foot wide pedestrian access easement in the middle of Knapp Street to provide a sidewalk connection from this street to Vista Loop Drive.

17.100.130 - EASEMENTS

A minimum eight (8) foot public utility easement shall be required along property lines abutting a right-of-way for all lots within a partition or subdivision. Where a partition or subdivision is traversed by a watercourse, drainage way, channel or stream, the land division shall provide a stormwater easement or drainage rightof-way conforming substantially with the lines of such watercourse, and such further width as determined needed for water quality and quantity protection. *Response:* Eight foot wide public utility easements will be included along all property lines abutting a public right-of-way. Only public pedestrian access easements will be needed to allow public access along some of the sidewalks located within private tracts. No other easements for public utility purposes are required.

17.100.140 - PUBLIC ALLEYS

Response: A 28-foot wide paved alley within a 29-foot public right-of-way is proposed in the Lower Views. This alley is designed to provide access to the 32 single family detached dwellings abutting this right-of-way. The proposed alley width is designed to accommodate public parking on the South side of this facility.

17.100.150 - RESIDENTIAL SHARED PRIVATE DRIVES

A shared private drive is intended to provide access to a maximum of two (2) dwelling units.

A. Criteria for Approval

Shared private drives may be approved by the Director when one or more of the following conditions exist:

- 1. Direct access to a local street is not possible due to physical aspects of the site including size, shape, or natural features.
- 2. The construction of a local street is determined to be unnecessary. **Response:** As shown on submitted plans the Lower Views includes three private drives serving two lots each. These private drives are proposed due to the topographic constraints with the subject property.
- B. Design
- 1. A shared private drive constructed to city standards shall not serve more than two (2) dwelling units.
- 2. A shared access easement and maintenance agreement shall be established between the two units served by a shared private drive. The language of the easement and maintenance agreement shall be subject to approval by the Director.

The Views PD

Page 53 of 62

- 3. Public utility easements shall be provided where necessary in accordance with Section 17.100.130.
- 4. Shared private drives shall be fully improved with an all weather surface (e.g. concrete, asphalt, permeable pavers) in conformance with city standards. The pavement width shall be 20 feet.
- 5. Parking shall not be permitted along shared private drives at any time and shall be signed and identified accordingly.

Response: The proposed three private drives in the Lower Views are designed to serve only two lots each as permitted. A shared access easement and maintenance agreement will be established for each private drive as part of the Final Plat. Public utility easements will be accommodated along these private drives as necessary to serve these lots. As shown on submitted plans each private drive is proposed to include a 20-foot wide all weather surface within a 21-foot wide tract and will be posted "no parking". The proposal complies with this standard.

17.100.160 - PUBLIC ACCESS LANES

Response: No public access lanes are proposed in this development

17.100.170 - FLAG LOTS

Flag lots can be created where it can be shown that no other street access is possible to achieve the requested land division. The flag lot shall have a minimum street frontage of 15 feet for its accessway. The following dimensional requirements shall apply to flag lots:

- A. Setbacks applicable to the underlying zoning district shall apply to the flag lot.
- B. The access strip (pole) may not be counted toward the lot size requirements. *Response:* Lots 103 and 104 are proposed as flag lots. Both lots contain a minimum 15-feet of street frontage as required.

17.100.180 - INTERSECTIONS

A. <u>Intersections.</u> Streets shall be laid out so as to intersect as nearly as possible at right angles. A proposed intersection of two new streets at an angle of less than 75 degrees shall not be acceptable. No more than two streets shall intersect at any one point unless specifically approved by the City Engineer. The city engineer may require left turn lanes, signals, special crosswalks, curb extensions and other intersection elements justified by a traffic study or necessary to comply with the Development Code. **Response:** All streets in the proposed subdivision have been designed to

intersect at right angles to the opposing street as required.

B. <u>Curve Radius.</u> All local and neighborhood collector streets shall have a minimum curve radius (at intersections of rights-of-way) of 20 feet, unless otherwise approved by the City Engineer. When a local or neighborhood collector enters on to a collector or arterial street, the curve radius shall be a minimum of 30 feet, unless otherwise approved by the City Engineer.

The Views PD

Page 54 of 62

Response: All streets in the proposed subdivision have a minimum curve radius as required by this section.

17.100.190 - STREET SIGNS

The subdivider shall pay the cost of street signs prior to the issuance of a Certificate of Substantial Completion. The City shall install all street signs and upon completion will bill the developer for costs associated with installation. In addition, the subdivider may be required to pay for any traffic safety devices related to the development. The City Engineer shall specify the type and location of the street signs and/or traffic safety devices.

Response: The applicant understands it will be his responsibility to pay the cost of street signs and the city will install these signs.

17.100.200 - STREET SURFACING

Public streets, including alleys, within the development shall be improved in accordance with the requirements of the City or the standards of the Oregon State Highway Department. An overlay of asphalt concrete, or material approved by the City Engineer, shall be placed on all streets within the development. Where required, speed humps shall be constructed in conformance with the City's standards and specifications.

Response: All streets in the proposed subdivision will be improved in accordance with City standards.

17.100.210 - STREET LIGHTING

A complete lighting system (including, but not limited to: conduits, wiring, bases, poles, arms, and fixtures) shall be the financial responsibility of the subdivider on all cul-de-sacs, local streets, and neighborhood collector streets. The subdivider will be responsible for providing the arterial street lighting system in those cases where the subdivider is required to improve an arterial street. Standards and specifications for street lighting shall be coordinated with the utility and any lighting district, as appropriate.

Response: The applicant is aware of the requirements of this section. A lighting plan will be coordinated with PGE and the city prior to installation of these fixtures.

17.100.220 - LOT DESIGN

A. The lot arrangement shall be such that there will be no foreseeable difficulties, for reason of topography or other conditions, in securing building permits to build on all lots in compliance with the Development Code. **Response:** All of the lots in the proposed subdivision have been designed so that no foreseeable difficulties due to topography or other conditions will exist in securing building permits on these lots. A Geotechnical Evaluation report is included with this application.

The Views PD

Page 55 of 62

B. The lot dimensions shall comply with the minimum standards of the Development Code. When lots are more than double the minimum lot size required for the zoning district, the subdivider may be required to arrange such lots to allow further subdivision and the opening of future streets to serve such potential lots.

Response: As allowed by Chapter 17.64 for Planned Developments, the applicant has proposed modifications to the minimum lot size and dimension standards specified in the Single Family Residential zone. Only Lot 62 (16,694 square feet) is proposed to contain more than double the minimum lot size (7,500 square feet) in the SFR zone. Due to its location and topographic constraints no further division of this lot is possible.

C. The lot or parcel width at the front building line shall meet the requirements of the Development Code and shall abut a public street other than an alley for a width of at least 20 feet. A street frontage of not less than 15 feet is acceptable in the case of a flag lot division resulting from the division of an unusually deep land parcel which is of a size to warrant division into not more than two parcels.

Response: All lots in the proposed subdivision contain at least 20 feet of frontage along a public street with the exception of one flag lot and the six lots are proposed to be accessed by three private drives.

- D. Double frontage lots shall be avoided except where necessary to provide separation of residential developments from arterial streets or to overcome specific disadvantages of topography or orientation. *Response:* Only Lots 103-121 are designed to have frontage on both an internal local street (Knapp Street) and Highway 26. This configuration is unavoidable because of the location of Highway 26 and limitations for access to this roadway.
- E. Lots shall avoid deriving access from major or minor arterials. When driveway access from major or minor arterials may be necessary for several adjoining lots, the Director or the Planning Commission may require that such lots be served by a common access drive in order to limit possible traffic hazards on such streets. Where possible, driveways should be designed and arranged to avoid requiring vehicles to back into traffic on minor or major arterials. *Response: No lots are proposed to gain access from an arterial street.*

17.100.230 - WATER FACILITIES

Water lines and fire hydrants serving the subdivision or partition, and connecting the development to City mains, shall be installed to provide adequate water pressure to serve present and future consumer demand. The materials, sizes, and locations of water mains, valves, service laterals, meter boxes and other required appurtenances shall be in accordance with the standards of the Fire District, the City, and the State.

The Views PD

Page 56 of 62

If the city requires the subdivider to install water lines in excess of eight inches, the city may participate in the oversizing costs. Any oversizing agreements shall be approved by the city manager based upon council policy and dependent on budget constraints. If required water mains will directly serve property outside the subdivision, the city may enter into an agreement with the subdivider setting forth methods for reimbursement for the proportionate share of the cost. **Response:** The applicant intends to install all water lines and fire hydrants in compliance with applicable standards.

17.100.240 - SANITARY SEWERS

Sanitary sewers shall be installed to serve the subdivision and to connect the subdivision to existing mains. Design of sanitary sewers shall take into account the capacity and grade to allow for desirable extension beyond the subdivision.

If required sewer facilities will directly serve property outside the subdivision, the city may enter into an agreement with the subdivider setting forth methods for reimbursement by nonparticipating landowners for the proportionate share of the cost of construction.

Response: The applicant intends to install sanitary sewer lines in compliance with applicable standards. As noted above, because of the depth of the existing sewer in Vista Loop, 11 lots in the Lower Views (Lots 39-46 and 61-63) and five lots (Lots 96-100) in the Upper Views will require installation of a grinder sump system installed at each of these dwellings to pump sanitary waste from these dwellings to a gravity sewer line in the development.

17.100.250 - SURFACE DRAINAGE AND STORM SEWER SYSTEM

A. Drainage facilities shall be provided within the subdivision and to connect with off-site drainage ways or storm sewers. Capacity, grade and materials shall be by a design approved by the city engineer. Design of drainage within the subdivision shall take into account the location, capacity and grade necessary to maintain unrestricted flow from areas draining through the subdivision and to allow extension of the system to serve such areas.

Response: A stormwater water quality and detention facility is proposed to be located in the eastern portion of the Lower Views and the western area of the Upper Views as shown on submitted plans. These facility's have been sized and located to accommodate public stormwater generated by the subdivision. A stormwater report is included with this application as required.

B. In addition to normal drainage design and construction, provisions shall be taken to handle any drainage from preexisting subsurface drain tile. It shall be the design engineer's duty to investigate the location of drain tile and its relation to public improvements and building construction. *Response:* No subsurface drain tiles are known to exist on the site.

The Views PD

Page 57 of 62

C. The roof and site drainage from each lot shall be discharged to either curb face outlets (if minor quantity), to a public storm drain or to a natural acceptable drainage way if adjacent to the lot.

Response: All roof and site drainage will be discharged to curb face outlets or another approved system as required.

17.100.260 - UNDERGROUND UTILITIES

All subdivisions or major partitions shall be required to install underground utilities (including, but not limited to, electrical and telephone wiring). The utilities shall be installed pursuant to the requirements of the utility company. *Response:* The applicant intends to install all utilities underground as required.

17.100.270 - SIDEWALKS

Sidewalks shall be installed on both sides of a public street and in any special pedestrian way within the subdivision.

Response: Sidewalks will be installed of both sides of all streets with the exception as detailed above a sidewalk is proposed to be constructed on only the North side of The View Drive from its intersection with Vista Loop Drive to the proposed public alley. The applicant is proposing this design to allow the road surface to be shifted to the South side of the public right-of-way to construct a six-foot sidewalk within a widened landscaped buffer. The applicant believes this design will provide a more aesthetically pleasing and desirable environment for pedestrians walking between the upper and lower parts of the development. The roadway width in this location will be 28 feet in compliance with city standards.

17.100.280 - BICYCLE ROUTES

If appropriate to the extension of a system of bicycle routes, existing or planned, the Director or the Planning Commission may require the installation of bicycle lanes within streets. Separate bicycle access ways may be required to reduce walking or cycling distance when no feasible street connection is available. **Response:** No bicycle routes are existing, planned, or proposed on the subject property. The applicant is aware that street improvements on Vista Loop Drive may require completion of a bicycle lane along this frontage.

17.100.290 - STREET TREES

Where planting strips are provided in the public right-of-way, a master street tree plan shall be submitted and approved by the Director. The street tree plan shall provide street trees approximately every 30' on center for all lots. **Response:** Planter strips will be provided along all frontages as required. Street trees in accordance with City standards will be provided in these areas.

17.100.300 - EROSION CONTROL

Grass seed planting shall take place prior to September 30th on all lots upon which a dwelling has not been started but the ground cover has been disturbed. The seeds shall be of an annual rye grass variety and shall be sown at not less than four pounds to each 1000 square feet of land area.

The Views PD

Page 58 of 62

Response: Grass seeding will be completed as required by this section. The submitted erosion control plan provides additional details to address erosion control concerns.

17.100.310 - REQUIRED IMPROVEMENTS

The following improvements shall be installed at no expense to the city, consistent with the design standards of Chapter 17.84, except as otherwise provided in relation to oversizing.

- A. Drainage facilities
- B. Lot, street and perimeter monumentation
- C. Mailbox delivery units
- D. Sanitary sewers
- E. Sidewalks
- F. Street lights
- G. Street name signs
- H. Street trees
- I. Streets
- J. Traffic signs
- K. Underground communication lines, including broadband (fiber), telephone, and cable. Franchise agreements will dictate whether telephone and cable lines are required.
- L. Underground power lines
- M. Water distribution lines and fire hydrants **Response:** All improvements specified in this section will be installed by the developer at no expense to the City of Sandy consistent with the design standards of Chapter 17.84 and applicable standards.

CHAPTER 17.102 - URBAN FORESTRY

17.102.20 - APPLICABILITY

This chapter applies only to properties within the Sandy Urban Growth Boundary that are greater than one acre including contiguous parcels under the same ownership.

A. General: No person shall cut, harvest, or remove trees 11 inches DBH or greater without first obtaining a permit and demonstrating compliance with this chapter.

- 1. As a condition of permit issuance, the applicant shall agree to implement required provisions of this chapter and to allow all inspections to be conducted.
- 2. Tree removal is subject to the provisions of Chapter 15.44, Erosion Control, Chapter 17.56, Hillside Development, and Chapter 17.60 Flood and Slope Hazard.

Response: The subject property contains 32.87 and the standards of this chapter are applicable to the proposed Planned Development. The applicant intends removing some of the trees on the property to accommodate development of a residential subdivision. The proposed tree

The Views PD

Page 59 of 62

removal and protection plan has been designed in accordance with the standards of this chapter and the provisions in Chapters 15.44, 17.56, and 17.60 as applicable.

17.102.50 - TREE RETENTION AND PROTECTION REQUIREMENTS

- A. Tree Retention: The landowner is responsible for retention and protection of trees required to be retained as specified below:
 - 1. At least three trees 11 inches DBH or greater are to be retained for every one-acre of contiguous ownership.
 - 2. Retained trees can be located anywhere on the site at the landowner's discretion before the harvest begins. Clusters of trees are encouraged.
 - 3. Trees proposed for retention shall be healthy and likely to grow to maturity, and be located to minimize the potential for blow-down following the harvest.
 - 4. If possible, at least two of the required trees per acre must be of conifer species.
 - 5. Trees within the required protected setback areas may be counted towards the tree retention standard if they meet these requirements. *Response:* As shown on the submitted plan set, the majority of trees on the subject property are located within the FSH Overlay portion of the Lower Views. The subject property contains 32.87 acres requiring retention of 99 trees, 11 inches and greater DBH (32.87 x 3 = 98.61 rounded up to 99 trees) and in good condition. The submitted plan indicates that 212 trees are proposed to be retained, at least 99 of these are over 11-inches DBH and in good condition as required. In addition as detailed in the Arborist report 69 of the 99 these trees (70%) are conifer species as preferred by subsection 4 above. No trees are proposed to be removed within the FSH Overlay area.
- B. Tree Protection Area: Except as otherwise determined by the Planning Director, all tree protection measures set forth in this section shall be instituted prior to any development activities and removed only after completion of all construction activity. Tree protection measures are required for land disturbing activities including but not limited to tree removal, clearing, grading, excavation, or demolition work.
 - 1. Trees identified for retention shall be marked with yellow flagging tape and protected by protective barrier fencing placed no less than 10 horizontal feet from the outside edge of the trunk.
 - 2. Required fencing shall be a minimum of six feet tall supported with metal posts placed no farther than ten feet apart installed flush with the initial undisturbed grade.
 - 3. No construction activity shall occur within the tree protection zone, including, but not limited to dumping or storage of materials such as building supplies, soil, waste items, equipment, or parked vehicles.

The Views PD

Page 60 of 62

Response: As shown on the submitted Tree Retention and Protection plan the majority of retained trees are not proposed to be retained on any lot or within any area proposed for development. The submitted Arborist report contains additional recommendations for tree protection.

17.102.60 - TREE REPLANTING REQUIREMENTS

- 1. All areas with exposed soils resulting from tree removal shall be replanted with a ground cover of native species within 30 days of harvest during the active growing season, or by June 1st of the following spring.
- 2. All areas with exposed soils resulting from tree removal occurring between October 1 and March 31 shall also be covered with straw to minimize erosion.
- 3. Removal of hazard trees as defined shall be replanted with two native trees of quality nursery stock for every tree removed.
- 4. Tree Removal allowed within the FSH Overlay District shall be replanted with two native trees of quality nursery stock for every tree removed.
- 5. Tree Removal not associated with a development plan must be replanted following the provisions of OAR Chapter 629, Division 610, Section 020-060 **Response:** The requirements of this section as applicable will be completed with construction of subdivision improvements.

17.102.70 - VARIANCES

Response: The submitted plan is designed in compliance with the standards in this chapter and a variance to these standards is not requested or required.

CHAPTER 15.30 - DARK SKY ORDINANCE

15.30.000 - PURPOSE

The purpose of the Sandy Dark Sky Ordinance is to regulate outdoor lighting in order to reduce or prevent light pollution. This means to the extent reasonably possible the reduction or prevention of glare and light trespass, the conservation of energy, and promotion of safety and security. (Ord. 2002-11)

15.30.030 - EXEMPTIONS AND EXCEPTIONS

D. Full cutoff street lighting, which is part of a federal, state, or municipal installation.

15.30.060 - GENERAL STANDARDS

D. All outdoor lighting systems shall be designed and operated so that the area 10 feet beyond the property line of the premises receives no more than .25 (one quarter) of a foot-candle of light from the premises lighting system.

Response: The applicant understands the requirements of this chapter. A detailed lighting plan will be submitted with construction plans following land use approval.

The Views PD

Page 61 of 62

V. Conclusion

The applicant proposes constructing a 122 lot Planned Development to include 120 lots intended for single family dwellings with 32 lots of these for single family attached dwellings and 88 lots for single family detached dwellings. Lot sizes vary from large view lots to smaller lots to accommodate more moderate homes. In addition, two lots are proposed to construct 48 multi-family units at a later date. The project is divided into the "Lower Views" east of Vista Loop Drive and the "the Upper Views" located across Vista Loop Drive to the West. The two parts of the development with be connected by a sidewalk system and will share all project amenities. Thirty-six percent (11.92 acres) of the total lot area of the Planned Development is proposed to be designated private open space with 8.22 acres of this open space within FSH Overlay restricted development areas.

The project has been designed to provide residents The Views with a wide array of amenities including tot lots and play structures, half-court basketball courts, and a dog park. In addition, a trail system is proposed to be constructed within natural areas of the Lower Views and a Mt. Hood viewpoint plaza is also proposed to be constructed in a central location for all to enjoy. All of these amenities are intended for the use and pleasure of the resident's of the Planned Development and will be owned and maintained by a Homeowner's Association formed for this purpose. The Concept Plan for the development prepared by a Landscape Architect illustrates these amenities in addition to other notable features including a decorative sound wall to be constructed along Highway 26, a development entry sign, meandering sidewalks and footpaths, and extensive landscaping. Also as shown on this plan, a "Welcome to Sandy" monument sign is proposed to be constructed by the applicant along Highway 26 at the East end of the Upper Views .

As reviewed in this narrative and shown on submitted plans and studies including the submitted Traffic Impact Analysis, Geotechnical Report, Arborist Report, The Views Planned Development complies with all applicable standards with the exception of code variations as discussed in Section 17.64.30 above. Given these facts the applicant respectfully requests this application be approved as submitted.

The Views PD

Page 62 of 62

EXHIBIT C

The Views Planned Development File No. 20-028 Special Variance Request and Narrative

Request: The applicant requests two special variances with this application as detailed below.

- 1. Special Variance to Section 17.84.30(A) to not construct sidewalk improvements adjacent to a single street frontage and to construct a meandering sidewalk design along three street segments;
- 2. Special Variance to Section 17.82.20(A) and (B) to not orient the front doors of homes constructed on lots adjacent to Highway 26 towards the internal street rather than the highway.

CHAPTER 17.66 - ADJUSTMENTS AND VARIANCES 17.66.80 TYPE III SPECIAL VARIANCES

The Planning Commission may grant a special variance waiving a specified provision under the Type III procedure if it finds that the provision is unreasonable and unwarranted due to the specific nature of the proposed development. In submitting an application for a Type III Special Variance, the proposed development explanation shall provide facts and evidence sufficient to enable the Planning Commission to make findings in compliance with the criteria set forth in this section while avoiding conflict with the Comprehensive Plan.

Special Variance No. 1

The applicant requests a Special Variance to Section 17.84.30(A) to not construct a sidewalk along the South side of The Views Drive from Vista Loop Drive to the alley and to construct meandering sidewalks within a private tract along the north side of The Views Drive and the west side of Bonnie Street in The Lower Views and along Vista Loop Drive in The Upper Views.

One of the following sets of criteria shall be applied as appropriate.

A. The unique nature of the proposed development is such that:

1. The intent and purpose of the regulations and of the provisions to be waived will not be violated; and

Response: Section 17.84.30(A) requires sidewalks to be constructed along both sides of all arterial, collector, and local streets according to city standards. As noted above, the applicant proposes constructing a sidewalk only on the north side of The Views Drive from Vista Loop Drive to the alley. City standards require a five foot wide sidewalk along both sides of a local street. The applicant proposes constructing a six-foot wide meandering sidewalk within a privately landscaped on the north side of this street only.

The Views Special Variance Narrative

Page 1 of 3

This facility will be located within Tract E, a private tract owned and maintained by the Homeowner's Association. The intent of this proposal is to create an enhanced pedestrian environment for residents and visitors walking between the Upper and Lower Views portions of the development. A similar meandering sidewalk configuration is proposed along Vista Loop Drive in The Upper Views and the West side of Bonnie Street in The Lower Views. The applicant believes these facilities will provide a more pleasant and unique pedestrian experience for the residents and visitors of the Planned Development. The proposed amenities are more than adequate to serve pedestrian volumes anticipated to use these facilities and the needs of this neighborhood. Approval of this request will not violate the intent and purpose of these regulations as an enhanced sidewalk will be constructed in these locations. The proposal complies with this criteria.

- 2. Authorization of the special variance will not be materially detrimental to the public welfare and will not be injurious to other property in the area when compared with the effects of development otherwise permitted. *Response:* The proposed variance to eliminate a sidewalk along the south side of The Views Drive and to construct meandering sidewalks along three street segments will not be detrimental to the public welfare or will they be injurious to other property in the area. On the contrary, the applicant believes these facilities will enhance the pedestrian experience for residents and visitors of the development and will have no affect on adjoining properties. The proposal complies with this criteria.
- B. The variance approved is the minimum variance needed to permit practical compliance with a requirement of another law or regulation.
 Response: The requested Special Variance is the minimum needed to facilitate creation of the intended character and design of the proposed Planned Development. The proposal complies with this criteria.
- C. When restoration or replacement of a nonconforming development is necessary due to damage by fire, flood, or other casual or natural disaster, the restoration or replacement will decrease the degree of the previous noncompliance to the greatest extent possible.

Response: The proposal does not involve nonconforming development.

Special Variance No. 2

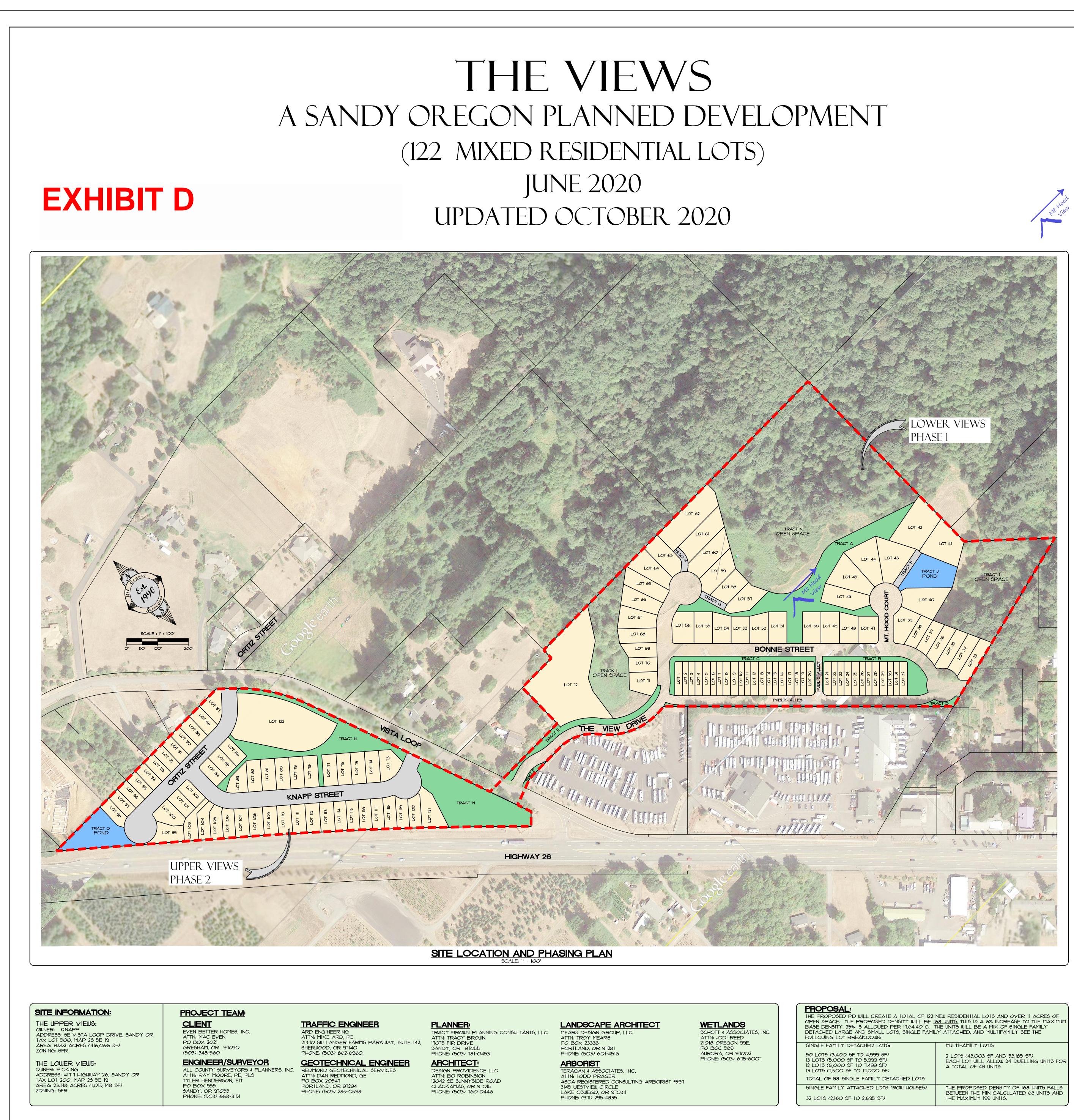
The applicant requests a special Variance to Sections 17.82.20(A) and (B) to orient the front doors of homes constructed on the lots adjacent to Highway 26 towards the internal street rather than to Highway 26.

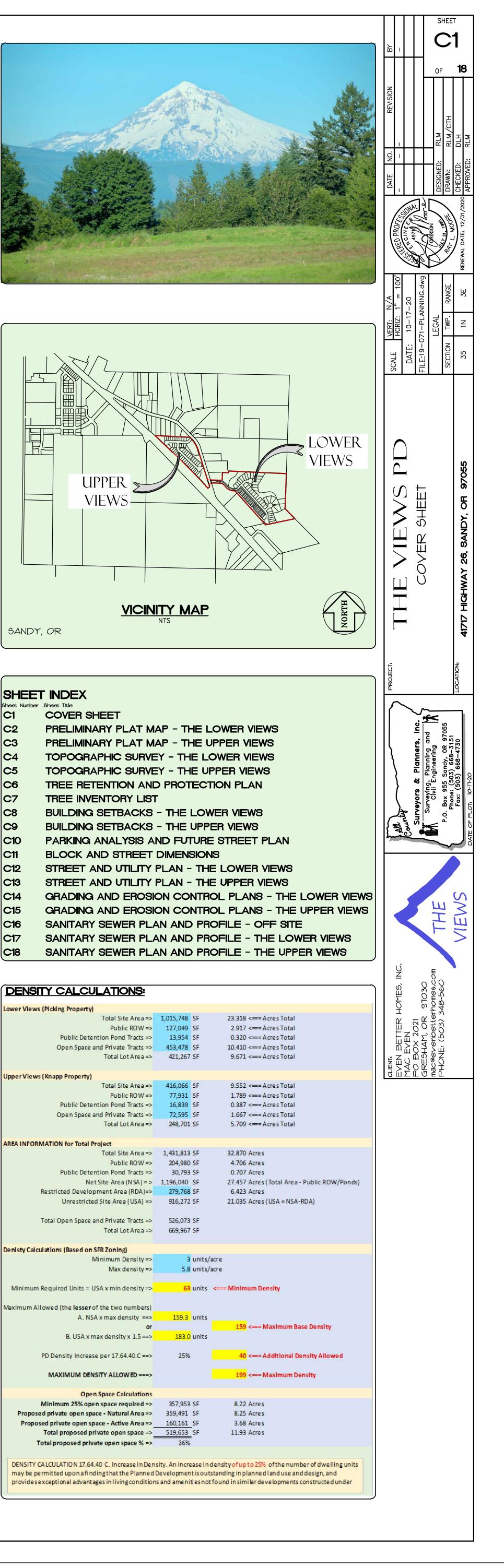
A. The unique nature of the proposed development is such that:

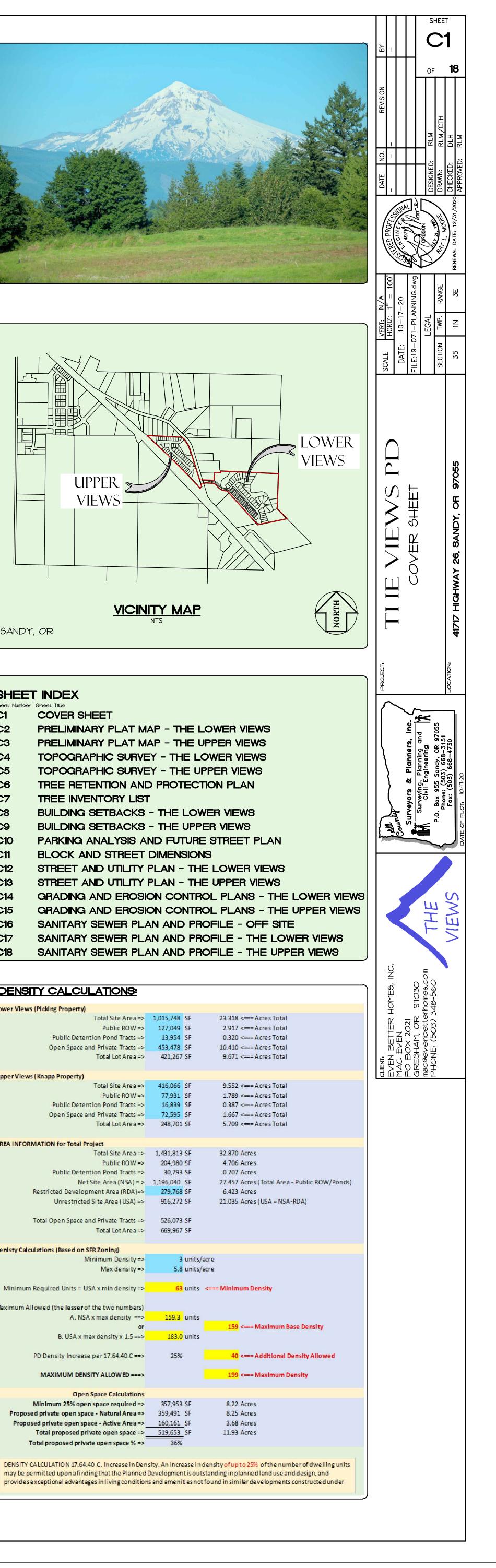
1. The intent and purpose of the regulations and of the provisions to be waived will not be violated; and

The Views Special Variance Narrative

Page 2 of 3

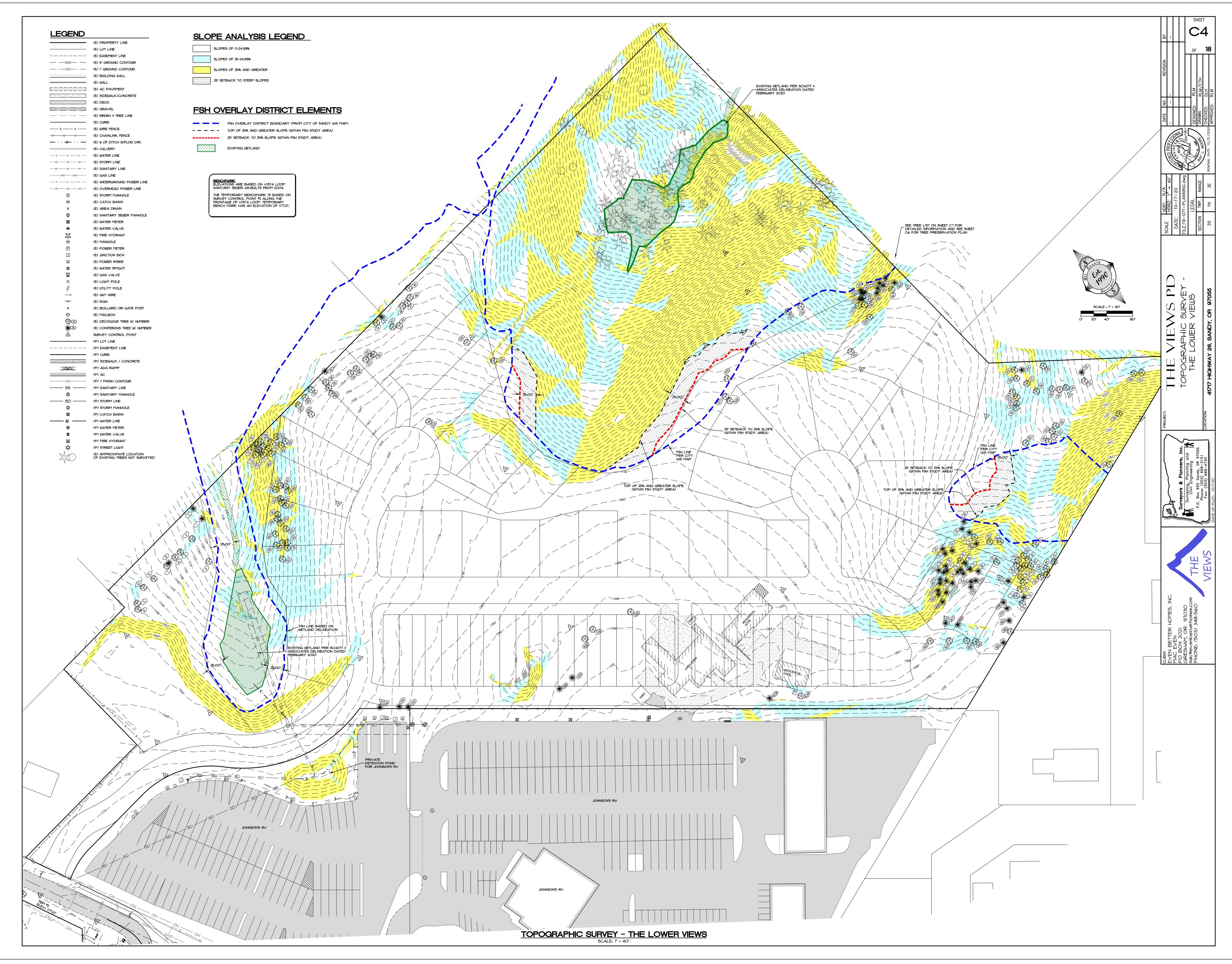

Response: Section 17.82.20(A) specifies that all residential dwellings shall have their primary entrances oriented toward a transit street or toward a public right-of-way or private walkway which leads to a transit street. Section 17.82.20(B) requires that "dwellings shall have a primary entrance connecting directly between the street and building interior." A transit street is defined as any collector or arterial street. The site has frontage on both Highway 26, an arterial and Vista Loop Drive, a collector street. The applicant proposes orienting the front door of homes abutting Highway 26 (Lots 99 and 103 - 121) towards the internal street rather than highway. The reason for this request is because there is a signification grade separating the elevation of these lots and the highway. In addition, because of concerns of increased sound levels from the highway traffic adversely affecting homes constructed adjacent to this road, a six-foot tall sound wall will be constructed at the back of these lots. This facility will essentially block access to the transit street and the sidewalk proposed to be constructed at the top of this bank. As contained in Chapter 17.82, this chapter "is to provide for convenient, direct, and accessible pedestrian access to and from public sidewalks and transit facilities". Given vehicle speeds along Highway 26 and site specific constraints it is highly unlikely a transit stop or boarding will ever be allowed along this portion of the Highway 26. As such, orienting homes towards this road and requiring constructing of a sidewalk connection is not warranted and should not be required. Given these factors, compliance with these standards is not practical. The unique site conditions described in this review warrants approval of a. Special Variance as the proposal does not violate the intent and purpose of these regulations.

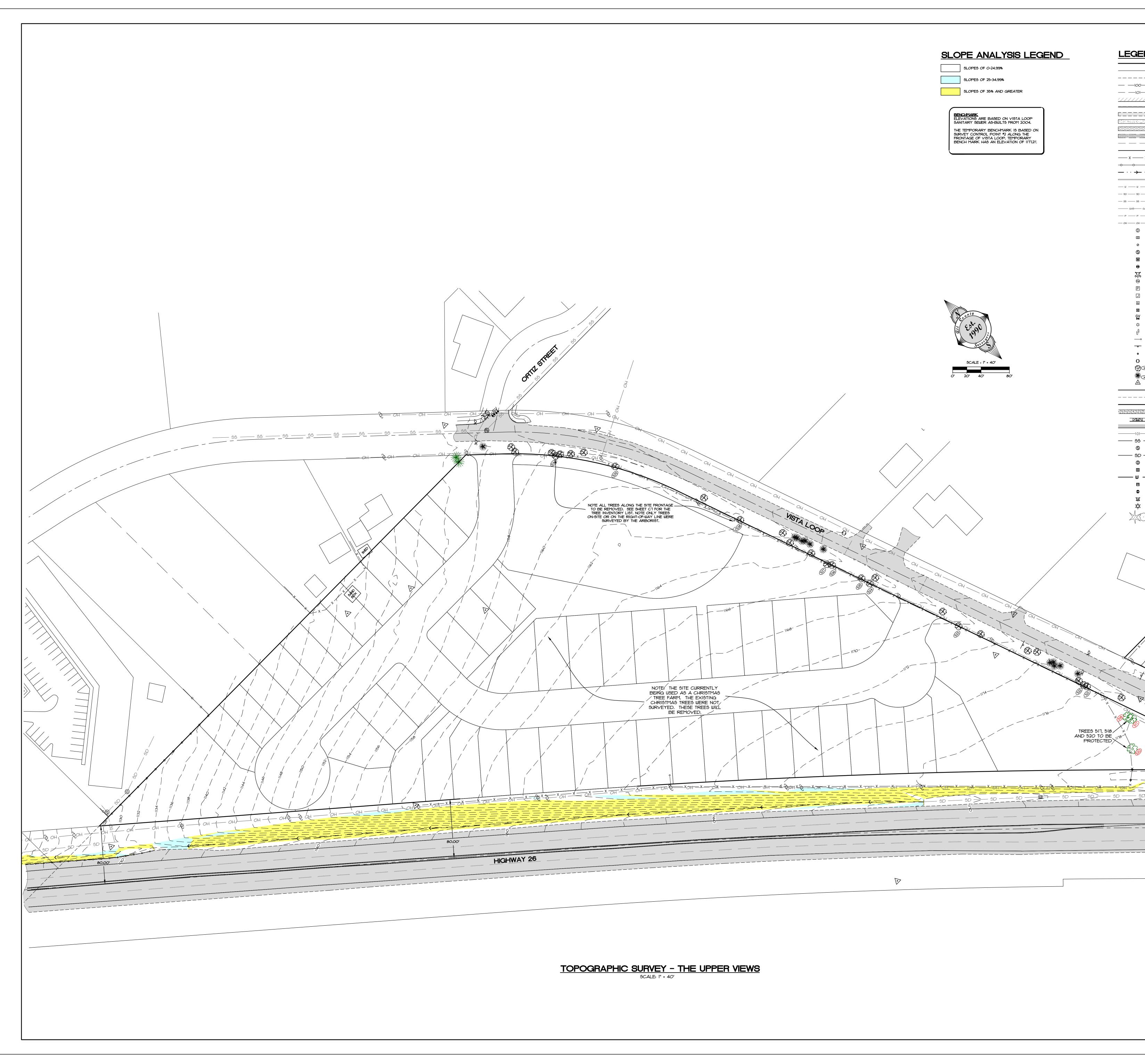

- 2. Authorization of the special variance will not be materially detrimental to the public welfare and will not be injurious to other property in the area when compared with the effects of development otherwise permitted. **Response:** The requested variance to this standard will have no effect on the public welfare or other properties in the area. The proposal includes front doors of homes constructed on these lots facing the internal street and a sidewalk connecting to a sidewalk along this facility. The proposal complies with this criteria.
- B. The variance approved is the minimum variance needed to permit practical compliance with a requirement of another law or regulation. **Response:** The requested variance is the minimum variance needed to permit practical compliance with this regulation.
- C. When restoration or replacement of a nonconforming development is necessary due to damage by fire, flood, or other casual or natural disaster, the restoration or replacement will decrease the degree of the previous noncompliance to the greatest extent possible.


Response: The proposal does not involve nonconforming development.

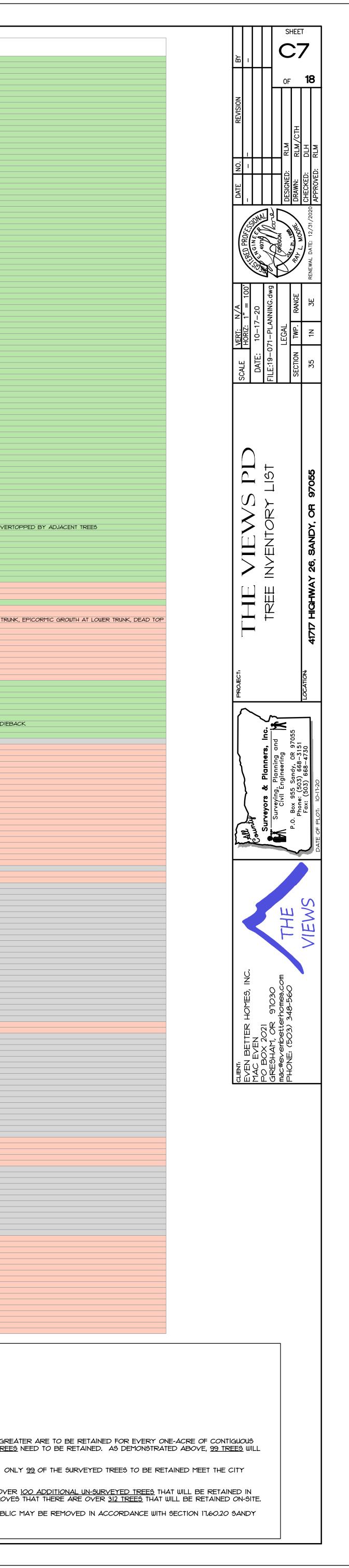
The Views Special Variance Narrative

Page 3 of 3

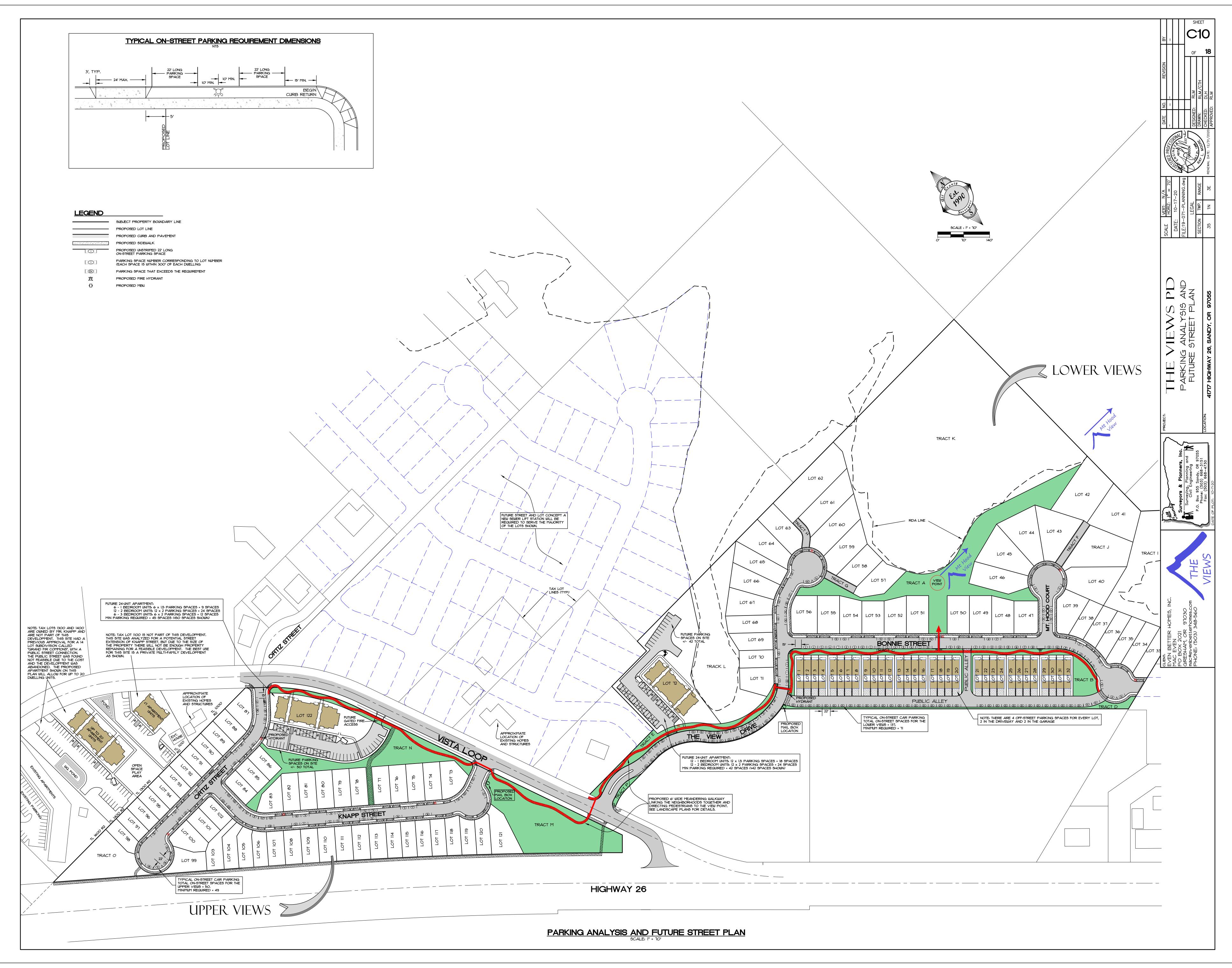


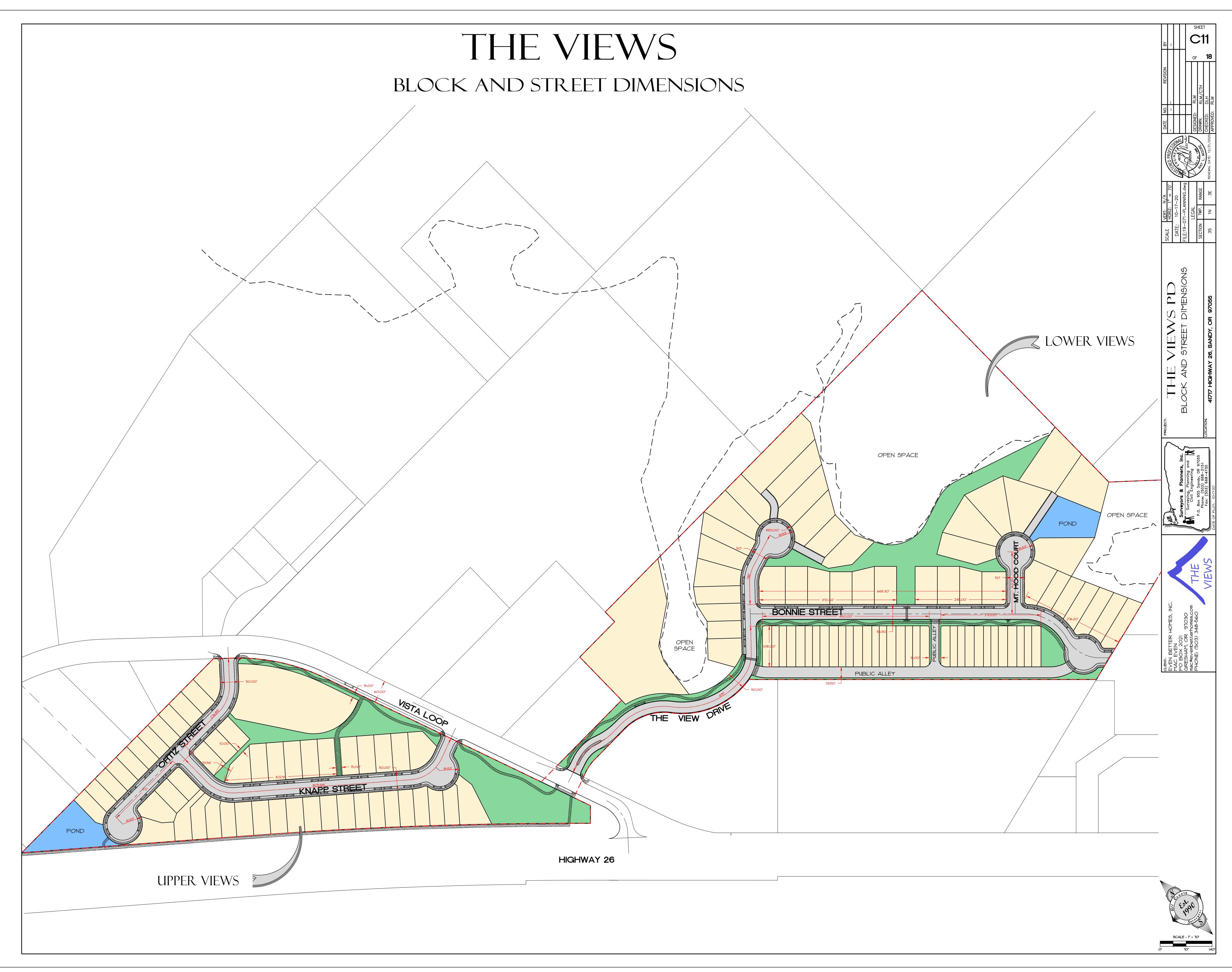

SHEE	T INDEX
Sheet Number	
C1	COVER SHEET
C2	PRELIMINARY PLAT MAP
C3	PRELIMINARY PLAT MAP
C4	TOPOGRAPHIC SURVEY -
C5	TOPOGRAPHIC SURVEY -
C6	TREE RETENTION AND P
C7	TREE INVENTORY LIST
C8	BUILDING SETBACKS - T
C9	BUILDING SETBACKS - T
C10	PARKING ANALYSIS AND
C11	BLOCK AND STREET DIN
C12	STREET AND UTILITY PLA
C13	STREET AND UTILITY PLA
C14	GRADING AND EROSION
C15	GRADING AND EROSION
C16	SANITARY SEWER PLAN
C17	SANITARY SEWER PLAN
C18	SANITARY SEWER PLAN

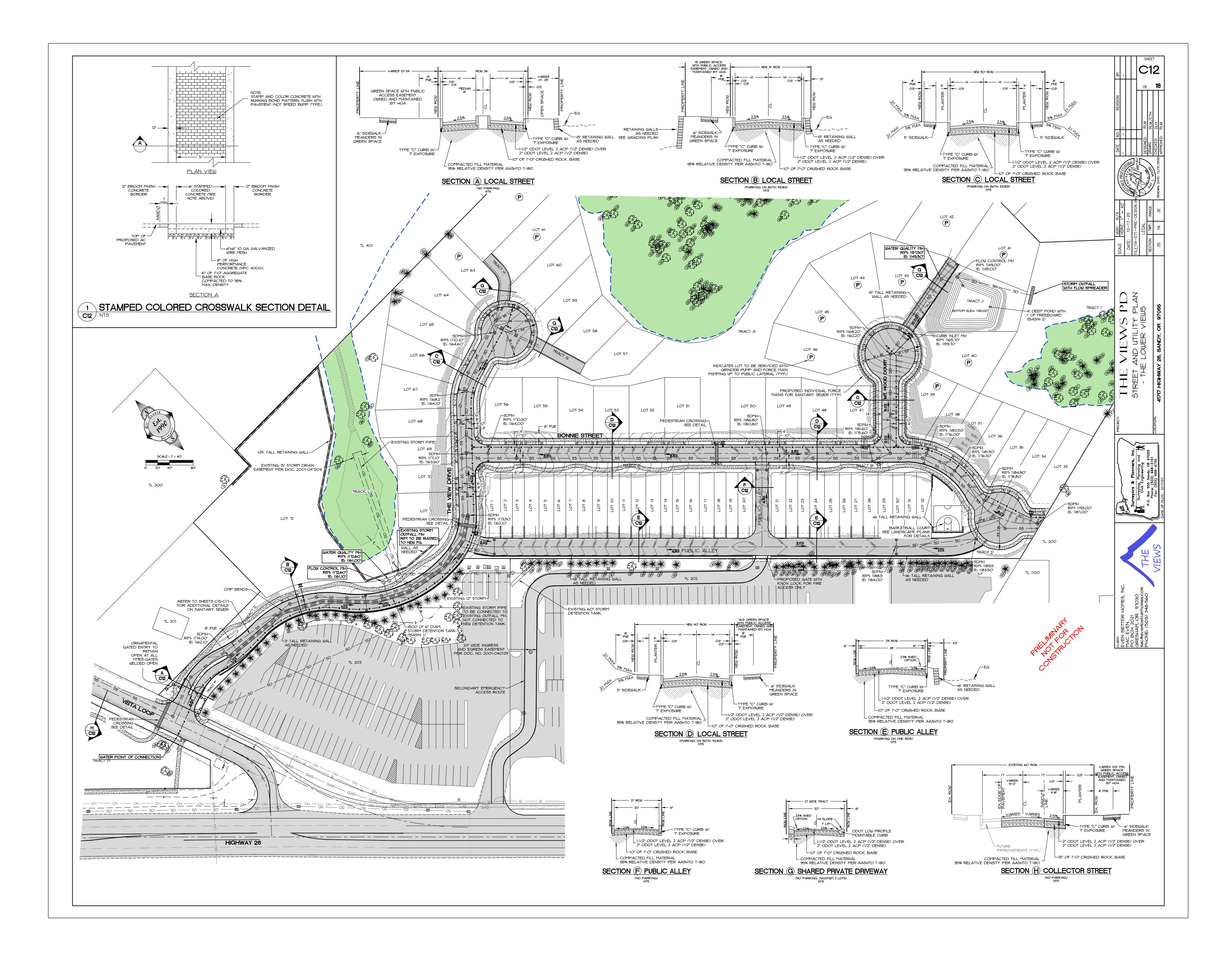
DENSITY CALCULATIONS:	
Lower Views (Picking Property)	
Total Site Area =>	1,0
Public ROW =>	1
Public Detention Pond Tracts =>	
Open Space and Private Tracts =>	4
Total Lot Area =>	
Upper Views (Knapp Property)	
Total Site Area =>	4
Public ROW =>	
Public Detention Pond Tracts =>	
Open Space and Private Tracts =>	
Total Lot Area =>	
AREA INFORMATION for Total Project	
Total Site Area =>	1,-
Public ROW =>	-,
Public Detention Pond Tracts =>	
Net Site Area (NSA) = >	1,1
Restricted Development Area (RDA)=>	-,-
Unrestricted Site Area (USA) =>	
Total Open Space and Private Tracts =>	1
Total Lot Area =>	1
Denisty Calculations (Based on SFR Zoning)	
Minimum Density =>	
Max density =>	
Minimum Required Units = USA x min density =>	
Maximum Allowed (the lesser of the two numbers)	
A. NSA x max density ==>	
or	
B. USA x max density x 1.5 ==>	
PD Density Increase per 17.64.40.C ==>	
PD Density increase per 17.04.40.C ==>	
MAXIMUM DENSITY ALLOWED ===>	
Open Space Calculations	
Minimum 25% open space required =>	
Proposed private open space - Natural Area =>	3
Proposed private open space - Active Area =>	1

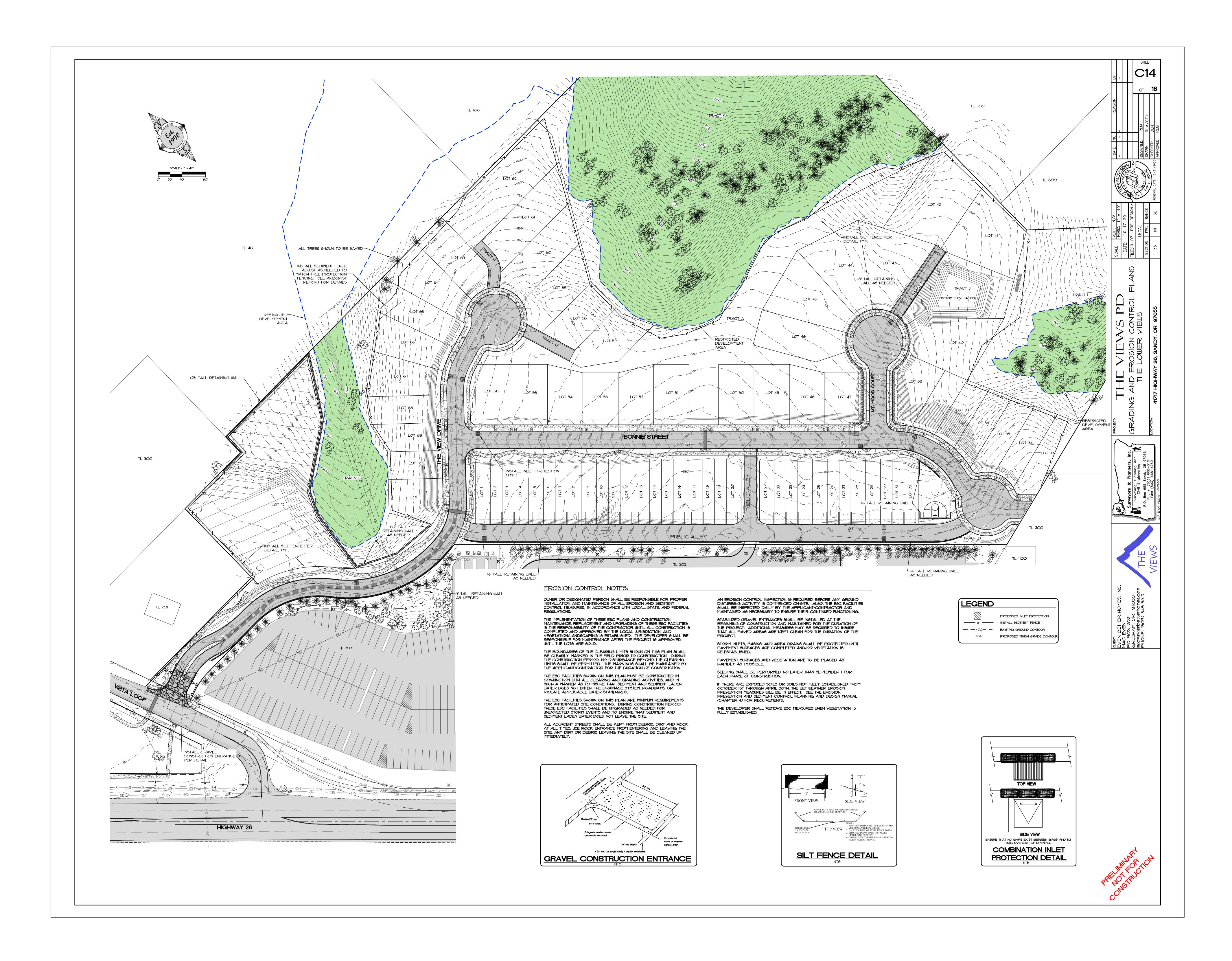


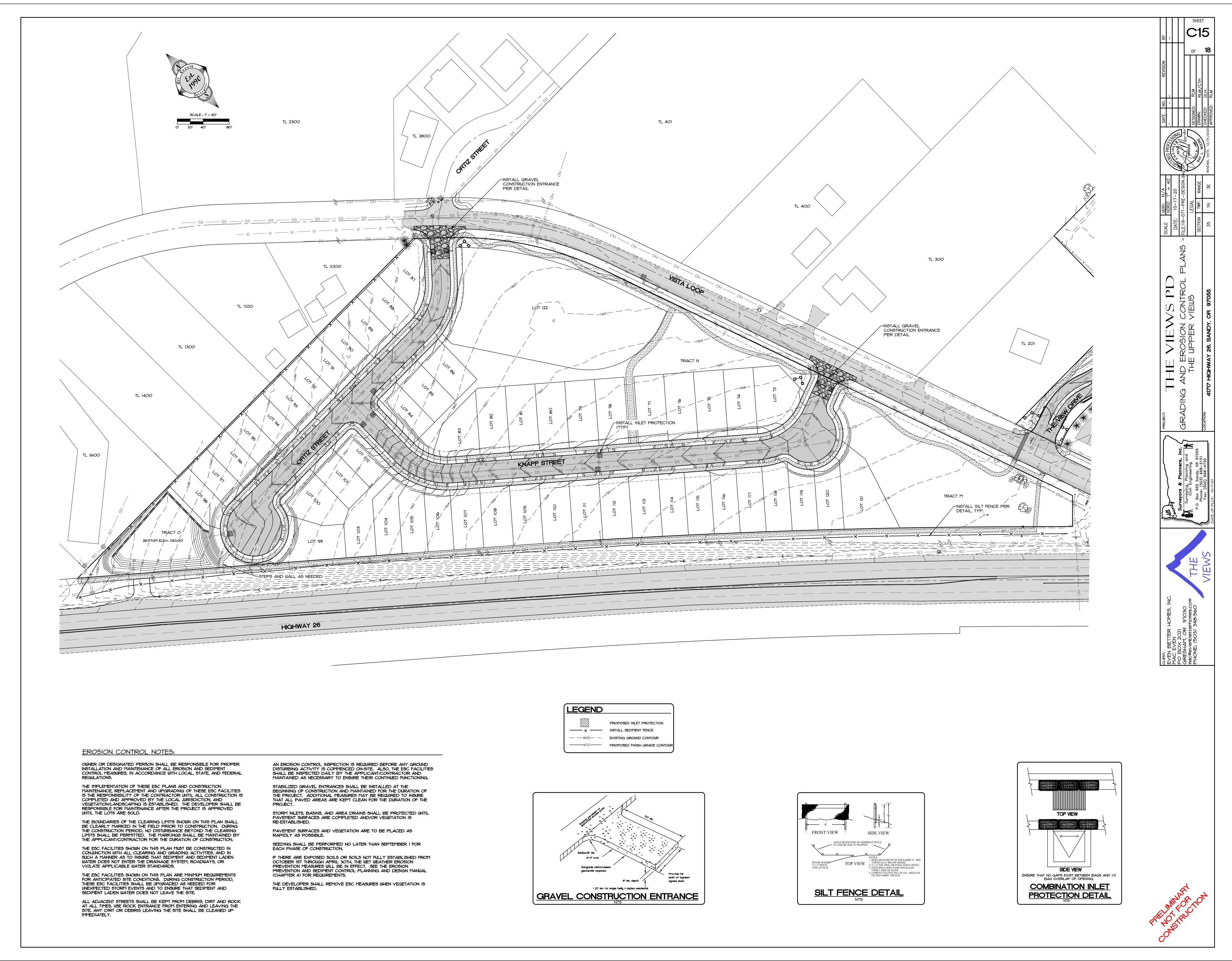
		(E) PROPERTY LINE		8
		(E) LOT LINE	SION	
	<u> 100 </u>			
				RLM
		(E) SIDEWALK/CONCRETE		
		(E) GRAVEL	DATE – – – – – – – – – – – – – – – – – – –	APPRO
	x x	(E) CURB		0202/10
	· ->- · ·	(E) CHAINLINK FENCE	10 PROF	
	ww	(E) CULVERT		NEWAL U
				Å
	GAS GAS			Ϋ́
	D	(E) STORM MANHOLE	<u>FERT:</u> 10–17 1–PLAI 1–PLAI EGAL TWP.	Z [
	Θ	(E) AREA DRAIN	ATE:	55
	W	(E) WATER METER	SCA FILE SEC	
	e B B	(E) FIRE HYDRANT		
	Ρ			
Contract and the second of the second o	¢	(E) LIGHT POLE		222
C DALES CONTROL FORM C DALES CONTROL FORM C D DECELUIS INFERENCE C D DECELUIS INFERENCE C D C D D C DALES INFERENCE C D C D D C D C D C D C D C D C C C C C		(E) GUY WIRE		
A SHEMEY CONTROL FOUNT (P) LOT LINE (P) CATEB (P) ADD RAYE (P) ADD R	0	(E) BOLLARD OR GATE POST		ō ≿
A SUBMEY CONTROL FONT (P) LOT LINE (P) CLUE IN (P) SAMTARY LINE (P) ACA SO (P) SANTARY LINE (P) ACA (P) SANTARY LINE (P) SANTARY		(E) DECIDUOUS TREE W/ NUMBER		SANC
PP EAGEMENT LINE (P) CARE (P) AC (P) AC (P) AC (P) ACT (P) A		SURVEY CONTROL POINT		20, 20,
PP AC PP I FIRENCICATIONE PP SAMITARY TIME PP STREAM TIME PP OF STORM HARNOLE PP OF STORM PP OF STORM HARNOLE PP OF STORM HARNOLE PP OF STORM HARNOLE PP OF STORM HARNOLE PP OF STORM PP OF STORM HARNOLE PP OF STORM PP OF	·		山 袋井 !!	YAY
60 (P) SANITARY TANHOLE 90 (P) SONITARY TANHOLE 90 (P) STORT HANOLE 90 (P) STORT HANOLE 91 (P) STORT HANOLE 92 (P) STORT HANOLE 93 (P) STORT HANOLE 94 (P) STORT HANDLE 95 (P) UATER HORANT 95 (P) STORT HANDLE 95 (P) STORT HANDLE 95 (P) STORT HANDLE 95 (P) STORT HANDLE 95 (P) UATER HORANT 95 (P) STORT HANDLE 96 (P) STORT HANDLE 97 (P) STORT HANDLE 98 (P) STORT HANDLE 99 (P) STORT HANDLE 90 (P) STORT HANDLE 90 <td></td> <td></td> <td></td> <td></td>				
Determined by the service of the ser		(P) I' FINISH CONTOUR		41/1/
Detroits from the first of the state of the	S	(P) SANITARY MANHOLE		
The sevent of th	D	(P) STORM MANHOLE	ROLECT	
HEALT LEADER (G) HEALT LEADER ALL RALES (G) HEALT LEADER ALL RALES (G) HEALT LEADER ALL RALES (G) HEALT LEADER ALL RALES (G) HEALT CASH ALL CASH ALL CASH ALL RALES (G) HEALT CASH ALL CAS	-w ——	(P) WATER LINE		
HEAT LEASE LANGE (10) 100 100 100 100 100 100 100 100 100	٢	(P) WATER VALVE		
Constrained by the second seco	* Maria	(E) APPROXIMATE LOCATION	an an an 30	
The second secon	Mus		k Plann Planni Sandy, 503) 668-13	20
Prove foot and the second seco			veying, Civil E tox 955 ione: (50 ax: (50	
Lent Cue				đ
CIENT CI	7			
CIENT CI				
CIENT CI				\mathbf{r}
CIENT CI	4	AND		2
CIENT CI				
CIENT CI	+	50 / 50 /		
	S J	50 T	E3, IN 330 560	
	The second secon		248-F	
	W	GAS OF CH	ETTER EN M, OF M, OF (503)	
		A A A A A A A A A A A A A A A A A A A		
		Of the second se		
OH OH OH OH OH OH OH	N 20 S 20			
3D 3	<		4	
3D 3				
	OH 	SD SD SD	di	
		— – H — – – – – – – – – – – – – – – – –		
				ļ

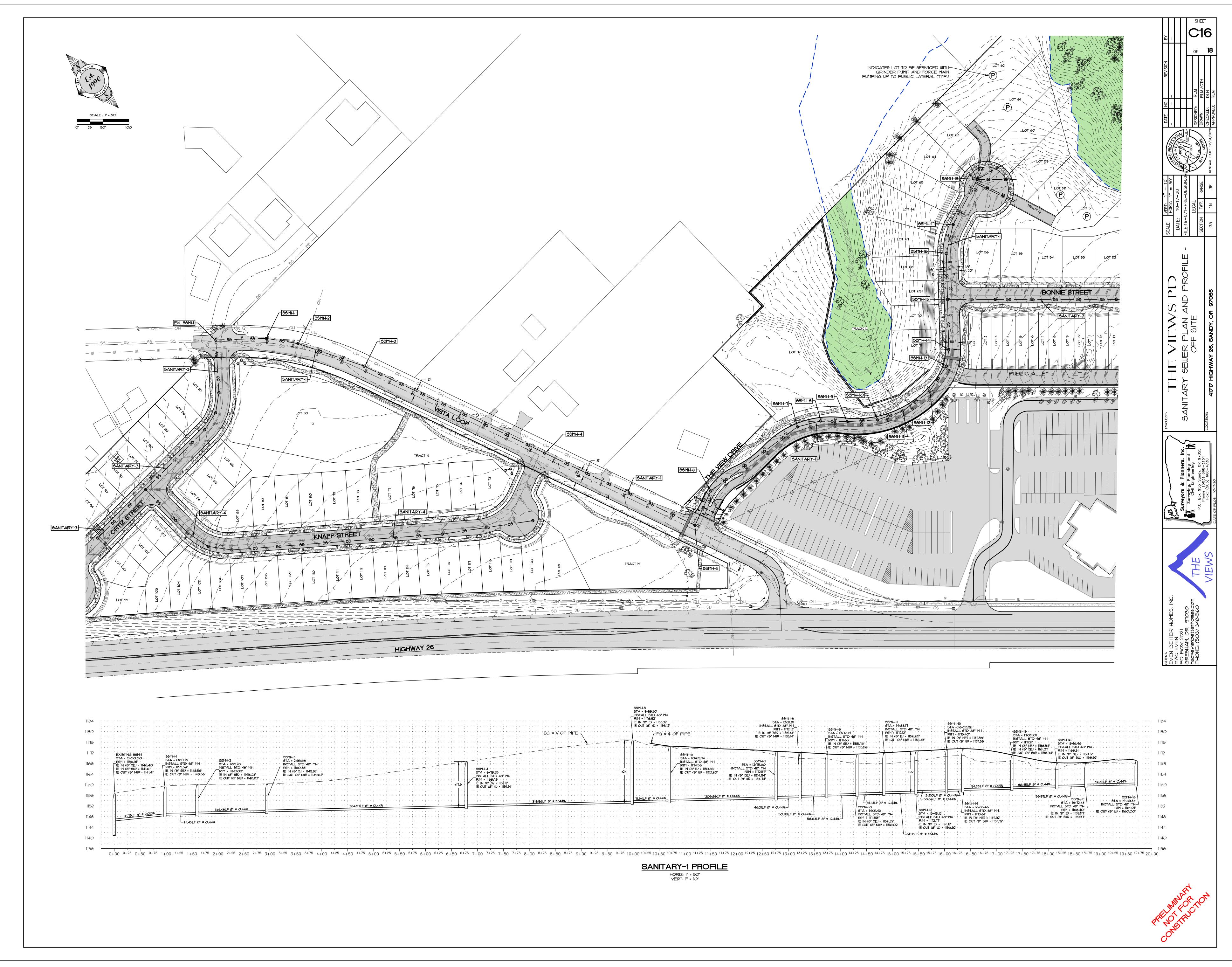


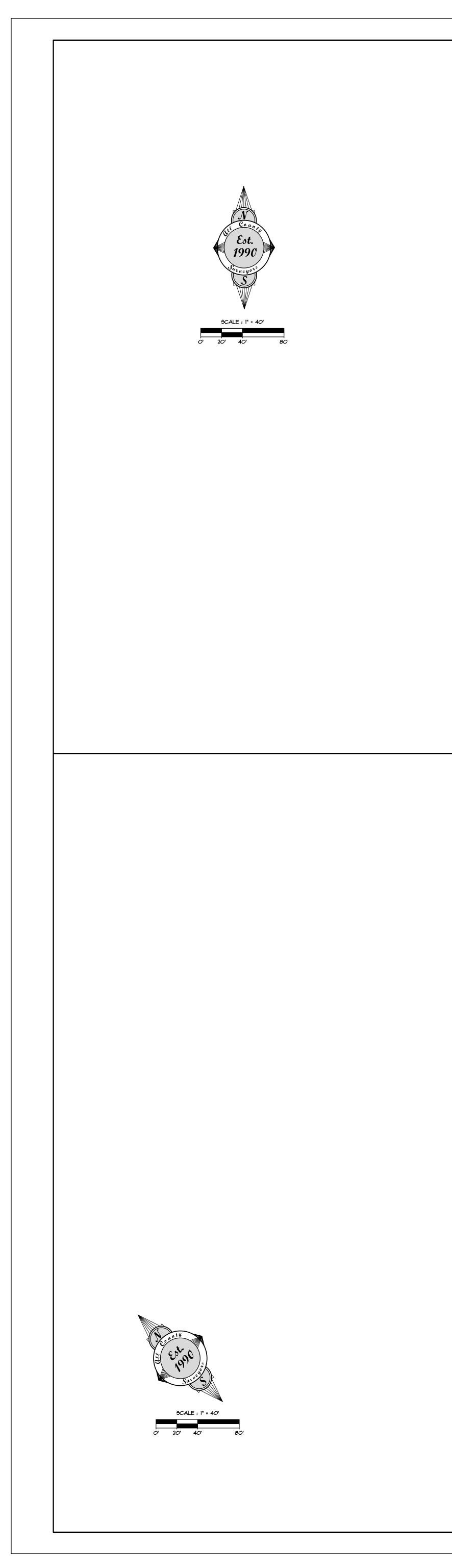

TREE TO B SAVED OF REMOVED	R TREE NO COMMON NAME SCIENTIFIC NAME DBH ¹ 1 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 48	C-RAD ² CONDITION ³ STRU 23 GOOD FAIR	R YES MODERATELY ONE SIDED, EXTENSIVE IVY, CODOMINANT STEMS WITH NARROW CROTCH			NoCOMMON NAMESCIENTIFIC NAME240RED ALDERALNUS RUBRA		C-RAD ² CONDITION	i i
RED	2 DOUGLAS-FIR P3EUDOTSUGA MENZIESII 46 3 SWEET CHERRY PRUNUS AVIUM 12 4 RED ALDER ALNUS RUBRA 54 5 SWEET CHERRY PRUNUS AVIUM 20 6 SWEET CHERRY PRUNUS AVIUM 33	21 GOOD FAIR 14 POOR POO 29 FAIR FAIR 26 FAIR FAIR 21 EAIR FAIR	NO POOR TAPER, EXTENSIVE IVY, 10% LIVE CROWN RATIO (LCR) R NO MULTIPLE LEADERS AT 6, LARGE OVEREXTENDED STEMS R NO CODOMINANT AT 3' WITH INCLUDED BARK, OVEREXTENDED BRANCHES			241 RED ALDER ALNU3 RUBRA 242 DOUGLA9-FIR PSEUDOT3UGA MENZIESII 243 DOUGLA9-FIR PSEUDOT3UGA MENZIESII 244 WESTERN REDCEDAR THUJA PLICATA 245 BIGLEAE MADLE CED MACROPUNILLUM	0 21 28 5	O FAIR 9 GOOD 5 GOOD 5 GOOD 6 GOOD	POOR NO POOR TRUNK TAPER, ONE SIDED FAIR YES BOWED LOWER TRUNK FAIR YES ONE SIDED FAIR YES DIRECTLY ADJACENT TO TREE 243, ONE SIDED FAIR YES DIRECTLY ADJACENT TO TREE 243, ONE SIDED FAIR NO ONE SIDED FAIR NO ONE SIDED
ATES	6 SWEET CHERRY PRUNUS AVIUM 32 1 SWEET CHERRY PRUNUS AVIUM 22 8 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 15 9 SWEET CHERRY PRUNUS AVIUM 10 10 SWEET CHERRY PRUNUS AVIUM 13	21 FAIR FAIR 15 FAIR FAIR 16 FAIR POO 13 FAIR POO 14 POOR POO	R NO ONE SIDED, POOR TAPER R NO POOR TAPER, EXTENSIVE IVY		× 2 × 2 × 2 × 2	245 BIGLEAF MAPLE ACER MACROPHYLLUM 246 RED ALDER ALNUS RUBRA 241 RED ALDER ALNUS RUBRA 248 WESTERN REDCEDAR THUJA PLICATA 249 DED AL DED ALNUS RUBRA	9 : 9 : 8 : 4 :	O FAIR 20 GOOD 25 GOOD 5 GOOD 5 POOR	FAIR YES 40% LCR FAIR YES ONE SIDED, PRESSED AGAINST ADJACENT TREE FAIR YES PRESSED AGAINST ADJACENT TREES
BE DYED TYP)	IOSWEET CHERRYPRUNUS AVIUM13IISWEET CHERRYPRUNUS AVIUM18I2SWEET CHERRYPRUNUS AVIUM38I3SWEET CHERRYPRUNUS AVIUM20I4WESTERN REDCEDARTHUJA PLICATAI4	14 POOR POO			× 2 × 2 2 2 2	249 RED ALDER ALNUS RUBRA 250 BIGLEAF MAPLE ACER MACROPHYLLUM 251 RED ALDER ALNUS RUBRA 252 BIGLEAF MAPLE ACER MACROPHYLLUM 253 DOUGLAS-FIR PSEUDO15UGA MENZIESII	2 34 : 8 48 :	5 POOR 21 GOOD 5 POOR 20 VERY POO	POOR NO SIGNIFICANT LEAN, POOR TRUNK TAPER, EPICORMIC GROWTH AT LOWER TRUNK FAIR YES MODERATELY ONE SIDED, MULTIPLE LEADERS POOR NO OVERTOPPED BY ADJACENT TREES, MODERATELY SUPPRESSED PR VERY POOR NO EXTENSIVE DECAY AT LOWER TRUNK, HISTORY OF LEADER FAILURE FAIR YES
	14 WESTERN REDCEDAR HUJA FLICATA 14 15 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 24 16 WESTERN REDCEDAR THUJA PLICATA 14 11 WESTERN REDCEDAR THUJA PLICATA 15 18 WESTERN REDCEDAR THUJA PLICATA 16	10 GOOD FAIR 10 GOOD FAIR 10 GOOD FAIR 12 GOOD FAIR 10 GOOD FAIR	YE3 60% LCR, MARGINAL TRUNK TAPER R YE3 MODERATELY ONE SIDED R YE3 ONE SIDED		× 2 × 2 × 2 × 2	254 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 255 WESTERN REDCEDAR THUJA PLICATA 256 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 251 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	22 : 5 : 35 : :	20 GOOD 2 GOOD 25 GOOD 4 FAIR	FAIR YES ONE SIDED GOOD YES GOOD YES FAIR NO MODERATELY SUPPRESSED
	19 WESTERN REDCEDAR THUJA PLICATA 21 20 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 36 21 WESTERN REDCEDAR THUJA PLICATA 12 22 WESTERN REDCEDAR THUJA PLICATA 34	16 GOOD FAIR 25 GOOD FAIR 10 FAIR FAIR	YES MODERATELY ONE SIDED X YES ONE SIDED X NO MODERATELY SUPPRESSED, CODOMINANT AT 10'	TAN COLOR INDICATES TREES THAT ARE LOCATED	× 2 2 2	257 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 259 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 260 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 261 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	9 1 6 1 9 1	5 FAIR 6 GOOD 9 FAIR 3 FAIR	FAIR NO MODERATELY SUPPRESSED FAIR YES ONE SIDED FAIR YES ONE SIDED FAIR NO ONE SIDED, OVERTOPPED BY ADJACENT TREES, MODERATELY SUPPRESSED POOR NO ONE SIDED, OVERTOPPED BY ADJACENT TREES, SUPPRESSED
	23WE3TERN REDCEDARTHUJA PLICATA3524WE3TERN REDCEDARTHUJA PLICATA3325BIGLEAF MAPLEACER MACROPHYLLUM2626WE3TERN REDCEDARTHUJA PLICATA25	20 GOOD FAIR 28 GOOD FAIR 22 GOOD FAIR 25 GOOD FAIR 15 GOOD FAIR	YE3 ONE SIDED R YE3 ONE SIDED R YE3 ONE SIDED R YE3 ONE SIDED	- ON-SITE BUT OUTSIDE OF THE RESTRICTED DEVELOPMENT AREA (TYP)	× 2 2 2 2 2	262DOUGLAS-FIRPSEUDOTSUGA MENZIESII263BIGLEAF MAPLEACER MACROPHYLLUM264DOUGLAS-FIRPSEUDOTSUGA MENZIESII265BIGLEAF MAPLEACER MACROPHYLLUM	22 44 6 26	2 GOOD 30 POOR 1 VERY POO 25 VERY POO	FAIR YES ONE SIDED, MARGINAL TRUNK TAPER POOR NO SIGNIFICANT DECAY AT LOWER TRUNK, OVEREXTENDED LEADERS DR VERY POOR NO OVERTOPPED BY ADJACENT TREES, EXTENSIVE DECAY THROUGHOUT TRUNK DR VERY POOR NO SIGNIFICANT DECAY AT LOWER TRUNK, TOP FAILED
	21 WESTERN REDCEDAR THUJA PLICATA 13 28 WESTERN REDCEDAR THUJA PLICATA 41 29 BIGLEAF MAPLE ACER MACROPHYLLUM 30 30 WESTERN HEMLOCK TSUGA HETEROPHYLLA 33	IO POOR POOR 20 GOOD FAIR 25 POOR POOR 25 GOOD FAIR	NO SUPPRESSED R YES ONE SIDED, CODOMINANT AT 5' WITH INCLUDED BARK DR NO MULTIPLE LEADERS AT GROUND LEVEL, TOP FAILURES		× 2 × 2	266 DOUGLA9-FIR PSEUDOTSUGA MENZIESII 261 DOUGLA9-FIR PSEUDOTSUGA MENZIESII 268 RED ALDER ALNU3 RUBRA 269 RED ALDER ALNU3 RUBRA	36 22 3 3	6000 5 6000 0 POOR 20 FAIR	GOOD YES FAIR YES MARGINAL TRUNK TAPER POOR NO SUPPRESSED, POOR TRUNK TAPER POOR NO POOR NO
	31 BIGLEAF MAPLE ACER MACROPHYLLUM 13 32 WESTERN REDCEDAR THWA PLICATA 35 33 WESTERN REDCEDAR THWA PLICATA 31 34 WESTERN REDCEDAR THWA PLICATA 46	20 POOR POOC 20 GOOD FAIR 11 GOOD FAIR 18 GOOD FAIR	NO SUPPRESSED		× 2 2 2 2	210 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 211 RED ALDER ALNUS RUBRA 212 RED ALDER ALNUS RUBRA 213 WESTERN REDCEDAR THUJA PLICATA	30 : 1 : 0 : 22 :	23 GOOD 3 FAIR 5 FAIR 5 FAIR	GOOD YES POOR NO LOST TOP AT 25'
×	35WESTERN REDCEDARTHUJA PLICATA3936WESTERN REDCEDARTHUJA PLICATA3631WESTERN REDCEDARTHUJA PLICATA2938WESTERN REDCEDARTHUJA PLICATA36	21 GOOD FAIR 24 GOOD FAIR 21 FAIR FAIR 20 GOOD FAIR	YE3 ONE SIDED X YE3 ONE SIDED X MODERATELY SUPPRESSED	GREEN COLOR INDICATES TREES THAT ARE LOCATED	2	274 RED ALDER ALNU3 RUBRA 275 RED ALDER ALNU3 RUBRA 276 RED ALDER ALNU5 RUBRA 271 RED ALDER ALNU3 RUBRA	3 1 2 1	5 FAIR 5 FAIR 5 FAIR 5 FAIR 5 FAIR	POORNOPOOR TRUNK TAPER, EPICORMIC GROWTH AT LOWER TRUNKPOORNOPOOR TRUNK TAPER, 33% LCRFAIRNO40% LCR, MARGINAL TRUNK TAPER, OTHER 2165 DUPLICATED ON SURVEY SHEETPOORNOPOOR TRUNK TAPER, BOWED TRUNK, 216 ON SURVEY SHEET
×	39RED ALDERALNUS RUBRA840BIGLEAF MAPLEACER MACROPHYLLUM2041BIGLEAF MAPLEACER MACROPHYLLUM1842WESTERN REDCEDARTHUJA PLICATA41	IO FAIR POO I5 POOR POO I8 GOOD FAIR I8 GOOD GOO 20 FAIR POO	NO TOP DIEBACK, SUPPRESSED 2 YES MARGINAL TRUNK TAPER, 40% LCR, ONE SIDED 2D YES	RESTRICTED DEVELOPMENT AREA (TYP)	2 2 × 2 × 2 × 2	278RED ALDERALNU3 RUBRA279RED ALDERALNU3 RUBRA280DOUGLAS-FIRPSEUDOTSUGA MENZIESII281WESTERN REDCEDARTHUJA PLICATA	0 1 0 5 63 1 28,23 1	5 FAIR 5 FAIR 30 GOOD 8 GOOD	POOR NO POOR TRUNK TAPER POOR NO POOR TRUNK TAPER, ONE SIDED, 276 ON SURVEY SHEET GOOD YES FAIR YES CODOMINANT AT 3' WITH INCLUDED BARK
	43BIGLEAF MAPLEACER MACROPHYLLUM1144BIGLEAF MAPLEACER MACROPHYLLUM1245BIGLEAF MAPLEACER MACROPHYLLUM2446BIGLEAF MAPLEACER MACROPHYLLUM8,6,6	IO VERY POOR VER 21 GOOD FAIR 6 IO GOOD FAIR	Y POOR NO TOP FAILED YES MULTIPLE LEADERS, SIGNIFICANT IVY GROWTH, PAST LEADER FAILURES YES MULTIPLE LEADERS AT GROUND LEVEL		× 2 × 2 2 2	282WEGTERN REDCEDARTHUJA PLICATA283DOUGLAG-FIRPSEUDOTSUGA MENZIESII284DOUGLAG-FIRPSEUDOTSUGA MENZIESII285RED ALDERALNUS RUBRA286RED ALDERALNUS RUBRA	29 30 0 0	8 GOOD 20 GOOD 5 FAIR 5 FAIR	GOOD YE3 GOOD YE3 FAIR NO OVERTOPPED BY ADJACENT TREES, ONE SIDED, CODOMINANT AT 10' POOR NO POOR TRUNK TAPER, 33% LCR
	41BIGLEAF MAPLEACER MACROPHYLLUM10,8,848BIGLEAF MAPLEACER MACROPHYLLUM10,8,649BIGLEAF MAPLEACER MACROPHYLLUM12,12,1250N/AN/An/a	15 GOOD FAIR 1,10 25 GOOD FAIR n/a N/A N/A	YE3 MULTIPLE LEADERS AT GROUND LEVEL R YE3 MULTIPLE LEADERS AT GROUND LEVEL N/A THIS IS A STEM OF TREE 49		× 2	281RED ALDERALNUS RUBRA288BIGLEAF MAPLEACER MACROPHYLLUM289BIGLEAF MAPLEACER MACROPHYLLUM	1 20 2 2,12,12, 8	5 FAIR 20 GOOD 5 VERY POO 20 POOR	POOR NO POOR TRUNK TAPER FAIR YE3 ONE SIDED, MULTIPLE LEADERS DR VERY POOR NO UPROOTED, SIGNIFICANT DECAY POOR NO MULTIPLE LEADERS AT GROUND LEVEL, MULTIPLE TOP FAILURES
	51 BIGLEAF MAPLE ACER MACROPHYLLUM 21 52 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 25 53 OREGON WHITE OAK QUERCUS GARRYANA 31 54 SWEET CHERRY PRUNUS AVIUM 18	15 FAIR FAIR 15 GOOD FAIR 39 GOOD FAIR 26 GOOD FAIR	YE9 50% LCR, MARGINAL TRUNK TAPER YE9 ONE SIDED, EXTENSIVE IVY YE9 ONE SIDED, EXTENSIVE IVY		× 2 × 2 × 2	290 WEGTERN REDCEDAR THUJA PLICATA 291 WEGTERN REDCEDAR THUJA PLICATA 292 WEGTERN REDCEDAR THUJA PLICATA 293 WEGTERN REDCEDAR THUJA PLICATA	9 21 9 1	Ø GOOD 5 GOOD 0 GOOD 0 GOOD 0 GOOD	FAIR NO ONE SIDED, OVERTOPPED BY ADJACENT TREES FAIR YES PREVIOUSLY LOST TOP WITH NEW TOP AT 20' FAIR NO ONE SIDED FAIR YES ONE SIDED FAIR YES ONE SIDED
	55N/AN/An/a56RED ALDERALNUS RUBRA2051DOUGLAS-FIRPSEUDOTSUGA MENZIESII1958BIGLEAF MAPLEACER MACROPHYLLUM21	n/a N/A N/A 19 FAIR POC 12 FAIR POC 28 GOOD FAIR		GRAY COLOR INDICATES	× 2 × 2 × 2	294WEGTERN REDCEDARTHUJA PLICATA295WEGTERN REDCEDARTHUJA PLICATA296WEGTERN REDCEDARTHUJA PLICATA291RED ALDERALNUS RUBRA	6 7 26 7 30 7 25 7	FAIR 5 GOOD 5 GOOD 5 GOOD 0 VERY POO	FAIR NO MODERATELY SUPPRESSED FAIR YES ONE SIDED FAIR YES CODOMINANT AT 4' DR VERY POOR NO
	59 N/A N/A n/a 60 RED ALDER ALNUS RUBRA 12 61 RED ALDER ALNUS RUBRA 15 62 RED ALDER ALNUS RUBRA 15 63 RED ALDER ALNUS RUBRA 15	n/a N/A N/A 12 FAIR POO 18 FAIR POO 20 FAIR POO 20 FAIR POO	NO POOR TRUNK TAPER, MODERATELY ONE SIDED, EPICORMIC GROWTH AT LOWER TRUNK NO POOR TRUNK TAPER, EPICORMIC GROWTH AT LOWER TRUNK	ON ADJACENT PROPERTY (TYP)	× 2 × 3 × 3 × 3	298 WESTERN REDCEDAR THUJA PLICATA 299 WESTERN REDCEDAR THUJA PLICATA 300 WESTERN REDCEDAR THUJA PLICATA 301 WESTERN REDCEDAR THUJA PLICATA 301 WESTERN REDCEDAR THUJA PLICATA	3 6 5	GOOD GOOD GOOD O GOOD O GOOD	FAIR NO 50% LCR FAIR YE9 MODERATELY ONE SIDED
×	63 RED ALDER ALNUS RUBRA 19 64 SWEET CHERRY PRUNUS AVIUM 14 65 WESTERN REDCEDAR THUJA PLICATA 30 66 RED ALDER ALNUS RUBRA 11 61 UPERTERN ADDERDAD THUJA PLICATA 10	18 GOOD GOO 10 POOR POO 15 GOOD GOO 10 FAIR POO	NO HISTORY OF BRANCH FAILURES DD YE3 DR NO 25% LCR		× 3	302 WEGTERN REDCEDAR THUJA PLICATA 303 RED ALDER ALNUS RUBRA 304 WEGTERN REDCEDAR THUJA PLICATA 305 WEGTERN REDCEDAR THUJA PLICATA	0 8 5 0	GOOD 20 VERY POO 5 GOOD 0 GOOD 5 GOOD	VERY POOR NO TOP FAILED WITH EXTENSIVE DECAY GOOD YES FAIR NO ONE SIDED
AT X HE X EE DN	61 WESTERN REDCEDAR THUJA PLICATA 19 68 WESTERN REDCEDAR THUJA PLICATA 36 69 RED ALDER ALNUS RUBRA 15 70 WESTERN REDCEDAR THUJA PLICATA 11 10 WESTERN REDCEDAR THUJA PLICATA 11	12 GOOD GOO 18 GOOD GOO 15 POOR POO 13 GOOD GOO 15 POOR POO	YE9 DR NO OVERTOPPED BY ADJACENT TREES, SUPPRESSED DD YE9		3	306 WESTERN REDCEDAR THUJA PLICATA 301 N/A N/A 308 WESTERN REDCEDAR THUJA PLICATA 309 WESTERN REDCEDAR THUJA PLICATA 309 WESTERN REDCEDAR THUJA PLICATA	34 N/A 28 29	5 GOOD V/A N/A 5 GOOD 5 GOOD	GOOD YE9 N/A N/A SAME AS TREE 304 FAIR YE9 ONE SIDED FAIR YE9 ONE SIDED FAIR YE9 ONE SIDED
	11 BIGLEAF MAPLE ACER MACROPHYLLUM 21 12 BIGLEAF MAPLE ACER MACROPHYLLUM 12 13 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 21 14 BIGLEAF MAPLE ACER MACROPHYLLUM 22 15 BIGLEAF MAPLE ACER MACROPHYLLUM 10	15 POOR POO 10 FAIR POO 15 FAIR POO 20 FAIR POO 3 VERT POOR VER	NOEXTENSIVE IVY, POOR TRUNK TAPER, 33% LCRDRNOEXTENSIVE IVY, POOR TRUNK TAPER, 33% LCRDRNOEXTENSIVE IVY, POOR TRUNK TAPER, 40% LCR		3 3 × 3 × 3	310 RED ALDER ALNUS RUBRA 311 WESTERN REDCEDAR THUJA PLICATA 312 WESTERN REDCEDAR THUJA PLICATA 313 WESTERN REDCEDAR THUJA PLICATA 314 RED AL DER ALNUS RUBRA	1 23 20	25 POOR 5 FAIR 4 GOOD 5 GOOD 20 VERY POO	POOR NO CODOMINANT AT 1' WITH INCLUDED BARK FAIR NO CODOMINANT STEM PREVIOUSLY FAILED AT LOWER TRUNK, BOWED LOWER TRUNK FAIR YE3 MODERATELY ONE SIDED FAIR YE3 ONE SIDED FAIR YE3 ONE SIDED PR VERY POOR NO EXTENSIVE DIEBACK AND DECAY
	15 BIGLEAF MAPLE ACER MACROPHYLLUM IO 16 BIGLEAF MAPLE ACER MACROPHYLLUM 20 11 BIGLEAF MAPLE ACER MACROPHYLLUM I3 11.1 BIGLEAF MAPLE ACER MACROPHYLLUM I6 18 BIGLEAF MAPLE ACER MACROPHYLLUM I1	15 FAIR POC 10 FAIR POC 10 FAIR POC	NO OVERTOPPED BY ADJACENT TREES, SIGNIFICANT LEAN, POOR TRUNK TAPER, 20% LCR NO 25% LCR, POOR TRUNK TAPER, ADDED TO SURVEY SHEET BY ARBORIST IN APPROXIMATE LOCATION		3 3 × 3 × 3	314 RED ALDER ALNU3 RUBRA 315 WEGTERN REDCEDAR THUJA PLICATA 316 WEGTERN REDCEDAR THUJA PLICATA 311 WEGTERN REDCEDAR THUJA PLICATA 312 DOLIGI AGEIR PSELIDOTGLICA MENTIEGIL	9 9 11 21	20 VERY POC 3 GOOD 0 GOOD 5 GOOD 5 GOOD	VERY POOR NO EXTENSIVE DIEBACK AND DECAY FAIR NO OVERTOPPED BY ADJACENT TREES FAIR YES ONE SIDED FAIR YES ONE SIDED FAIR YES ONE SIDED FAIR NO ONE SIDED FAIR NO ONE SIDED
	18 BIGLEAF MAPLE ACER MACROPHYLLUM 11 19 BIGLEAF MAPLE ACER MACROPHYLLUM 11 80 BIGLEAF MAPLE ACER MACROPHYLLUM 11 81 BIGLEAF MAPLE ACER MACROPHYLLUM 24 82 BIGLEAF MAPLE ACER MACROPHYLLUM 16	20 GOOD FAIR 15 FAIR POO 20 FAIR POO 20 GOOD FAIR 15 FAIR POO 20 GOOD FAIR	NO ONE SIDED, 33% LCR, POOR TRUNK TAPER DR NO ONE SIDED, 33% LCR, POOR TRUNK TAPER R YE9 35% LCR, MARGINAL TRUNK TAPER		3 3 × 3 3	318 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 319 RED ALDER ALNUS RUBRA 320 WESTERN REDCEDAR THUJA PLICATA 321 WESTERN REDCEDAR THUJA PLICATA 322 WESTERN REDCEDAR THUJA PLICATA	5 5 26 5 5	FAIR 0 FAIR 5 GOOD 0 FAIR 3 GOOD	POOR NO POOR TRUNK TAPER, 33% LCR FAIR YES ONE SIDED FAIR NO ONE SIDED, PRESSED AGAINST TREE 320, CODOMINANT AT 3' WITH INCLUDED BARK, OVER
	82 BIGLEAF MAPLE ACER MACROPHYLLUM 16 83 BIGLEAF MAPLE ACER MACROPHYLLUM 16 84 BIGLEAF MAPLE ACER MACROPHYLLUM 11 85 BIGLEAF MAPLE ACER MACROPHYLLUM 15 86 BIGLEAF MAPLE ACER MACROPHYLLUM 14	15 FAIR POC 20 FAIR POC 20 GOOD FAIR 11 POOR POC 10 POOR POC	NO 33% LCR, MARGINAL TRUNK TAPER R YE3 ONE SIDED, 40% LCR, MARGINAL TRUNK TAPER DR NO TOP DIEBACK AND DECAY		× 3 3 × 3 × 3	322 WESTERN REDCEDAR THUJA PLICATA 323 WESTERN REDCEDAR THUJA PLICATA 324 WESTERN REDCEDAR THUJA PLICATA 325 WESTERN REDCEDAR THUJA PLICATA 326 WESTERN REDCEDAR THUJA PLICATA	9 6 6	GOOD FAIR GOOD GOOD	FAIR YE3 ONE SIDED FAIR NO MODERATELY SUPPRESSED FAIR YE3 ONE SIDED FAIR YE3 ONE SIDED FAIR YE3 ONE SIDED FAIR YE3 ONE SIDED
×	86 BIGLEAF MAPLE ACER MACROPHYLLUM 14 81 BIGLEAF MAPLE ACER MACROPHYLLUM 18,16 88 BIGLEAF MAPLE ACER MACROPHYLLUM 19 89 WESTERN REDCEDAR THUJA PLICATA 48 90 WESTERN REDCEDAR THUJA PLICATA 40	I8 FAIR POC 20 FAIR POC 23 GOOD GOO	R NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER, 33% LCR		× 3 3 × 3	321RED ALDERALNUS RUBRA328RED ALDERALNUS RUBRA329WESTERN REDCEDARTHUJA PLICATA	26 24 36	D VERY POO 25 FAIR 5 GOOD	FAIR YES ONE SIDED DR VERY POOR NO DEAD FAIR NO ONE SIDED, DECAY AT BRANCH FAILURES GOOD YES FAIR NO ONE SIDED
×	90 WESTERN REDCEDAR THUJA PLICATA 40 91 BIGLEAF MAPLE ACER MACROPHYLLUM 18 92 BIGLEAF MAPLE ACER MACROPHYLLUM 11 93 WESTERN REDCEDAR THUJA PLICATA 11 94 WESTERN REDCEDAR THUJA PLICATA 9	20 GOOD FAIR 15 POOR POO 5 POOR POO 10 GOOD GOOD 9 FAIR POO	NO TOP DIEBACK, EPICORMIC GROWTH AT LOWER TRUNK DR NO POOR TRUNK TAPER, SUPPRESSED DD YES			330 WEGTERN REDCEDAR THUJA PLICATA 331 RED ALDER ALNUG RUBRA 332 RED ALDER ALNUG RUBRA 333 RED ALDER ALNUG RUBRA 334 RED ALDER ALNUG RUBRA	24,18 20 22	O GOOD 30 POOR 5 POOR 20 POOR 20 GOOD	POOR NO CODOMINANT AT GROUND LEVEL, TOP DIEBACK, SIGNIFICANT DECAY POOR NO SIGNIFICANT BRANCH DIEBACK AND DECAY POOR NO MULTIPLE LEADER3, SIGNIFICANT DIEBACK AND DECAY
	94 WE3TERN REDCEDAR THUJA PLICATA 9 95 BIGLEAF MAPLE ACER MACROPHYLLUM 11 96 BIGLEAF MAPLE ACER MACROPHYLLUM 13,12,11 91 RED ALDER ALNUS RUBRA 8 98 BIGLEAF MAPLE ACER MACROPHYLLUM 13	20 FAIR FAIR	NO ONE SIDED, MODERATELY SUPPRESSED, MULTIPLE LEADERS DR NO MULTIPLE LEADERS AT GROUND LEVEL, LEADERS WITH POOR TAPER DR NO POOR TRUNK TAPER		3	334RED ALDERALNUS RUBRA335RED ALDERALNUS RUBRA336RED ALDERALNUS RUBRA331RED ALDERALNUS RUBRA338RED ALDERALNUS RUBRA	22 3 6	20 GOOD 20 POOR 20 FAIR 25 POOR 4 FAIR	GOOD YE3 POOR NO DEAD TOP POOR NO ONE 3IDED, BRANCH DIEBACK, POOR TRUNK TAPER POOR NO ONE 3IDED, CODOMINANT AT 2' WITH INCLUDED BARK, EPICORMIC GROWTH AT LOWER TR POOR NO POOR TRUNK TAPER
××	99 WESTERN HEMLOCK TSUGA HETEROPHYLLA 31 100 WESTERN HEMLOCK TSUGA HETEROPHYLLA 28 101 RED ALDER ALNUS RUBRA 1 102 WESTERN REDCEDAR THUJA PLICATA 46	25 GOOD FAIR 20 GOOD FAIR 1 FAIR POO 20 FAIR FAIR	R YES MODERATELY ONE SIDED R YES ONE SIDED		3	339 WEGTERN REDCEDAR THUJA PLICATA 340 WEGTERN REDCEDAR THUJA PLICATA 341 WEGTERN REDCEDAR THUJA PLICATA 342 WEGTERN REDCEDAR THUJA PLICATA	42 : 21 : 28 : :	A A 20 GOOD 0 GOOD 20 GOOD 20 GOOD 20 GOOD 25 GOOD	FAIR YE3 ONE SIDED, MULTIPLE LEADERS AT 3' FAIR YE3 CROWN EXTENSION SUPPRESSED BY ADJACENT TREES FAIR YE3 CODOMINANT AT 4' WITH INCLUDED BARK, ONE SIDED FAIR YE3 ONE SIDED
× × ×	102WESTERN REDCEDARTHUJA PLICATA24103WESTERN REDCEDARTHUJA PLICATA18104WESTERN REDCEDARTHUJA PLICATA18105WESTERN REDCEDARTHUJA PLICATA23106WESTERN HEMLOCKTSUGA HETEROPHYLLA21	20 GOOD FAIR 11 GOOD FAIR 20 GOOD FAIR 20 GOOD FAIR 20 GOOD FAIR 23 GOOD FAIR	YES ONE SIDED, NOT SHOWN ON SURVEY R YES ONE SIDED, NOT SHOWN ON SURVEY R YES ONE SIDED		3	343 WESTERN REDCEDAR THUJA PLICATA 344 WESTERN REDCEDAR THUJA PLICATA 345 WESTERN REDCEDAR THUJA PLICATA 346 WESTERN REDCEDAR THUJA PLICATA	9 1 9 1 39 1	O FAIR O GOOD 20 GOOD 5 GOOD	FOR NO LOST TOP AT 20' FAIR YES 40% LCR FAIR YES CODOMINANT AT 1' WITH INCLUDED BARK FAIR YES ONE SIDED
~	IOB WESTERN HEITEROFHTILLA 21 IOT BIGLEAF MAPLE ACER MACROPHYLLUM 36 IO8 BIGLEAF MAPLE ACER MACROPHYLLUM 24 IO9 BIGLEAF MAPLE ACER MACROPHYLLUM 13 II0 BIGLEAF MAPLE ACER MACROPHYLLUM 28	25 GOOD FAIR 45 FAIR FAIR 20 POOR POO 15 POOR POO 25 POOR POO	NO ONE SIDED, HISTORY OF BRANCH FAILURE, EPICORMIC GROWTH AT LOWER TRUNK DR NO MODERATELY SUPPRESSED, SIGNIFICANT DIEBACK DR NO MODERATELY SUPPRESSED, POOR TRUNK TAPER		× 3 × 3	341 WESTERN REDCEDAR THUJA PLICATA 343 WESTERN REDCEDAR THUJA PLICATA 348 WESTERN REDCEDAR THUJA PLICATA 349 WESTERN REDCEDAR THUJA PLICATA 350 RED ALDER ALNUS RUBRA	21 21 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GOOD FAIR 5 GOOD 5 GOOD 5 GOOD 5 FAIR	FAIR NO ONE SIDED FAIR NO ONE SIDED, MULTIPLE LEADERS AT LOWER TRUNK FAIR YES ONE SIDED FAIR YES ONE SIDED FAIR YES ONE SIDED POOR NO BOWED TRUNK, POOR TRUNK TAPER
×	III RED ALDER ALNUS RUBRA 22 III RED ALDER ALNUS RUBRA 22 II2 BIGLEAF MAPLE ACER MACROPHYLLUM 20 II3 WESTERN HEMLOCK TSUGA HETEROPHYLLA 25 II4 RED ALDER ALNUS RUBRA 24	I5 FAIR POO 0 VERY POOR VER 20 GOOD FAIR	NO EXTENSIVE IVY, 25% LCR IY POOR NO DEAD 40' SNAG		× 3 × 3	351 RED ALDER ALNUS RUDRA 351 RED ALDER ALNUS RUBRA 352 WESTERN REDCEDAR THUJA PLICATA 354 WESTERN REDCEDAR THUJA PLICATA 355 WESTERN REDCEDAR THUJA PLICATA	25 : 4 :	0 FAIR 0 FAIR 20 GOOD 5 GOOD 3 FAIR	POOR NO BOWED TRUNK, POOR TRUNK TAPER POOR NO BOWED TRUNK, POOR TRUNK TAPER, 33%LCR, LABELED 346 IN FIELD FAIR YES MODERATELY ONE SIDED FAIR YES ONE SIDED FAIR NO MODERATELY SUPPRESSED
	114 RED ALDER ALNUS RUBRA 24 115 RED ALDER ALNUS RUBRA 10 116 RED ALDER ALNUS RUBRA 14 111 RED ALDER ALNUS RUBRA 9 118 RED ALDER ALNUS RUBRA 14	20 VERT FOOR VERT FOOR 15 FAIR POO 20 FAIR FAIR 8 FAIR POO 10 FAIR FAIR	NO POOR TRUNK TAPER R NO EPICORMIC GROWTH AT LOWER TRUNK DR NO POOR TRUNK TAPER		× 3	355 RED ALDER ALNUS RUBRA 351 WESTERN REDCEDAR THUJA PLICATA 358 RED ALDER ALNUS RUBRA 359 WESTERN REDCEDAR THUJA PLICATA	9 : 5 : 23 :	20 POOR 5 GOOD 0 VERY POO	POOR NO CODOMINANT AT I' WITH INCLUDED BARK, POOR TRUNK TAPER, SIGNIFICANT BRANCH DI FAIR YES ONE SIDED DR VERY POOR NO DEAD
	110 NLD ALDER ALNUS RUBRA 14 119 RED ALDER ALNUS RUBRA 10 120 RED ALDER ALNUS RUBRA 9 121 RED ALDER ALNUS RUBRA 10 122 RED ALDER ALNUS RUBRA 13	15 FAIR POC 15 FAIR POC 15 FAIR POC 10 FAIR POC 20 GOOD FAIR	NO POOR TRUNK TAPER, 33% LCR DR NO POOR TRUNK TAPER DR NO POOR TRUNK TAPER, 25% LCR			360 WESTERN REDCEDAR THUJA PLICATA 361 RED ALDER ALNUS RUBRA 362 RED ALDER ALNUS RUBRA 363 RED ALDER ALNUS RUBRA	32 : 28 : 5 :	20 GOOD 20 GOOD 20 VERY POO 20 GOOD 0 EAIR	FAIR YES ONE SIDED FAIR YES ONE SIDED, MULTIPLE LEADERS AT LOWER TRUNK DR VERY POOR NO FAIR YES ONE SIDED FAIR YES ONE SIDED FAIR YES ONE SIDED POOR NO POOR TRUNK TAPER
~	122 NED ALDER ALNUS RUBRA 10 123 RED ALDER ALNUS RUBRA 10 124 RED ALDER ALNUS RUBRA 11 125 BIGLEAF MAPLE ACER MACROPHYLLUM 28 126 RED ALDER ALNUS RUBRA 12	15 FAIR POC 15 FAIR POC 33 GOOD FAIR 15 FAIR POC	NO POOR TRUNK TAPER DR NO POOR TRUNK TAPER DR YES CODOMINANT AT 5', LOWER BRANCH DIEBACK		3	364 RED ALDER ALNUS RUBRA 365 RED ALDER ALNUS RUBRA 366 WESTERN REDCEDAR THUJA PLICATA 361 WESTERN REDCEDAR THUJA PLICATA	3 11 13 18 10	0 FAIR 0 FAIR 5 GOOD 0 GOOD	POOR NO ONE SIDED, POOR TRUNK TAPER POOR NO ONE SIDED, POOR TRUNK TAPER GOOD YES FAIR NO ONE SIDED, NO OTHER STEMS OVER 10" DBH
× ×	120 NLD ALDLR ALINGS NUDRA 12 121 BIGLEAF MAPLE ACER MACROPHYLLUM 24 128 RED ALDER ALNUS RUBRA 20 129 WESTERN HEMLOCK TSUGA HETEROPHYLLA 34 130 WESTERN HEMLOCK TSUGA HETEROPHYLLA 35	30 GOOD FAIR	YES MODERATELY ONE SIDED IY POOR NO DEAD, EXTENSIVE DECAY R YES ONE SIDED		3	368 WESTERN REDCEDAR THUJA PLICATA 369 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 310 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 311 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	66 : 31 : 21 :	QCCD QCCD 22 GOOD 31 GOOD 31 GOOD 5 GOOD	FAIR YE3 DEAD FAIR YE3 DEAD FAIR YE3 MULTIPLE LEADERS AT 6' WITH INCLUDED BARK FAIR YE3 ONE 3IDED, CODOMINANT AT 25' FAIR YE3 ONE 3IDED, CODOMINANT AT GROUND LEVEL
	130WESTERN HEILEGER1300 ALDER300131RED ALDERALNUS RUBRA20132WESTERN REDCEDARTHUJA PLICATA43133RED ALDERALNUS RUBRA9134RED ALDERALNUS RUBRA13	30 GOOD FAIR 30 GOOD FAIR 16 GOOD GOOD 10 FAIR POO 20 GOOD FAIR	YE3 ONE SIDED DD YE3 DR NO POOR TRUNK TAPER		3	312 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 313 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 314 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 315 WESTERN REDCEDAR THUJA PLICATA	21 8 26 22 30	5 FAIR 5 FAIR 26 GOOD	FAIR NO MODERATELY SUPPRESSED, ONE SIDED FAIR NO MODERATELY SUPPRESSED, ONE SIDED FAIR NO MODERATELY SUPPRESSED, ONE SIDED, CODOMINANT AT 25' FAIR YES GOOD YES
	134RED ALDERALNUS RUBRA13135RED ALDERALNUS RUBRA9136RED ALDERALNUS RUBRA11,10,9131SWEET CHERRYPRUNUS AVIUM16138RED ALDERALNUS RUBRA11	10 FAIR POC	NO POOR TRUNK TAPER DR NO MULTIPLE LEADERS AT GROUND LEVEL, OVEREXTENDED LEADERS R NO MODERATELY SUPPRESSED CROWN EXTENSION, CODOMINANT AT 5' WITH INCLUDED BARK		3	316 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 311 WESTERN REDCEDAR THUJA PLICATA 318 WESTERN REDCEDAR THUJA PLICATA 319 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	23 49 48	GOOD 5 GOOD 26 GOOD 26 GOOD 26 GOOD 5 GOOD	FAIR YE3 MARGINAL TRUNK TAPER FAIR YE3 MULTIPLE LEADER3 AT 3' FAIR YE3 CODOMINANT AT 4' FAIR YE3 MODERATELY ONE SIDED
	130NLD ALDERALING NUDRA11139SWEET CHERRYPRUNUS AVIUM12140RED ALDERALNUS RUBRA10,10,2141RED ALDERALNUS RUBRA12,11142RED ALDERALNUS RUBRA8	15 FAIR POO	NO POOR TRUNK TAPER, LOWER BRANCH DIEBACK DR NO MULTIPLE LEADERS AT GROUND LEVEL, OVEREXTENDED LEADERS WITH POOR TAPER DR NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER		3	380 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 381 BIGLEAF MAPLE ACER MACROPHYLLUM 382 BIGLEAF MAPLE ACER MACROPHYLLUM 383 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	52 52 20 3	GOOD 34 GOOD 30 GOOD 25 FAIR 24 GOOD	FAIR YES MODERATELY ONE SIDED FAIR YES MODERATELY ONE SIDED FAIR YES ONE SIDED, OFFSITE POOR NO POOR TRUNK TAPER, ONE SIDED, OVERTOPPED BY ADJACENT TREES FAIR YES ONE SIDED
	143 RED ALDER ALNUS RUBRA 8,8 144 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 21 145 BIGLEAF MAPLE ACER MACROPHYLLUM 21,8 146 RED ALDER ALNUS RUBRA 15	I5 FAIR POC I8 GOOD FAIR 20 GOOD FAIR	NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER R YES MODERATELY ONE SIDED		3	384 BLUE ATLAS CEDAR CEDRUS ATLANTICA 385 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 386 BLUE ATLAS CEDAR CEDRUS ATLANTICA 381 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	B 2 B 2	GOOD 3 GOOD 5 GOOD 3 FAIR 5 GOOD	FAIR NO MODERATELY SUPPRESSED FAIR YES ONE SIDED FAIR NO ONE SIDED FAIR YES ONE SIDED
× × ×	141RED ALDERALNUS RUBRA20148BIGLEAF MAPLEACER MACROPHYLLUM26149ENGLISH HOLLYILEX AQUIFOLIUM20150RED ALDERALNUS RUBRA20		IY POOR NO EXTENSIVE DECAY DD YES R YES MULTIPLE LEADERS AT 1'		3	388DOUGLAS-FIRPSEUDOTSUGA MENZIESII389DOUGLAS-FIRPSEUDOTSUGA MENZIESII390DOUGLAS-FIRPSEUDOTSUGA MENZIESII391DOUGLAS-FIRPSEUDOTSUGA MENZIESII	2 2 2	5 GOOD 5 GOOD 5 GOOD 5 GOOD 5 GOOD	FAIR YE9 ONE SIDED
	151 RED ALDER ALNUS RUBRA 18 152 RED ALDER ALNUS RUBRA 18 153 RED ALDER ALNUS RUBRA 14 154 RED ALDER ALNUS RUBRA 14	20 GOOD FAIR 20 GOOD FAIR 15 GOOD FAIR 18 GOOD FAIR	YE9 ONE SIDED R YE9 ONE SIDED, CODOMINANT AT 5' WITH INCLUDED BARK R YE9 ONE SIDED		3	392DOUGLAS-FIRPSEUDOTSUGA MENZIESII393BLUE ATLAS CEDARCEDRUS ATLANTICA394DOUGLAS-FIRPSEUDOTSUGA MENZIESII395BLUE ATLAS CEDARCEDRUS ATLANTICA	6 3 2	5 GOOD O GOOD 5 GOOD O GOOD	FAIR YES ONE SIDED, BOWED LOWER TRUNK FAIR NO ONE SIDED FAIR YES ONE SIDED FAIR YES ONE SIDED FAIR NO ONE SIDED
	155 RED ALDER ALNUS RUBRA 14 156 RED ALDER ALNUS RUBRA 14 156 RED ALDER ALNUS RUBRA 42 151 RED ALDER ALNUS RUBRA 48 158 RED ALDER ALNUS RUBRA 10	18 GOOD FAIR 35 VERY POOR VER	R YEG ONE GIDED IY POOR NO FAILED TOPG, EXTENSIVE DECAY IY POOR NO FAILED TOPG, EXTENSIVE DECAY			396 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 391 BLUE ATLAS CEDAR CEDRUS ATLANTICA 398 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 399 BLUE ATLAS CEDAR CEDRUS ATLANTICA	6 7 2 7 4 7 2	5 GOOD O GOOD 5 GOOD 0 GOOD	FAIR YE3 ONE SIDED
	159RED ALDERALNUS RUBRA16160RED ALDERALNUS RUBRA10161RED ALDERALNUS RUBRA12162RED ALDERALNUS RUBRA18	20 FAIR FAIR 15 FAIR POO 15 FAIR FAIR 20 GOOD FAIR	R NO MODERATELY ONE SIDED, 50% LCR, MARGINAL TRUNK TAPER, PAST FAILURES AT LOWER TRUNK WITH DECAY NO ONE SIDED, 33% LCR, POOR TRUNK TAPER NO ONE SIDED, 50% LCR, MARGINAL TRUNK TAPER YES ONE SIDED		4 4 4 4 4	400BLUE ATLAS CEDARCEDRUS ATLANTICA401WESTERN HEMLOCKTSUGA HETEROPHYLLA402BLUE ATLAS CEDARCEDRUS ATLANTICA403DOUGLAS-FIRPSEUDOTSUGA MENZIESII	4 · · · · · · · · · · · · · · · · · · ·	0 GOOD 5 GOOD 0 GOOD 5 GOOD 5 GOOD	FAIR YES ONE SIDED, LARGE HEADING CUT AT LOWER TRUNK GOOD YES FAIR YES FAIR YES ONE SIDED, LARGE HEADING CUT AT LOWER TRUNK FAIR YES ONE SIDED CONE SIDED GOOD YES ONE SIDED FAIR YES ONE SIDED
	163RED ALDERALNUS RUBRA10,8164RED ALDERALNUS RUBRA10165RED ALDERALNUS RUBRA12,10166RED ALDERALNUS RUBRA16	IO FAIR POO I5 FAIR FAIR 20 GOOD FAIR 20 GOOD FAIR	NO MULTIPLE LEADERS AT GROUND LEVEL, ONE FAILED LEADER, 8" LEADER 50% LCR NO MODERATELY SUPPRESSED, MARGINAL TRUNK TAPER R YES ONE SIDED, CODOMINANT AT GROUND LEVEL WITH INCLUDED BARK R YES ONE SIDED, BOWED TRUNK		4 4 4 4	404BLUE ATLAS CEDARCEDRUS ATLANTICA405DOUGLAS-FIRPSEUDOTSUGA MENZIESII406BLUE ATLAS CEDARCEDRUS ATLANTICA401DOUGLAS-FIRPSEUDOTSUGA MENZIESII	2 · · · · · · · · · · · · · · · · · · ·	0 GOOD 5 GOOD 0 GOOD 5 GOOD 5 GOOD 5 GOOD	FAIR YES ONE SIDED, LARGE HEADING CUTS AT LOWER TRUNK GOOD YES FAIR YES GOOD YES
×	161RED ALDERALNUS RUBRA10168RED ALDERALNUS RUBRA12169RED ALDERALNUS RUBRA14110RED ALDERALNUS RUBRA14	20 GOOD FAIR 20 GOOD FAIR 20 GOOD FAIR 20 GOOD GOOD	NO ONE SIDED, BOWED TRUNK, IS9 ON SURVEY SHEET R YES ONE SIDED, MARGINAL TRUNK TAPER R YES ONE SIDED, MARGINAL TRUNK TAPER DD YES		4	408PORT-ORFORD-CEDAR CHAMAECYPARIS LAWSONIANA409EUROPEAN BIRCHBETULA PENDULA410DOUGLAS-FIRPSEUDOTSUGA MENZIESII411DOUGLAS-FIRPSEUDOTSUGA MENZIESII	O,8,8,8 O 22 8	5 GOOD 5 POOR 20 GOOD 20 GOOD	FAIR YES MULTIPLE LEADERS AT GROUND LEVEL POOR NO MULTIPLE LEADERS AT 15' WITH DECAY FROM PREVIOUS FAILURE FAIR YES CODOMINANT AT 15' GOOD YES
	ITISWEET CHERRYPRUNUS AVIUM14IT2BIGLEAF MAPLEACER MACROPHYLLUM12IT3SWEET CHERRYPRUNUS AVIUM12IT4BIGLEAF MAPLEACER MACROPHYLLUM10	IO FAIR POO 3 POOR POO 5 POOR POO 15 POOR POO	NO ONE SIDED, OVERTOPPED BY ADJACENT TREES, MODERATELY SUPPRESSED NO SUPPRESSED, SMOTHERED BY IVY NO SUPPRESSED NO SUPPRESSED NO OVERTOPPED BY ADJACENT TREES, SIGNIFICANT LEAN, SUPPRESSED		4	412WESTERN HEMLOCKTSUGA HETEROPHYLLA413WESTERN HEMLOCKTSUGA HETEROPHYLLA414WESTERN HEMLOCKTSUGA HETEROPHYLLA415WESTERN HEMLOCKTSUGA HETEROPHYLLA	8 4 2 2	8 GOOD 8 GOOD 2 GOOD 2 GOOD	GOOD YE3 GOOD YE3 GOOD YE3 GOOD YE3 GOOD YE3
	115BIGLEAF MAPLEACER MACROPHYLLUM11116SWEET CHERRYPRUNUS AVIUM13111SWEET CHERRYPRUNUS AVIUM18118SWEET CHERRYPRUNUS AVIUM11	IO FAIR POC 8 FAIR POC 20 FAIR POC 5 POOR POC	NO MODERATELY SUPPRESSED, POOR TRUNK TAPER DR NO MODERATELY SUPPRESSED, POOR TRUNK TAPER DR NO ONE SIDED, MODERATELY SUPPRESSED DR NO SUPPRESSED		4	416EUROPEAN BIRCHBETULA PENDULA411WESTERN HEMLOCKTSUGA HETEROPHYLLA418WESTERN HEMLOCKTSUGA HETEROPHYLLA419WESTERN HEMLOCKTSUGA HETEROPHYLLA	20 2 4 4	20 POOR 20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD	POOR NO BRANCH DIEBACK GOOD YE3 GOOD YE3
	119BIGLEAF MAPLEACER MACROPHYLLUM20180SWEET CHERRYPRUNUS AVIUM12181SWEET CHERRYPRUNUS AVIUM8182SWEET CHERRYPRUNUS AVIUM12	25 FAIR FAIR 8 POOR POO 2 VERY POOR VER 10 FAIR POO	NO ONE SIDED, MODERATELY SUPPRESSED DR NO SUPPRESSED Y POOR NO SUPPRESSED DR NO 25% LCR, SUPPRESSED		4	420WESTERN HEMLOCKTSUGA HETEROPHYLLA421WESTERN HEMLOCKTSUGA HETEROPHYLLA422WESTERN HEMLOCKTSUGA HETEROPHYLLA423DOUGLAS-FIRPSEUDOTSUGA MENZIESII	6 2 4 4	20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD	GOOD YE3 GOOD YE3 GOOD YE3 FAIR YE3 MODERATELY ONE SIDED
×××	183BIGLEAF MAPLEACER MACROPHYLLUM44184SWEET CHERRYPRUNUS AVIUM14185DOUGLAS-FIRPSEUDOTSUGA MENZIESII41186DOUGLAS-FIRPSEUDOTSUGA MENZIESII32	30 FAIR FAIR 18 FAIR POC 20 GOOD FAIR 24 GOOD FAIR	NO ONE SIDED, HISTORY OF BRANCH FAILURE, CODOMINANT AT I' WITH INCLUDED BARK DR NO 25% LCR, ONE SIDED R YES MODERATELY ONE SIDED R YES ONE SIDED		4	424DOUGLAS-FIRPSEUDOTSUGA MENZIESII425DOUGLAS-FIRPSEUDOTSUGA MENZIESII426DOUGLAS-FIRPSEUDOTSUGA MENZIESII421RED OAKQUERCUS RUBRA	6 2 2 8	20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD	FAIR YE3 MODERATELY ONE 3IDED FAIR YE3 MODERATELY ONE 3IDED, CODOMINANT AT 15' FAIR YE3 MODERATELY ONE 3IDED FAIR YE3 MODERATELY ONE 3IDED FAIR YE3 MODERATELY ONE 3IDED
	I81BIGLEAF MAPLEACER MACROPHYLLUMI6I88DOUGLAS-FIRPSEUDOTSUGA MENZIESII32I89BIGLEAF MAPLEACER MACROPHYLLUM29I90BIGLEAF MAPLEACER MACROPHYLLUM21	22 FAIR POC 20 GOOD FAIR 25 FAIR POC 29 GOOD FAIR	NO OVERTOPPED BY ADJACENT TREES, ONE SIDED, MODERATELY SUPPRESSED R YES ONE SIDED, 40% LCR DR CODOMINANT AT 3' WITH INCLUDED BARK, DECAY BELOW CODOMINANT STEMS, ONE SIDED R YES CODOMINANT AT 8' WITH INCLUDED BARK, MODERATELY ONE SIDED, MODERATE BRANCH DIEBACK		4 4 4 4	428SAWARA CYPRESSCHAMAECYPARIS PISIFERA429WESTERN REDCEDARTHUJA PLICATA430PACIFIC DOGWOODCORNUS NUTTALLII431AMERICAN CHESTNUTCASTANEA DENTATA	22 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	8 FAIR 28 GOOD 3 FAIR 26 POOR	POOR NO CODOMINANT AT 2' WITH INTERNAL DECAY GOOD YES FAIR NO ONE SIDED, DECAY POCKET AT LOWER TRUNK POOR NO LARGE WOUND AT LOWER TRUNK FROM PREVIOUS FAILED TRUNK
×	191ENGLISH HOLLYILEX AQUIFOLIUM12192DOUGLAS-FIRPSEUDOTSUGA MENZIESII13193OREGON WHITE OAKQUERCUS GARRYANA11194DOUGLAS-FIRPSEUDOTSUGA MENZIESII29	12 FAIR FAIR 0 VERY POOR VER 19 FAIR FAIR 18 GOOD FAIR	NO ONE SIDED, EPICORMIC GROWTH AT LOWER TRUNK IY POOR NO DEAD 30' SNAG R NO SMOTHERED BY IVY, ONE SIDED, MARGINAL TRUNK TAPER R YES CODOMINANT AT 5' WITH INCLUDED BARK, ONE SIDED		5	432LINDENTILIA SP.502DOUGLAS-FIRPSEUDOTSUGA MENZIESII503BLUE ATLAS CEDARCEDRUS ATLANTICA504DOUGLAS-FIRPSEUDOTSUGA MENZIESII	35 2 3 4	GOOD 2 GOOD 3 FAIR 4 GOOD	FAIR YE3 MULTIPLE LEADERS AT 6' WITH INCLUDED BARK FAIR YE3 ONE SIDED FAIR NO MODERATELY SUPPRESSED FAIR YE3 ONE SIDED
	195 SWEET CHERRY PRUNUS AVIUM 12 196 BIGLEAF MAPLE ACER MACROPHYLLUM 39 191 BIGLEAF MAPLE ACER MACROPHYLLUM 36,34 198 N/A N/A n/a 198 N/A N/A 1/a	n/a N/A N/A	NO ONE SIDED, EXTENSIVE IVY R NO HISTORY OF BRANCH FAILURES R NO CODOMINANT AT GROUND LEVEL, HISTORY OF BRANCH FAILURES N/A THIS IS A STEM OF TREE 191		5 5	505 BLUE ATLAS CEDAR CEDRUS ATLANTICA 506 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 501 BLUE ATLAS CEDAR CEDRUS ATLANTICA 508 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 508 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 509 BULE ATLAS CEDAR CEDRUS ATLANTICA	2 · · · · · · · · · · · · · · · · · · ·	B FAIR 2 GOOD 3 GOOD 2 GOOD 2 GOOD 2 GOOD	FAIR NO MODERATELY SUPPRESSED FAIR YES ONE SIDED, MULTIPLE TOPS FAIR NO ONE SIDED FAIR YES ONE SIDED FAIR YES ONE SIDED
×	199 BIGLEAF MAPLE ACER MACROPHYLLUM 16,12,10 200 N/A N/A n/a 201 N/A N/A n/a 202 RED ALDER ALNUS RUBRA 10 203 RICLEAF MAPLE ACER MACROPHYLLUM 6	n/a N/A N/A n/a N/A N/A 8 GOOD GOO			5 5 5 5 5	509 BLUE ATLAS CEDAR CEDRUS ATLANTICA 510 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 511 BLUE ATLAS CEDAR CEDRUS ATLANTICA 512 DOUGLAS-FIR PSEUDOTSUGA MENZIESII 513 DOUGLAS-FIR PSEUDOTSUGA MENZIESII	6 4 0 4	B FAIR 4 GOOD 0 GOOD 4 GOOD 4 GOOD	FAIR NO ONE SIDED, MODERATELY SUPPRESSED FAIR YES CODOMINANT AT 15' FAIR NO ONE SIDED GOOD YES
×××	203BIGLEAF MAPLEACER MACROPHYLLUM8204BIGLEAF MAPLEACER MACROPHYLLUM28205BIGLEAF MAPLEACER MACROPHYLLUM31206RED ALDERALNUS RUBRA12	8 GOOD FAIR 29 GOOD FAIR 20 GOOD FAIR 20 FAIR POO	NO CODOMINANT AT 15' 2 YE9 MULTIPLE LEADERS WITH INCLUDED BARK		5 5 5 5 5	513DOUGLAS-FIRPSEUDOTSUGA MENZIESII514DOUGLAS-FIRPSEUDOTSUGA MENZIESII515LEYLAND CYPRESSX CUPRESSOCYPARIS LEYLANDII516LEYLAND CYPRESSX CUPRESSOCYPARIS LEYLANDII	2 3 2 2	2	FAIR YE3 CODOMINANT AT 10' GOOD NO GOOD NO GOOD NO
×	201RED ALDERALNUS RUBRA14208RED ALDERALNUS RUBRA13209RED ALDERALNUS RUBRA21210RED ALDERALNUS RUBRA15,15,12		NO 33% LCR, POOR TRUNK TAPER DR NO 33% LCR, POOR TRUNK TAPER R YE9 CODOMINANT AT 2' WITH INCLUDED BARK DR NO MULTIPLE LEADERS AT GROUND LEVEL, PAST FAILURES WITH DECAY AT LOWER TRUNK		5 × 5 5 × 5	511BIGLEAF MAPLEACER MACROPHYLLUM518BIGLEAF MAPLEACER MACROPHYLLUM519SWEET CHERRYPRUNUS AVIUM520BIGLEAF MAPLEACER MACROPHYLLUM	2 3 8	2 GOOD 2 GOOD 5 GOOD 8 GOOD	FAIR NO ONE SIDED, MULTIPLE LEADERS FAIR YES ONE SIDED, MULTIPLE LEADERS FAIR YES CODOMINANT AT 2' WITH INCLUDED BARK, TAG 11085 FAIR YES MULTIPLE LEADERS
× × ×	211BIGLEAF MAPLEACER MACROPHYLLUM29212RED ALDERALNUS RUBRA18213WESTERN REDCEDARTHUJA PLICATA20214RED ALDERALNUS RUBRA11215RED ALDERALNUS RUBRA12	30 GOOD FAIR 20 GOOD FAIR 20 GOOD FAIR 20 FAIR POOL	YES MULTIPLE LEADERS 2 YES ONE SIDED 2 YES ONE SIDED 2 YES EXTREME LEAN OUT OF HILLSIDE, UPRIGHT LEADERS OFF OF BENT STEM, LEANS AGAINST TREE 211 2 YES EXTREME LEAN OUT OF HILLSIDE, UPRIGHT LEADERS OFF OF BENT STEM, LEANS AGAINST TREE 211 2 YES PISTOL BUTT, EXTREME LEAN		5 5 5 5	521 BITTER CHERRY PRUNUS EMARGINATA 522 BITTER CHERRY PRUNUS EMARGINATA 523 SWEET CHERRY PRUNUS AVIUM 524 NORWAY MAPLE ACER PLATANOIDES 525 MARUE ACER PLATANOIDES	5,8 O 3 21	0 VERY POO 3 POOR 4 FAIR 23 GOOD	VERY POOR NO TOPPED, SIGNIFICANT DIEBACK, TAG 5524 POOR NO SIGNIFICANT DIEBACK, TAG 5523 FAIR NO THIN CROWN, MULTIPLE LEADERS WITH INCLUDED BARK, TAG 53T1 FAIR YES CODOMINANT AT 2' WITH INCLUDED BARK, TAG 5511
×	215RED ALDERALNUS RUBRA13216RED ALDERALNUS RUBRA10211RED ALDERALNUS RUBRA14218BIGLEAF MAPLEACER MACROPHYLLUM18	15 GOOD FAIR 12 FAIR POO 15 FAIR FAIR 20 GOOD FAIR	YE3 ONE SIDED, POOR TRUNK TAPER DR NO POOR TRUNK TAPER R NO BOWED TRUNK, ONE SIDED R YE3 ONE SIDED		5 5 5 5 5		0 0 1 8,8,8,6,6	1 GOOD 5 GOOD 5 GOOD 2 GOOD 6 GOOD	FAIRNOCODOMINANT AT 6' WITH INCLUDED BARK, TAG 5391FAIRNOCODOMINANT AT 3' WITH INCLUDED BARK, TAG 5213FAIRYESONE SIDED, TAG 5214FAIRYESNOT FOR FRUIT PRODUCTION
× × ×	218.1WEGTERN REDCEDARTHUJA PLICATA32219WEGTERN REDCEDARTHUJA PLICATA40219.1RED ALDERALNUG RUBRA30,20220RED ALDERALNUG RUBRA15,10,8	20 GOOD FAIR 20 GOOD FAIR 0,16 25 VERY POOR VER 3 20 GOOD FAIR	YES CODOMINANT AT 6', ADDED TO SURVEY SHEET BY ARBORIST IN APPROXIMATE LOCATION YES MULTIPLE LEADERS YPOOR NO MULTIPLE LEADERS, EXTENSIVE DIEBACK AND DECAY, ADDED TO SURVEY SHEET BY ARBORIST IN APPROXIMATE LOCATION YES ONE SIDED, MULTIPLE LEADERS AT GROUND LEVEL AND 3'			529 SWEET CHERRY PRUNUS AVIUM 530 BIGLEAF MAPLE ACER MACROPHYLLUM		6 GOOD 0 GOOD	GOOD NO FAIR NO ONE SIDED
×	221BIGLEAF MAPLEACER MACROPHYLLUM13222CA3CARARHAMNUS PURSHIANA10223SWEET CHERRYPRUNUS AVIUM16224SWEET CHERRYPRUNUS AVIUM12,12,10	15 FAIR FAIR 20 FAIR FAIR 20 GOOD FAIR 20 GOOD FAIR 0,0 30 GOOD FAIR	NO OVERTOPPED BY ADJACENT TREES, ONE SIDED, PISTOL BUTT R NO OVERTOPPED BY ADJACENT TREES, CODOMINANT AT 5', BANANA CRACK AT CODOMINANT STEM R YES ONE SIDED R YES MULTIPLE LEADERS AT GROUND LEVEL WITH INCLUDED BARK			GEND TREES THAT ARE LOCATED ON-SITE AN		TRE	E RETENTION ANALYSIS
×	225SWEET CHERRYPRUNUS AVIUM11226SWEET CHERRYPRUNUS AVIUM10221SWEET CHERRYPRUNUS AVIUM12228RED ALDERALNUS RUBRA10,9	15 GOOD FAIR 10 GOOD FAIR 20 GOOD FAIR 15 POOR POOR	YE3 ONE SIDED, SIGNIFICANT LEAN, OVERTOPPED BY ADJACENT TREES R NO CROWN EXTENSION MODERATELY SUPPRESSED BY ADJACENT TREES R YE3 ONE SIDED DR NO MULTIPLE LEADERS AT GROUND LEVEL, PREVIOUSLY FAILED LEADERS			RESTRICTED DEVELOPMENT AREA TREES THAT ARE LOCATED ON-SITE BU	r outside	E	YES TREES THAT MEET TREE RETENTION REQUIREMENT. SEE NOTE 4.
	229RED ALDERALNUS RUBRA13230RED ALDERALNUS RUBRA11231RED ALDERALNUS RUBRA15232RED ALDERALNUS RUBRA10	15 FAIR POO 15 FAIR POO 20 FAIR POO 10 FAIR POO	NO POOR TRUNK TAPER DR NO POOR TRUNK TAPER, ONE SIDED, 33% LCR DR NO KINKED LOWER TRUNK, 33% LCR DR NO POOR TRUNK TAPER, MODERATELY SUPPRESSED			OF THE RESTRICTED DEVELOPMENT AR	EA		TOTAL NUMBER OF SURVEYED TREES TO BE SAVED ON-SITE. = 212 TEEESXTREES TO BE SAVED THAT MEET TREE RETENTION REQUIREMENT. = 99 TREES
×	233RED ALDERALNUS RUBRA22234RED ALDERALNUS RUBRA11235WESTERN REDCEDARTHUJA PLICATA34236RED ALDERALNUS RUBRA10	25 GOOD FAIR 15 FAIR POO 20 GOOD GOO 10 FAIR POO	R YES BOWED LOWER TRUNK DR NO ONE SIDED, POOR TRUNK TAPER DD YES DR NO POOR TRUNK TAPER, 25% LCR			PROPERTY			SURVEYED TREES TO BE REMOVED
X	231WESTERN REDCEDARTHUJA PLICATA14238BIGLEAF MAPLEACER MACROPHYLLUM14,10239RED ALDERALNUS RUBRA9	14 GOOD GOO 15 GOOD FAIR 10 FAIR POO	PD YES CODOMINANT AT 2', ONE SIDED						PER CODE SECTION 17.102.50 A-1 "AT LEAST THREE TREES 11 INCHES DBH OR OWNERSHIP". THERE IS 32.87 ACRES (32.87 \times 3 = 98.6), SO A MINIMUM OF <u>99 T</u> BE RETAINED MEETING THIS CODE REQUIREMENT.
ATTENTION	VEY COMPLETED BY: TERAGAN & ASSOCIATES, INC. N: TODD PRAGER, ASCA REGISTERED CONSULTING ARBOR THE TRUNK DIAMETER IN INCHES MEASURED IN ACCORDAN		FIED MASTER ARBORIST, ISA TREE RISK ASSESSMENT QUALIFIED, AICP, AMERICAN PLANNING ASSOCIATION DCIETY OF ARBORICUI TURE STANDARDS.						AS SHOWN ABOVE THERE ARE <u>212</u> SURVEYED TREES THAT WILL BE RETAINED. REQUIREMENTS TO BE "COUNTED" AS RETAINED TREES.
2. C-RAD I	THE TRUNK DIAMETER IN INCHES MEASURED IN ACCORDAN 16 THE APPROXIMATE CROWN RADIUS IN FEET. 10N AND STRUCTURE RATINGS RANGE FROM VERY POOR,								IN ADDITION TO THE <u>212</u> SURVEYED TREES THAT WILL BE SAVED, THERE ARE C THE OPEN SPACE AREAS AS SHOWN ON SHEET CT. THE ABOVE ANALYSIS PR
			SED FOR RETENTION SHALL BE HEALTHY AND LIKELY TO GROW TO MATURITY. PER CITY OF SANDY, ONLY TREES IN GOOD						ALL DEAD OR DYING TREES OR VEGETATION THAT IS HAZARDOUS

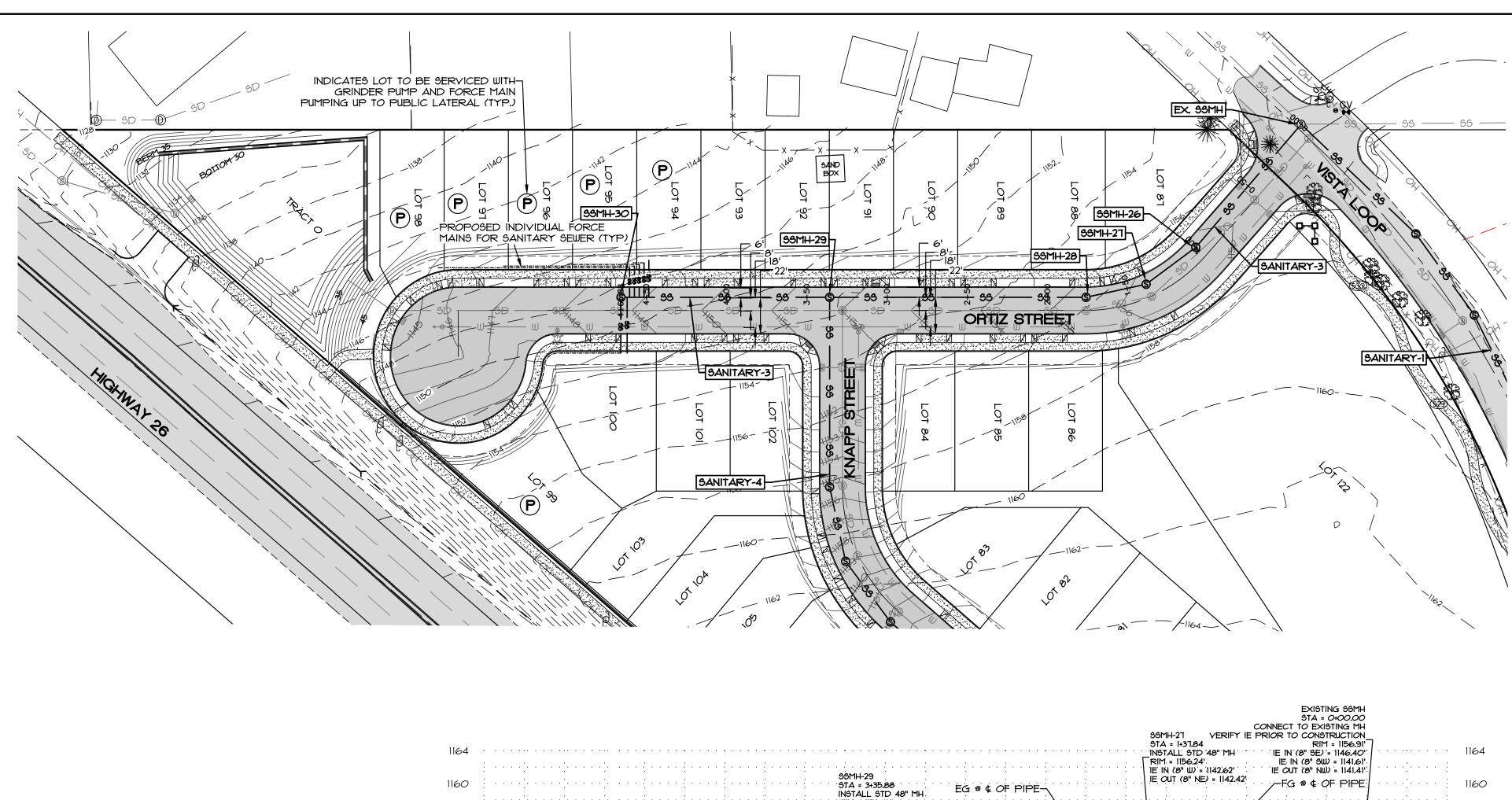


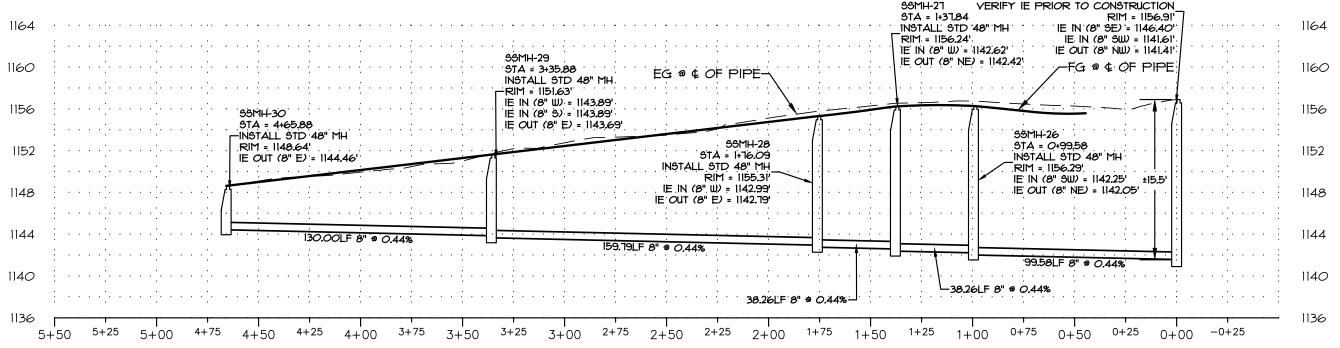


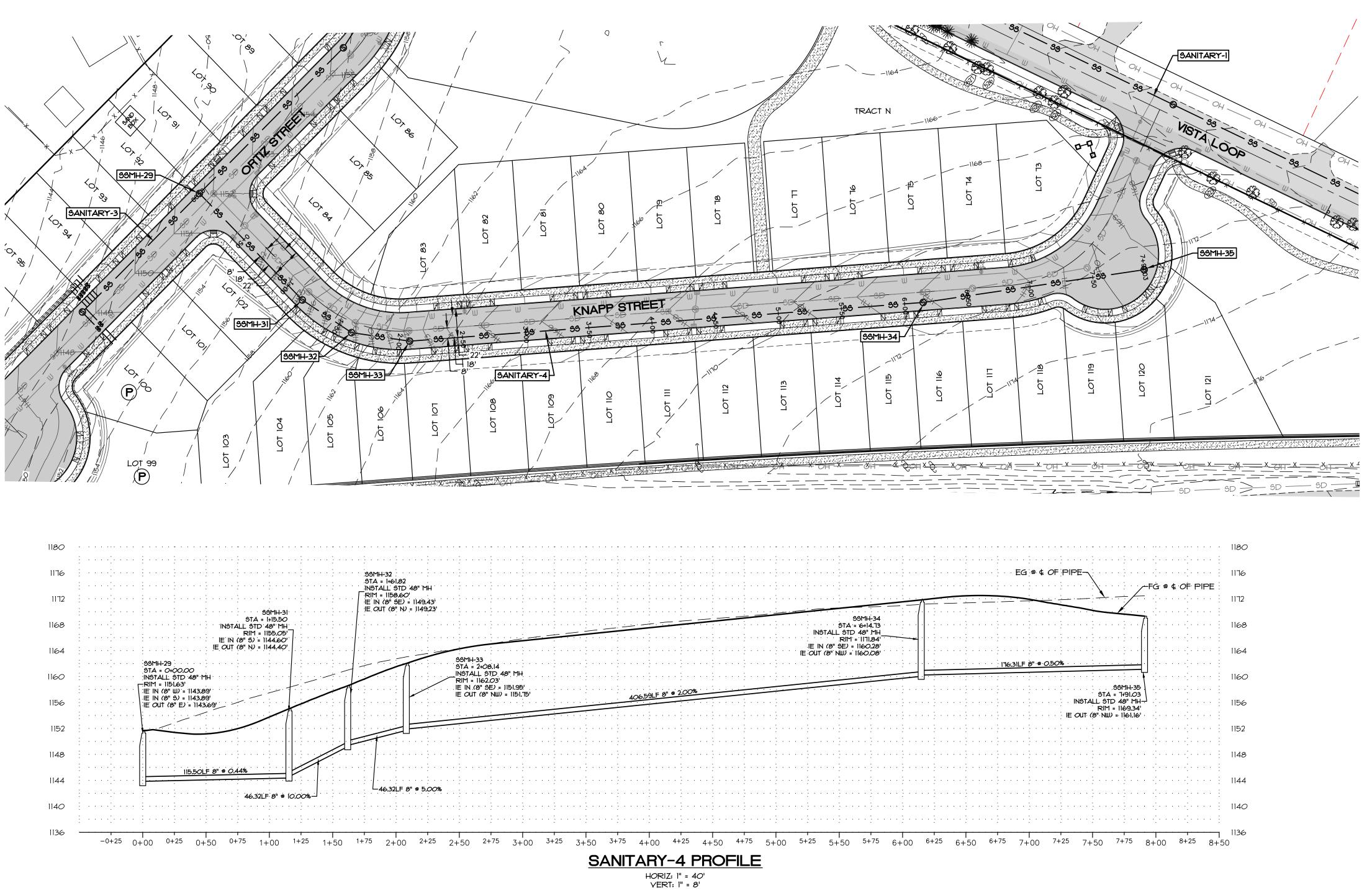


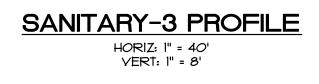












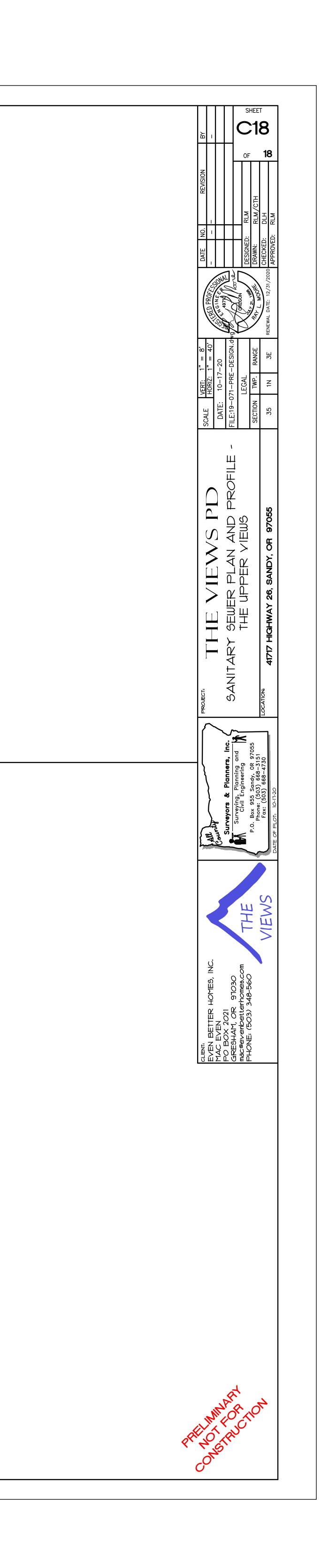


EXHIBIT E

Preliminary Storm Drainage Report For: The Views PD

June 24, 2020

Prepared By:

All County Surveyors and Planners, Inc. Ray L. Moore, P.E., P.L.S. P.O. Box 955 Sandy, Oregon 97055 Phone: 503-668-3151 Job #19-071

> Prepared For: Even Better Homes, Inc. Mac Even PO Box 2021 Gresham, OR 97030 Phone: 503-348-5602

RENEWAL DATE: 12/31/2020

(This page intentionally left blank)

Table of Contents

Description	Page(s)
Project Summary	1
Hydrograph Parameters	2
Detention Sizing Results	4
Water Quality Design	7
Conclusion	7
Existing Conditions Map	Appendix A
Developed Conditions Map	Appendix B
Basin 1 Analysis, Data, and Detention Pond Design	Appendix C
Basin 2 Analysis, Data, and Detention Pond Design	Appendix D
Basin 3 Analysis, Data, and Detention Pond Design	Appendix E
Standard Formulas, Coefficients, and Values	Appendix F
Water Quality Manhole Details	Appendix G

(This page intentionally left blank)

Project Summary

Purpose

The purpose of this analysis is to

- 1. Describe existing and proposed site conditions.
- 2. Provide detention calculations for the 2-yr, 5-yr, 10-yr, and 25-yr storm events.
- 3. Provide water quality calculations.

Project Location and Description

The Views PD is split into two sections, The Upper Views and The Lower Views. The Upper views site is the Knapp property located between Highway 26 and Vista Loop Road. It is Tax Lot 500 and is approximately 9.5 acres. This site is currently be used as a Christmas tree farm with grass ground cover. There are no structures on the site. The land is generally sloped to the north and west with an average slope of about 7%.

The Lower Views is the Picking property located behind Johnson RV. It is Tax Lot 200 and is approximately 23.3 acres. This site has a home and outbuildings. The land slopes to the North and East. There are steep slopes, 25% and greater, on the Eastern and Northern portions of the site with a FSH overlay. The site is heavily forested on the steep unbuildable ground. The area of the proposed development is currently a grass hay field and has been that way for over 30 years. See the Existing Conditions Map in Appendix A.

Proposed Improvements

The proposed 122 lot planned development will consist of 120 single-family residential lots ranging from 2,100 sf to 17,000 sf. The project will also include two multi-family lots ranging in size from 43,003 sf to 53,185 sf. The site improvements will include streets, curbs, sidewalks, utilities, trails and private park areas. New storm sewer pipes, manholes, and catch basins will be installed to convey storm water to a public detention systems. Due to the site topography, three separate detention systems will be required.

Detention System #1 will serve the Westerly half of the Lower Views. System #1 will detain all of the area shown on the Developed Conditions Map in Appendix B. The detention will be provided in a tank under the new public road. Due to grade limitations the apartment site on Lot 72 will provide its own detention and water quality system at time of development. Lots 61 and 62 are also too low to drain to the detention tank. These two lots will provide lot-level detention and water quality systems at the time of building construction.

Detention System #2 will serve the Easterly half of the Lower Views. System #2 will detain all of the area shown on the Developed Conditions Map in Appendix B. The detention will be provided in an open pond located in Tract J along the Easterly side of the site.

Detention System #3 will serve all of the lots on the Upper Views including the future apartment site. The detention will be provided in an open pond located in Tract O at the Northwest corner of the site. The discharge from the pond will be into an existing storm system in the ODOT right-of-way. Upstream and downstream analyses will be performed as needed at the time of final engineering.

The following calculations will demonstrate that the total post-developed release rates from all of the design storm events will not exceed the pre-developed rates as required by the code.

19-071 - Preliminary Storm Report.docx

Page 1 of 7

Hydrograph Parameters

Rainfall

The rainfall distribution numbers were taken from the City of Sandy Stormwater Website (http://www.ci.sandy.or.us/Stormwater/)

Storm Recurrence Interval	Rainfall (inches)
2 year	3.50
5 year	4.50
10 year	4.80
25 year	5.50

Soils

The soil data for this site is from *Soil Survey of Clackamas County, Oregon* published by the United Stated Department of Agriculture (USDA). The post-development soil is assumed to be the same as pre-development.

Soil Type: 15B, Cazadero silty clay loam. Hydrologic Group "C"

Areas

Pre-developed area calculations are based on Existing Conditions Map in Appendix A. Postdeveloped area calculations are based on proposed designs of streets, curbs, and walkways and the proposed homes as shown on Developed Conditions Map in Appendix B.

Basin	1	Basin 2		Basin 3		
Pre-Developed		Pre-Developed		Pre-Developed		
Total Area	5.497 ac	Total Area	4.928 ac	Total Area	10.456 ac	
Impervious	0.025 ac	Impervious	0.337 ac	Impervious	0.317 ac	
Area		Area		Area		
Pervious Area	5.472 ac	Pervious Area	4.591 ac	Pervious Area	10.139 ac	
Post-Developed		Post-Developed		Post-Developed		
Total Area	5.497 ac	Total Area	4.928 ac	Total Area	10.456 ac	
Impervious	3.756 ac	Impervious	2.946 ac	Impervious	5.546 ac	
Area		Area		Area		
Pervious Area	1.741 ac	Pervious Area	1.982 ac	Pervious Area	4.910 ac	

19-071 - Preliminary Storm Report.docx

Page 2 of 7

Curve Numbers

Curve Numbers are taken from the 2016 City of Portland Stormwater Management Manual.

Description	CN	Land Use Description
Pre-Developed	76	Woods-grass combination (orchard or tree farm) "Fair Condition"
Post-Developed Pervious Areas	74	Lawns "Good Condition"
Impervious Areas	98	Buildings, AC, Sidewalks, etc.

Time of Concentration

The times of concentrations (T_c), were calculated using the equations and spreadsheets in the attached Appendices.

Basin 1				
(See)	Appendix C)			
Pre-Developed	28.2 minutes			
Post-Developed	5 minutes (assumed)			

Basin 2				
(See Appendix D)				
Pre-Developed	25.2 minutes			
Post-Developed	5 minutes (assumed)			

Basin 3				
(See Appendix E)				
Pre-Developed	34.4 minutes			
Post-Developed	5 minutes (assumed)			

Page 3 of 7

Detention Sizing Results

Hydrographs for the drainage basins were determined using a spreadsheet based on the King County, Washington Hydrograph Program, version 4.21B, which uses the Santa Barbara Urban Hydrograph (SBUH) method. The Post-Development flows were routed through the detention facilities and flow control structures were designed to release the water at the Pre-Developed rates for the 2-year, 5-year, 10-year, and 25-year storm events per the City of Sandy public Works Design Standards.

Detention System 1 (Sizing Results)

The detention facility for Basin 1 is proposed to be a **6-foot diameter tank 474.6 feet long with a capacity of 13,419 cubic feet.** The orifices in the flow control manhole were designed to release the Post-Development Peak-Q's at or below the Pre-Developed Peak-Q's.

See Appendix C for more information and the detailed analysis.

Basin 1, Detention Tank 1							
Recurrence	Pre-		Proposed	Reduction in outflow			
Interval	Developed	Developed	Release Rates	from Pre-Developed			
(years)	Outflow (cfs)	Outflow (cfs)	(cfs)	to Proposed			
25	2.84	6.67	2.84	0%			
10	2.20	5.67	1.96	11%			
5	1.93	5.25	1.61	16%			
2	1.10	3.87	1.10	0%			

Orifice Table		
Detention Tank 1 (Basin 1)		
Orifice	Dia. (inches)	Height (feet)
Bottom	4.29	0
Тор	6.36	4.30

A Weir could be used for the top orifice in the flow control structure. See Rectangular, Sharp Crested Weir Calculations in the detailed analysis.

19-071 - Preliminary Storm Report.docx

Page 4 of 7

Detention System 2 (Sizing Results)

The detention facility for Basin 2 is proposed to be a 4-deep detention pond. The required storage volume is 9,029-cubic feet. This can be contained in a 4-foot deep pond with a bottom area of 1,225 square feet. The orifices in the flow control manhole were designed to release the Post-Development Peak-Q's at or below the Pre-Developed Peak-Q's.

See Appendix D for more information and the detailed analysis.

	Basin 2, Detention Pond 2										
Recurrence	Pre-		Proposed	Reduction in outflow							
Interval	Developed	Developed	Release Rates	from Pre-Developed							
(years)	Outflow (cfs)	Outflow (cfs)	(cfs)	to Proposed							
25	2.83	5.66	2.83	0%							
10	2.22	4.78	2.22	0%							
5 1.97		4.41	1.82	8%							
2	1.18	3.19	1.18	0%							

Orifice Table							
Detention Pond 2 (Basin 2)							
Orifice Dia. (inches) Height (feet)							
Bottom	0						
Тор	7.64	3.24					

A Weir could be used for the top orifice in the flow control structure. See Rectangular, Sharp Crested Weir Calculations in the detailed analysis.

19-071 - Preliminary Storm Report.docx

Page 5 of 7

Detention System 3 (Sizing Results)

The detention facility for Basin 2 is proposed to be a 4-deep detention pond. The required storage volume is 19,983-cubic feet. This can be contained in a 4-foot deep pond with a bottom area of 4,173 square feet. The orifices in the flow control manhole were designed to release the Post-Development Peak-Q's at or below the Pre-Developed Peak-Q's.

See Appendix E for more information and the detailed analysis.

Basin 3, Detention Pond 3										
Recurrence Interval (years)	Pre- Developed Outflow (cfs)	Developed Outflow (cfs)	Proposed Release Rates (cfs)	Reduction in outflow from Pre-Developed to Proposed						
25	5.06	11.49	5.06	0%						
10	3.93	9.62	3.93	0%						
5	3.46	8.84	3.23	7%						
2	2.02	6.31	2.02	0%						

Orifice Table Detention Pond 3 (Basin 3)							
Orifice Dia. (inches) Height (feet)							
Bottom	Bottom 6.12						
Тор	9.60	2.94					

A Weir could be used for the top orifice in the flow control structure. See Rectangular, Sharp Crested Weir Calculations in the detailed analysis.

19-071 - Preliminary Storm Report.docx

Page 6 of 7

Water Quality Design

CDS Storm Water Treatment Device

Three CDS manholes by Contech Stormwater Solutions were designed for water quality for this site, one for each drainage basin, see details in Appendix F). The developed impervious area includes AC pavement, sidewalks, and roofs.

The flow (Q) from this runoff was calculated using the rational method (Q=CIA) where:

Q = flow (cfs) C = runoff coefficient = 0.90 for Pavement and Roofs I = Intensity = 0.2 inches per hour (City of Sandy Water Quality Storm for an "on-line facility") A = Impervious Area

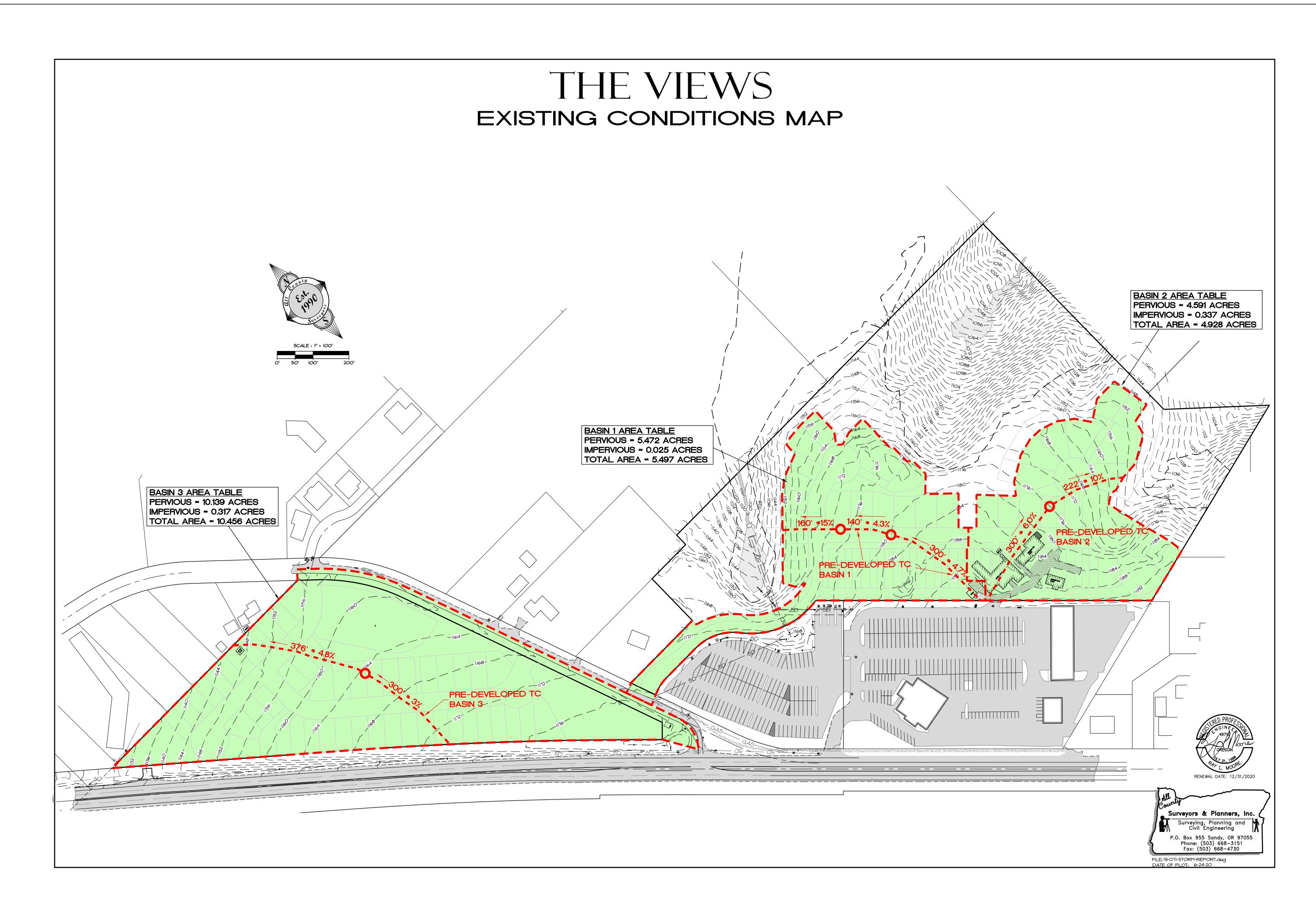
 $\frac{\text{Basin 1}}{\text{Q} = (0.90) \times (0.2) \times (3.756) = 0.68 \text{ cfs}}$

 $\frac{\text{Basin 2}}{\text{Q} = (0.90) \text{ X} (0.2) \text{ X} (2.946) = 0.53 \text{ cfs}}$

 $\frac{\text{Basin 3}}{\text{Q} = (0.90) \text{ X} (0.2) \text{ X} (5.546) = 1.00 \text{ cfs}}$

The Contech Stormwater Solutions Treatment Device Model CDS2015-4-C has a treatment capacity of 0.7 cfs. Therefore, this manhole will work for Basins 1 and 2. A CDS2015-5-C will be needed to treat Basin 3.

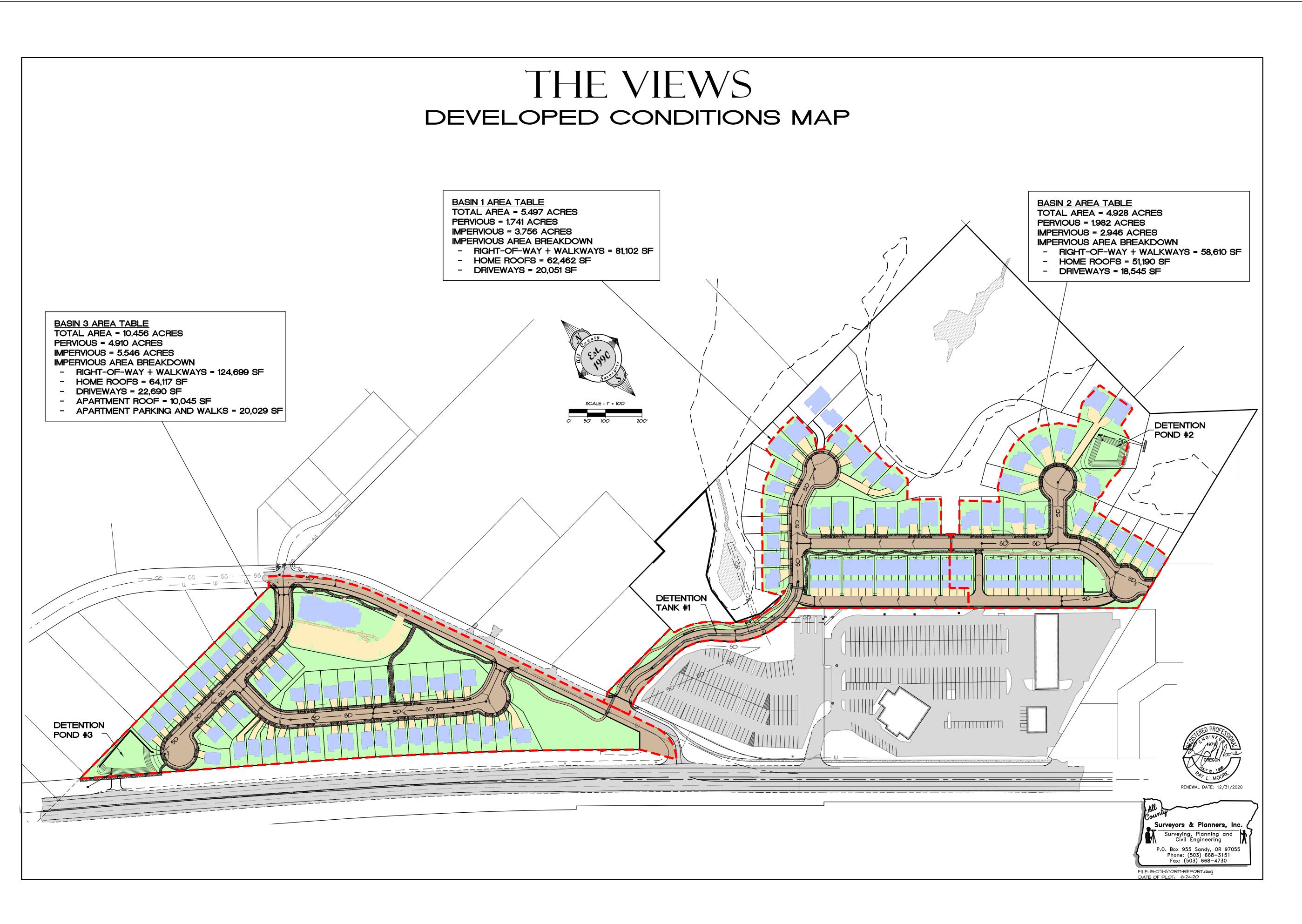
Conclusion


In accordance with the City of Sandy requirements, on-site detention has been designed to maintain existing downstream storm water runoff characteristics and a water quality system has been designed to provide adequate treatment. These calculations demonstrate that the detention and water quality systems are more than adequately sized for the proposed development. Detailed calculations will be completed with the final engineering plans as needed.

19-071 - Preliminary Storm Report.docx

Page 7 of 7

(This page intentionally left blank)


<u>Appendix A</u> Existing Conditions Map (This page intentionally left blank)

<u>Appendix B</u> Developed Conditions Map

(This page intentionally left blank)

Appendix C

Basin 1 Analysis, Data, and Detention Pond Design

(This page intentionally left blank)

	_			
PRE-DE	VELOPE	D - TIME OF CON	CENTRATION C	ALCULATIONS
Job #	19-071			
Date:	6/24/2020			
			28.2	= Total Tc (min)
Overland Fl Tc =	ow (max 300 26.6	r total)	total	- travel time for less than 200' (min)
Ns =	0.24		20.0	= travel time for less than 300' (min) = Manning's coefficient (<u>sheet flow</u>)
L =	300		300	= flow length (ft)
P2 =	2.7			= 2-year, 24 hour rainfall (in)
So =	4.70%			= slope of the land (%)
01-11-0		1		
Shallow Col	ncentrated F	low (after initial 300') 0.6	total	= travel time for sheet flow (min)
L =	140	160		= flow length (ft)
So =	4.30%	15.00%	000	= slope of the land (%)
k =	11	11		= time of concentration velocity factor (ft/s)
				_
Flow in Swa			total	
Tc = A =	0.00 6.00		0.0	= travel time in swale (min) = area of flow (sf)
R =	0.00			= hydraulic radius (ft)
Ls =	4.12			= side slope wet (ft)
Q =	3.12			= quantity of flow (ft^3/sec)
V =	0.52			= velocity
L =	0		C	= flow length (ft)
Ve =	1			= vertical distance of side
Ho = Bw =	4			= horizontal distance of side = base width of swale (in)
D =	12			= depth of flow ESTIMATE (in)
S =	1.00%			= slope of the swale (%)
n =	0.2			= Manning's coefficient (<u>channel</u>)
Flow in Gut			total	- travel time in sutter (min)
Tc = fps =	0.02		0.0	= travel time in gutter (min) = average velocity of flow (ft/sec)
T =	0.02			= calculated width of flow in the gutter (ft)
Qc =	0.00			= quantity of flow (as caluclated Q=CIA) (ft^3/sec)
C =	0.90			= runoff coefficient for rational method (paved=0.9)
=	2.75			= rainfall intensity (assume 5 min tc)
W =	18.00			= width of pavement draining to CB
<u>S =</u> Sx =	8.00% 2.50%			= street longitudinal slope (%) = street cross slope (%)
n =	0.016			= Manning's coefficient (pavement = 0.016)
L =	0.0		C	= length of flow and drainage basin (ft)
			•	,
Flow in Pipe			total	1
Tc =	0.0		0.0	= travel time in pipe (min)
V = Q =	10.15 7.96			= calculated velocity pipe full (ft/sec) = guantity of flow (ft^3/sec)
n =	0.013			= Manning's coefficient (pipe)
D =	12			= pipe diameter (in)
S =	5.00%			= slope of pipe (%)
L =	0.0		0	= length of pipe (ft)

Project Name: The Views - Basin 1 Tank Hydrograph Analysis Summary Job # 19-071 Date: 6/24/2020

Rainfall (year)		nfall hes)
	2	3.50
4	5	4.50
1	0	4.80
2	5	5.50
10	0	0.00

bed	
5.472	acres
76	na
0.025	acres
98	na
28.2	min
5.497	acres
	5.472 76 0.025 98 28.2

Developed		
Pervious		
Area =	1.741	acres
CN =	74	na
Impervious		
Area =	3.756	acres
CN =	98	na
Tc =	5	min
Total A =	5.497	acres

.741 acres	Note: The hydrographs
74 na	shown are based on the
3.756 acres	S.C.S. Type - 1A, 24 hour
98 na	storm using the SBUH
5 min	method based on the King
5.497 acres	County Model.

Pre-Developed Hydrographs								
	=====>	2	5	10	25	100		
Qpeak	cfs =>	1.10	1.93	2.20	2.84	0.00		
Volume Tpeak	cf => min =>	27,335 480	42,577 480	47,398 480	58,984 480	- 10		
Tpeak	hr =>	8.00	8.00	8.00	8.00	0.17		
	ph Name=>	2	5	10	25	100		
Time	Time	Hyd	Hyd	Hyd	Hyd	Hyd		
(min)	(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		
	0 0.00	0.00	0.00	0.00	0.00	0.00		
	0 0.17	0.00	0.00	0.00	0.00	0.00		
2	0 0.33 0 0.50	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		
4		0.00	0.00	0.00	0.00	0.00		
- 5		0.00	0.00	0.00	0.00	0.00		
6		0.00	0.00	0.00	0.00	0.00		
	0 1.17	0.00	0.00	0.00	0.00	0.00		
8		0.00	0.00	0.00	0.00	0.00		
9		0.00	0.00	0.00	0.00	0.00		
10		0.00	0.00	0.00	0.00	0.00		
11		0.00	0.00	0.00	0.00	0.00		
12		0.00	0.00	0.00	0.00	0.00		
13		0.00	0.00	0.00	0.00	0.00		
14		0.00	0.00	0.00	0.00	0.00		
15		0.00	0.00	0.00	0.00	0.00		
16		0.00	0.00	0.00	0.00	0.00		
17		0.00	0.00	0.00	0.00	0.00		
18 19		0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00		
20		0.00	0.00	0.00 0.00	0.00	0.00 0.00		
20		0.00	0.00	0.00	0.00	0.00		
21		0.00	0.00	0.00	0.00	0.00		
23		0.00	0.00	0.00	0.00	0.00		
24		0.00	0.00	0.00	0.00	0.00		
25		0.00	0.00	0.00	0.01	0.00		
26		0.00	0.00	0.00	0.03	0.00		
27	0 4.50	0.00	0.00	0.01	0.04	0.00		
28	4.67	0.00	0.01	0.02	0.07	0.00		
29	0 4.83	0.00	0.01	0.03	0.09	0.00		
30	0 5.00	0.00	0.03	0.05	0.12	0.00		
31		0.00	0.04	0.07	0.16	0.00		
32		0.00	0.06	0.10	0.19	0.00		
33		0.01	0.09	0.12	0.22	0.00		
34		0.01	0.11	0.15	0.25	0.00		
35		0.02	0.13	0.18	0.30	0.00		
36		0.03	0.17	0.22	0.34	0.00		
37		0.05	0.20	0.25	0.39	0.00		
38 39		0.07 0.09	0.23 0.26	0.28 0.32	0.43 0.47	0.00 0.00		
39 40		0.09	0.26	0.32	0.47	0.00		
40		0.10	0.28	0.33	0.50	0.00		
41		0.13	0.34	0.40	0.58	0.00		
42		0.17	0.41	0.40	0.00	0.00		
44		0.21	0.56	0.66	0.90	0.00		
45		0.34	0.68	0.80	1.08	0.00		
46		0.49	0.94	1.09	1.44	0.00		
40		0.40	1.53	1.75	2.28	0.00		
48		1.10	1.93	2.20	2.84	0.00		
49		1.08	1.87	2.12	2.72	0.00		
50		0.99	1.68	1.90	2.43	0.00		
51		0.90	1.50	1.70	2.16	0.00		
	0.00	0.00			20	0.00		

19-071 - Detention-1-tank.xls

/ear ===:	P ====>	Pre-Develop 2	ed Hydro 5	graphs 10	25	100
cfs	=>	2 1.10	5 1.93	10 2.20	25 2.84	0.00
cf =>		27,335 480	42,577 480	47,398 480	58,984 480	- 10
	min => hr =>	480 8.00	460 8.00	480 8.00	480 8.00	0.17
k ograph N	lame=>	2	5	10	25	100
e Ti n) (h	me r)	Hyd (cfs)	Hyd (cfs)	Hyd (cfs)	Hyd (cfs)	Hyd (cfs)
520	8.67	0.84	1.39	1.56	1.98	0.00
530	8.83	0.76	1.25	1.41	1.78	0.00
540 550	9.00 9.17	0.68 0.62	1.10 1.00	1.24 1.12	1.56 1.41	0.00 0.00
560	9.33	0.58	0.93	1.04	1.31	0.00
570	9.50	0.56	0.89	0.99	1.24	0.00
580 590	9.67 9.83	0.54 0.53	0.86 0.84	0.96 0.94	1.19 1.16	0.00 0.00
600	10.00	0.53	0.83	0.92	1.15	0.00
610	10.17	0.53	0.83	0.92	1.14	0.00
620 630	10.33 10.50	0.53 0.54	0.83 0.83	0.92 0.92	1.13 1.13	0.00 0.00
640	10.67	0.54	0.83	0.92	1.13	0.00
650	10.83	0.53	0.81	0.90	1.11	0.00
660 670	11.00	0.51 0.49	0.78 0.75	0.86 0.83	1.06 1.02	0.00 0.00
680	11.17 11.33	0.49	0.75	0.83	1.02	0.00
690	11.50	0.48	0.73	0.81	0.99	0.00
700	11.67	0.48	0.73	0.80	0.98	0.00
710 720	11.83 12.00	0.48 0.48	0.72 0.72	0.80 0.80	0.98 0.98	0.00 0.00
730	12.00	0.48	0.72	0.80	0.98	0.00
740	12.33	0.48	0.73	0.80	0.98	0.00
750 760	12.50 12.67	0.49 0.49	0.73 0.73	0.80 0.81	0.98 0.98	0.00 0.00
700	12.83	0.49	0.73	0.81	0.98	0.00
780	13.00	0.45	0.68	0.74	0.90	0.00
790	13.17	0.44	0.65	0.72	0.87	0.00
800 810	13.33 13.50	0.43 0.42	0.63 0.62	0.70 0.69	0.85 0.83	0.00 0.00
820	13.67	0.42	0.62	0.68	0.82	0.00
830	13.83	0.41	0.61	0.67	0.82	0.00
840 850	14.00 14.17	0.41 0.41	0.61 0.61	0.67 0.67	0.81 0.81	0.00 0.00
860	14.33	0.41	0.61	0.67	0.81	0.00
870	14.50	0.41	0.61	0.67	0.81	0.00
880	14.67	0.42	0.61	0.67	0.81	0.00
890 900	14.83 15.00	0.41 0.40	0.60 0.58	0.66 0.64	0.80 0.77	0.00 0.00
910	15.17	0.39	0.57	0.63	0.76	0.00
920	15.33	0.38	0.56	0.62	0.74	0.00
930 940	15.50 15.67	0.38 0.38	0.56 0.55	0.61 0.61	0.74 0.73	0.00 0.00
940 950	15.83	0.38	0.55	0.61	0.73	0.00
960	16.00	0.38	0.55	0.60	0.73	0.00
970	16.17	0.38	0.55	0.60	0.73	0.00
980 990	16.33 16.50	0.38 0.38	0.55 0.55	0.60 0.61	0.73 0.73	0.00 0.00
1000	16.67	0.38	0.55	0.61	0.73	0.00
1010	16.83	0.37	0.54	0.59	0.71	0.00
1020 1030	17.00 17.17	0.35 0.34	0.51 0.49	0.56 0.54	0.67 0.65	0.00 0.00
1040	17.33	0.34	0.49	0.54	0.63	0.00
1050	17.50	0.32	0.47	0.51	0.62	0.00
1060	17.67	0.32	0.46	0.51	0.61	0.00
1070 1080	17.83 18.00	0.32 0.32	0.46 0.46	0.50 0.50	0.60 0.60	0.00 0.00
1090	18.17	0.32	0.46	0.50	0.60	0.00
1100	18.33	0.32	0.46	0.50	0.60	0.00
1110 1120	18.50 18.67	0.32 0.32	0.45 0.45	0.50 0.50	0.60 0.60	0.00 0.00
1130	18.83	0.32	0.46	0.50	0.60	0.00
1140	19.00	0.32	0.46	0.50	0.60	0.00
1150	19.17	0.32	0.46	0.50	0.60	0.00
1160 1170	19.33 19.50	0.32 0.32	0.46 0.46	0.50 0.50	0.60 0.60	0.00 0.00
1180	19.67	0.32	0.46	0.50	0.60	0.00
1190	19.83	0.32	0.46	0.50	0.60	0.00
1200	20.00 20.17	0.32 0.32	0.46 0.46	0.50 0.50	0.60 0.60	0.00 0.00
1210						

	P	re-Develop	ed Hydro	graphs			Develope	d Hydrog	raphs
Year ===	====>	2	5	10	25	100	2	5	10
Qpeak	cfs =>	1.10	1.93	2.20	2.84	0.00	3.87	5.25	5.67
Volume	cf =>	27,335	42,577	47,398	58,984	-	52,353	70,577	76,13
Tpeak	min =>	480	480	480	480	10	470	470	470
Tpeak	hr =>	8.00	8.00	8.00	8.00	0.17	7.83	7.83	7.83
Hydrograph Name=>		2	5	10	25	100	2	5	10
	ïme	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd
	nr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
1220	20.33	0.32	0.46	0.50	0.60	0.00	0.41	0.55	0.5
1230	20.50	0.32	0.46	0.50	0.60	0.00	0.41	0.55	0.5
1240	20.67	0.32	0.46	0.50	0.60	0.00	0.41	0.55	0.5
1250	20.83	0.32	0.46	0.51	0.60	0.00	0.41	0.55	0.5
1260	21.00	0.32	0.46	0.51	0.60	0.00	0.41	0.55	0.5
1270	21.17	0.33	0.46	0.51	0.61	0.00	0.41	0.55	0.5
1280	21.33	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1290	21.50	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1300	21.67	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1310	21.83	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1320	22.00	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1330	22.17	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1340	22.33	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1350	22.50	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1360	22.67	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1370	22.83	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1380	23.00	0.33	0.47	0.51	0.61	0.00	0.42	0.55	0.5
1390	23.17	0.33	0.47	0.52	0.61	0.00	0.42	0.55	0.5
1400	23.33	0.33	0.47	0.52	0.61	0.00	0.42	0.55	0.5
1410	23.50	0.33	0.47	0.52	0.61	0.00	0.42	0.55	0.5
1420	23.67	0.34	0.47	0.52	0.62	0.00	0.42	0.55	0.5
1430	23.83	0.34	0.48	0.52	0.62	0.00	0.42	0.55	0.5
1440	24.00	0.34	0.48	0.52	0.62	0.00	0.42	0.55	0.5
1450	24.17	0.29	0.40	0.44	0.52	0.00	0.21	0.28	0.3
1460	24.33	0.20	0.28	0.31	0.37	0.00	0.00	0.00	0.0
1470	24.50	0.14	0.20	0.22	0.26	0.00	0.00	0.00	0.0
1480	24.67	0.10	0.14	0.15	0.18	0.00	0.00	0.00	0.0
1490	24.67	0.07	0.10	0.11	0.12	0.00	0.00	0.00	0.0
1500	24.67	0.05	0.07	0.07	0.09	0.00	0.00	0.00	0.0

25

6.67

89,219

470

7.83 25

Hyd (cfs)

0.68

0.68

0.68 0.68 0.68

0.69

0.69

0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

0.69

0.69

0.69 0.69 0.69 0.69

0.69

0.09 0.34 0.00 0.00 0.00

0.00

0.00

0.59

0.59

0.59 0.59 0.59

0.59 0.59 0.59 0.59 0.59 0.59 0.59

0.59

0.30 0.00 0.00 0.00

0.00

0.00

100

0.00

10

0.17 100 Hyd (cfs)

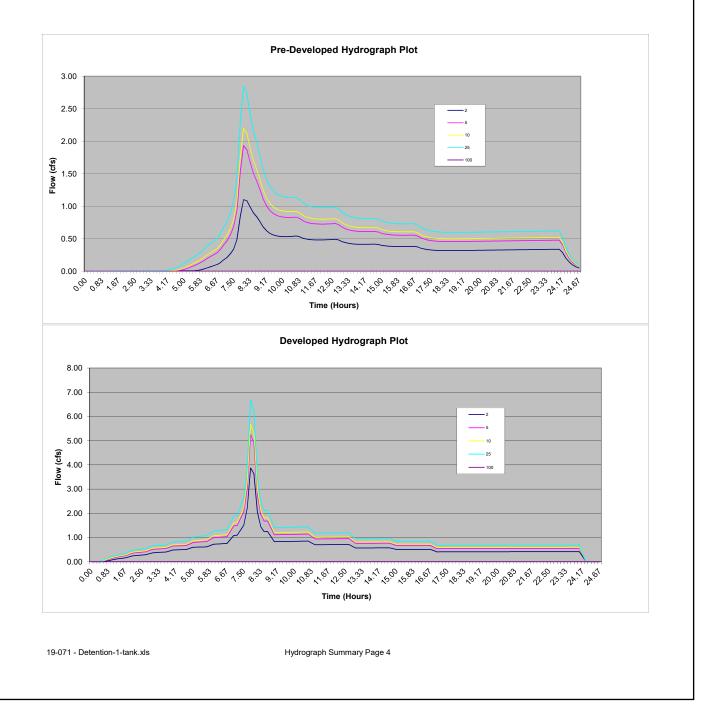
0.00

0.00

0.00 0.00 0.00

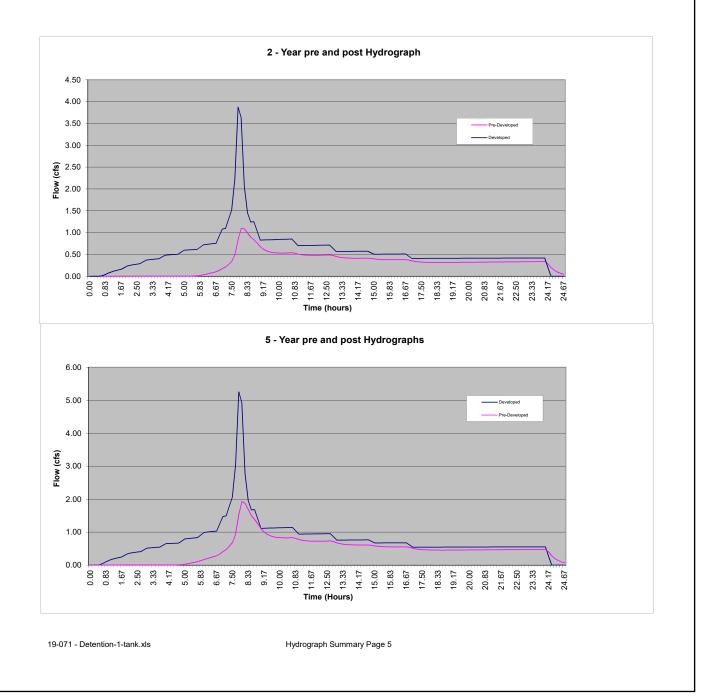
0.00

0.00

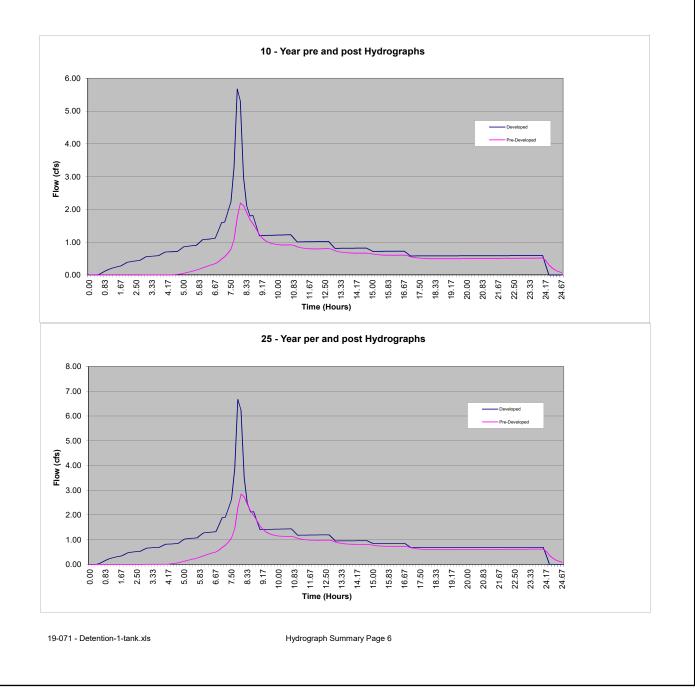

0.00

0.00

19-071 - Detention-1-tank.xls


		Pre-Develop	ed Hydro	graphs		
Year	=====>	2	5	10	25	100
Qpeak	cfs =>	1.10	1.93	2.20	2.84	0.00
Volume	cf =>	27,335	42,577	47,398	58,984	-
Tpeak	min =>	480	480	480	480	10
Tpeak	hr =>	8.00	8.00	8.00	8.00	0.17
Hydrogra	aph Name=>	2	5	10	25	100
Time	Time	Hyd	Hyd	Hyd	Hyd	Hyd
(min)	(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)

Developed Hydrographs						
2	5	10	25	100		
3.87	5.25	5.67	6.67	0.00		
52,353	70,577	76,133	89,219	-		
470	470	470	470	10		
7.83	7.83	7.83	7.83	0.17		
2	5	10	25	100		
Hyd	Hyd	Hyd	Hyd	Hyd		
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		


	Pre-Develo	ped Hydro	ographs		
Year =====>	2	5	10	25	100
Qpeak cfs =	⇒ 1.10	1.93	2.20	2.84	0.00
Volume cf =	> 27,335	42,577	47,398	58,984	-
Tpeak min =	> 480	480	480	480	10
Tpeak hr =	> 8.00	8.00	8.00	8.00	0.17
Hydrograph Name=>	2	5	10	25	100
Time Time	Hyd	Hyd	Hyd	Hyd	Hyd
(min) (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)

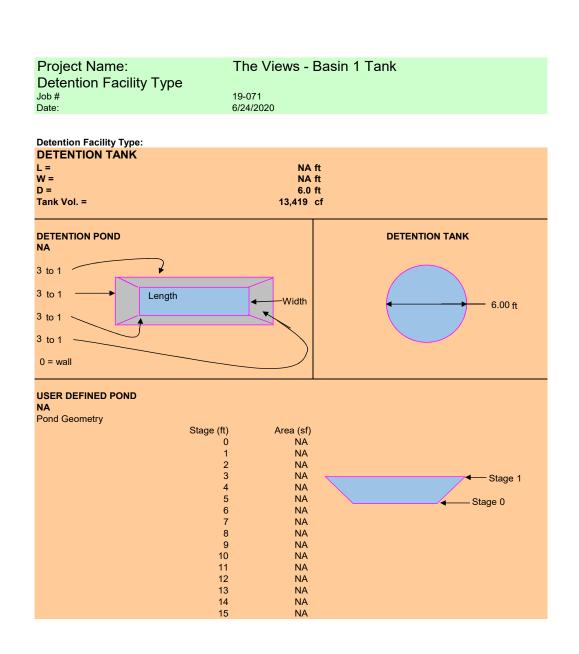
Developed Hydrographs						
2	5	10	25	100		
3.87	5.25	5.67	6.67	0.00		
52,353	70,577	76,133	89,219	-		
470	470	470	470	10		
7.83	7.83	7.83	7.83	0.17		
2	5	10	25	100		
Hyd	Hyd	Hyd	Hyd	Hyd		
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		

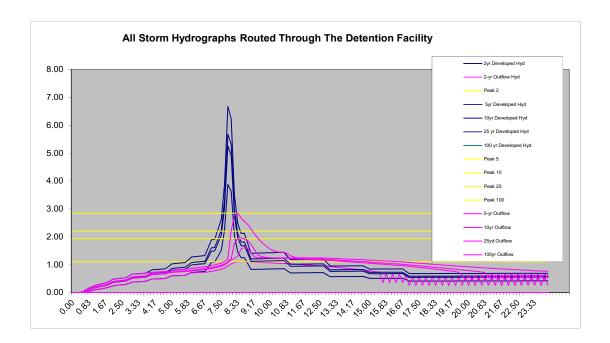
		P	re-Develop	ed Hydro	graphs		
Yea	======	=>	2	5	10	25	100
Qpe	ak	cfs =>	1.10	1.93	2.20	2.84	0.00
Volu	me	cf =>	27,335	42,577	47,398	58,984	-
Тре	ık	min =>	480	480	480	480	10
Тре	ık	hr =>	8.00	8.00	8.00	8.00	0.17
Hyd	ograph Nam	ne=>	2	5	10	25	100
Time	e Time		Hyd	Hyd	Hyd	Hyd	Hyd
(min) (hr)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)

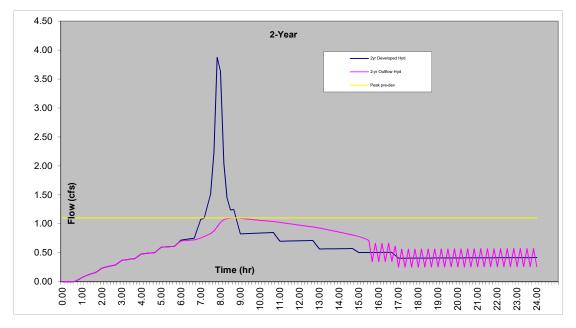
Developed Hydrographs						
2	5	10	25	100		
3.87	5.25	5.67	6.67	0.00		
52,353	70,577	76,133	89,219	-		
470	470	470	470	10		
7.83	7.83	7.83	7.83	0.17		
2	5	10	25	100		
Hyd	Hyd	Hyd	Hyd	Hyd		
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		

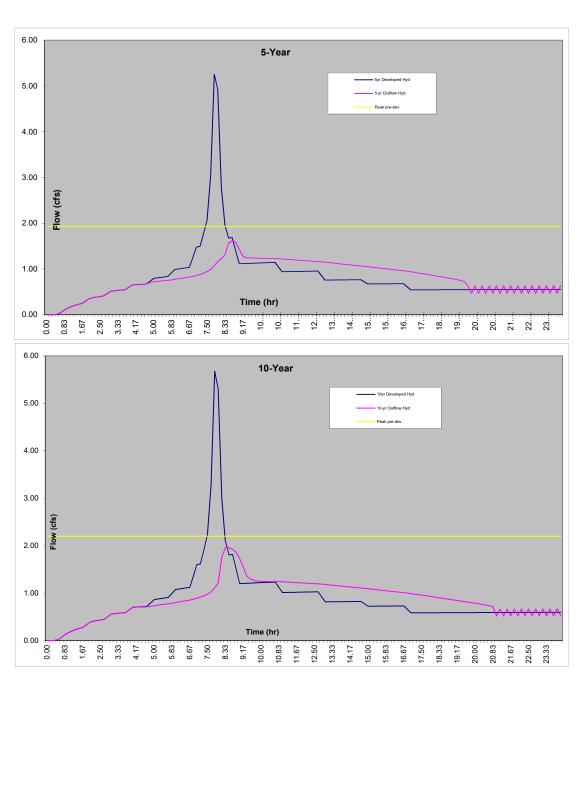
The Views - Basin 1 Tank

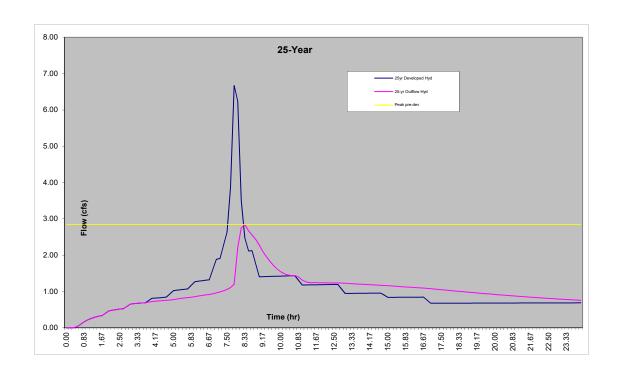
Detention System Summary			
Job #	19-071		
Date:	6/24/2020		
			system design is based on the King
1) Detention Facility Design Input:		County Model "Facilit	ty Design Routine".
2) Type of facility:		DETENTION	TANK
3) Pond side slopes:		3 NA	
4) Tank Diameter:		6 ft	
5) Vertical permeability		0 min/in	
6) Number of orifices:		2	
7) Riser dia. =>		12 in	
8) Orifice coefficient		0.62 (typically 0.62	?)
9) IE - bottom orifice:		-2 ft (distance be	elow bottom of pond - Negative #)
10) Max Q Bottom Orif. #1		1.41 cfs	
11) Top Orif #2 Height =		4.295 ft	
12) Max Q Mid Orif. #3		0.00 cfs	Orifice not being used
13) Mid Orif #3 Height =		0.00 ft	Orifice not being used
Detention Facility Design Results:			


Performance year	Developed Inflow	Pre-Developed Outflow	Actual Outflow	Peak Stage	Storage
,	cfs	cfs	cfs	ft	cf
100	0	0	0	0	-
25	6.67	2.84	2.85	6.00	13,419
10	5.67	2.20	1.96	4.67	11,199
5	5.25	1.93	1.61	4.40	10,542
2	3.87	1.10	1.10	2.88	6,354
			Required Sto	orage ====	13,419


	Bottom Orif.	Middle Orif.	Top Orif.	Optional Weir Design
Total Q =	1.41	0.00	1.44	(for top orifice)
Head (ft) =	8.00	0.00	1.71	0.87 La (ft)
Dist. from bottom of pond (ft) =	-2.00	NA	4.30	100.02 < deg.
Orif. Dia. (in) =	4.29	0.00	6.36	Weir is an option


FLOW CONTROL STRUCTURE SCHEMATIC


	↓	1	2 (in) Riser dia.
Maximum water surface elevation		1	
		6.36	(in) Dia. Orif #2
← 6.0 ▲		1.44	(cfs) Max Q top Orif #2
Storage depth or tank dia. (ft)			
		NA	(in) Dia. Orif #3
Top Orif #2 Height (ft) 4.30		NA	(cfs) Max Q Mid Orif #3
			. ,
Middle Orif #3 Height (ft) NA			
↓ ↓			
Bottom of pond / tank			
Bottom Orif depth below pond / tank (ft) -2.00			
		4.2	.9 (in) Dia. Orif #1
(ft) Total Head on Bottom Orifice			(cfs) Max Q Bot. Orif #1


19-071 - Detention-1-tank.xls

Project Name: The Views - Basin 1 Tank

19-071 - Detention-1-tank.xls

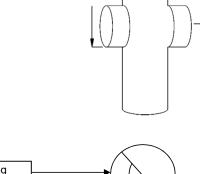
Stage Storage Summary Page 1

Store	Storess	Discharge
Stage ft	Storage cf	Discharge cfs
3.25	2,025.38	0.90
3.30	2,141.86	0.91
3.35	2,259.98	0.91
3.40	2,379.66	0.92
3.45	2,500.84	0.93
3.50	2,623.45	0.93
3.55	2,747.43	0.94
3.60	2,872.72	0.95
3.65	2,999.27	0.95
3.70	3,127.01	0.96
3.75	3,255.89	0.97
3.80	3,385.85	0.97
3.85	3,516.86	0.98
3.90	3,648.85	0.98
3.95	3,781.77	0.99
4.00	3,915.58	1.00
4.00	4,050.23	1.00
4.03	4,050.25	1.00
4.15	4,321.86	1.01
4.13	4,458.75	1.02
4.25	4,596.30	1.02
4.30	4,734.46	1.03
4.35	4,873.19	1.03
4.33	5,012.44	1.04
4.45	5,152.18	1.05
4.50	5,292.36	1.05
4.55	5,432.95	1.06
4.60	5,573.89	1.00
4.65	5,715.15	1.07
4.00	5,856.70	1.08
4.75	5,998.48	1.09
4.80	6,140.45	1.09
4.85	6,282.59	1.10
4.90	6,424.85	1.10
4.95	6,567.18	1.11
5.00	6,709.56	1.11
5.05	6,851.93	1.12
5.10	6,994.27	1.13
5.15	7,136.52	1.13
5.20	7,278.66	1.14
5.25	7,420.64	1.14
5.30	7,562.42	1.15
5.35	7,703.96	1.15
5.40	7,845.22	1.16
5.45	7,986.17	1.16
5.50	8,126.75	1.17
5.55	8,266.93	1.17
5.60	8,406.67	1.18
5.65	8,545.93	1.18
5.70	8,684.66	1.19
5.75	8,822.81	1.20
5.80	8,960.36	1.20
5.85	9,097.25	1.21
5.90	9,233.44	1.21
5.95	9,368.88	1.22
6.00	9,503.53	1.22

Stage Storage Summary Page 2

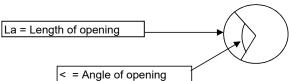
Project Name: The Views - Basin 1 Tank Rectangular, Sharp Crested Weir Calculations Job # 19-071 Date: 6/24/2020

Weir Equation: $Q = C(L-0.2H)H^{3/2}$


- Q = Flow over weir (cfs)
- C = 3.27 + 0.40 H/P (ft)
- L = Adjusted length of weir (La 0.1H x 2) this is to account for side constraints
- La = Actual length of weir along pipes interior circumference (ft)
- H = Distance from bottom of weir to maximum head (ft)
- P = Distance from bottom of weir to outfall invert elevation (ft)
- D = Inside riser pipe diameter (in)
- < = Angle of opening for weir (maximum 180 degrees)

Given:

0110111		
Q	1.44	cfs
Н	1.71	ft
Р	6.30	ft
D	12	in


Find:

С	3.38	ft
L	0.53	ft
La	0.87	
<	100	degrees

Н

Ē

Appendix D

Basin 2 Analysis, Data, and Detention Pond Design

(This page intentionally left blank)

The Views - Basin 2 Pond Project Name:

PRE-DEVELOPED - TIME OF CONCENTRATION CALCULATIONS

Job #	1
Date:	6

9-071 6/24/2020

= Total Tc (min) 25.2

Overland Flow (max 300' total)				total	
Tc =	24.1			24.1	= travel time for less than 300' (min)
Ns =	0.24				= Manning's coefficient (<u>sheet flow</u>)
L =	300			300	= flow length (ft)
P2 =	2.7				= 2-year, 24 hour rainfall (in)
So =	6.00%				= slope of the land (%)

Shallow Concentrated Flow (after initial 300') total

	T =	1.1		1.1	= travel time for sheet flow (min)
[L =	222		222	= flow length (ft)
ſ	So =	10.00%			= slope of the land (%)
ſ	k =	11			= time of concentration velocity factor (ft/s)

Flow in Swa	les	total	
Tc =	0.00	0.0	= travel time in swale (min)
A =	6.00		= area of flow (sf)
R =	0.59		= hydraulic radius (ft)
Ls =	4.12		= side slope wet (ft)
Q =	3.12		= quantity of flow (ft^3/sec)
V =	0.52		= velocity
L =	0	0	= flow length (ft)
Ve =	1		= vertical distance of side
Ho =	4		= horizontal distance of side
Bw =	24		= base width of swale (in)
D =	12		= depth of flow ESTIMATE (in)
S =	1.00%		= slope of the swale (%)
n =	0.2		= Manning's coefficient (<u>channel</u>)

Flow in Gutters

Flow in Gutt	ters		total	
Tc =	0.0		0.0	= travel time in gutter (min)
fps =	0.02			= average velocity of flow (ft/sec)
T =	0.0			= calculated width of flow in the gutter (ft)
Qc =	0.00			= quantity of flow (as caluclated Q=CIA) (ft^3/sec)
C =	0.90			= runoff coefficient for rational method (paved=0.9)
=	2.75			= rainfall intensity (assume 5 min tc)
W =	18.00			= width of pavement draining to CB
S =	8.00%			= street longitudinal slope (%)
Sx =	2.50%			= street cross slope (%)
n =	0.016			= Manning's coefficient (<u>pavement</u> = 0.016)
L =	0.0		0	= length of flow and drainage basin (ft)

Flow in Pipe	s		total	
Tc =	0.0		0.0	= travel time in pipe (min)
V =	10.15			= calculated velocity pipe full (ft/sec)
Q =	7.96			= quantity of flow (ft^3/sec)
n =	0.013			= Manning's coefficient (pipe)
D =	12			= pipe diameter (in)
S =	5.00%			= slope of pipe (%)
L =	0.0		0	= length of pipe (ft)

Project Name: The Views - Basin 2 Pond Hydrograph Analysis Summary Job # 19-071 Date: 6/24/2020

Rainfall (year)	Rainfall (inches)	
2	2	3.50
	5	4.50
10)	4.80
2	5	5.50
100	C	0.00

Pre-Develop	bed	
Pervious		
Area =	4.591	acres
CN =	76	na
Impervious		
Area =	0.337	acres
CN =	98	na
Tc =	25.2	min
Total A =	4.928	acres

Developed		
Pervious		
Area =	1.982	acres
CN =	74	na
Impervious		
Area =	2.946	acre
CN =	98	na
Tc =	5	min
Total A =	4.928	acres

shown are S.C.S. Typ storm using	sed on the King

		re-Develop	od Hydro	aranha			Develope	d Lludrog	ranha		
ear ====	===>	2	5	10	25	100	Develope 2	а пуагод 5	10	25	
peak	cfs =>	1.18	1.97	2.22	2.83	0.00	3.19	4.41	4.78	5.66	
olume	cf =>	26,694	40,632	45,022	55,549	-	43,836	59,768	64,648	76,172	
eak	min =>	480	480	480	480	10	470	470	470	470	
eak	hr =>	8.00	8.00	8.00	8.00	0.17	7.83	7.83	7.83	7.83	
drograph Na		2	5	10	25	100	2	5	10	25	
ne Tin		Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	
n) (hr		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
10	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
20	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
30	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	
40	0.67	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.05	0.08	
50	0.83	0.00	0.00	0.00	0.01	0.00	0.03	0.08	0.09	0.13	
60	1.00	0.00	0.01	0.01	0.01	0.00	0.06	0.11	0.13	0.17	
70	1.17	0.01	0.01	0.01	0.02	0.00	0.08	0.14	0.16	0.20	
80	1.33	0.01	0.01	0.01	0.02	0.00	0.10	0.16	0.18	0.23	
90	1.50	0.01	0.02	0.02	0.02	0.00	0.11	0.18	0.20	0.25	
100	1.67	0.01	0.02	0.02	0.02	0.00	0.13	0.19	0.22	0.27	
110	1.83	0.01	0.02	0.02	0.03	0.00	0.15	0.23	0.26	0.32	
120	2.00	0.02	0.02	0.03	0.03	0.00	0.19	0.28	0.30	0.37	
130 140	2.17	0.02 0.02	0.03 0.03	0.03 0.03	0.04 0.04	0.00 0.00	0.20 0.21	0.29 0.30	0.32 0.33	0.38 0.40	
140 150	2.33 2.50	0.02	0.03	0.03	0.04	0.00	0.21	0.30	0.33	0.40	
160 170	2.67 2.83	0.02 0.03	0.03 0.04	0.04 0.04	0.04 0.05	0.00 0.00	0.23 0.26	0.32 0.36	0.35 0.39	0.41 0.46	
180	2.83	0.03	0.04	0.04	0.05	0.00	0.26	0.36	0.39	0.46	
190	3.00	0.03	0.04	0.04	0.05	0.00	0.29	0.40	0.44	0.52	
200	3.33	0.03	0.04	0.05	0.05	0.00	0.30	0.41	0.44	0.52	
210	3.50	0.03	0.04	0.05	0.00	0.00	0.30	0.42	0.45	0.53	
210	3.50	0.03	0.05	0.05	0.06	0.00	0.31	0.42	0.46	0.54	
230	3.83	0.03	0.05	0.05	0.00	0.00	0.32	0.43	0.40	0.59	
240	4.00	0.04	0.05	0.05	0.00	0.00	0.33	0.47	0.51	0.59	
250	4.00	0.04	0.05	0.00	0.07	0.00	0.38	0.51	0.55	0.64	
260	4.33	0.04	0.06	0.06	0.09	0.00	0.39	0.52	0.56	0.65	
270	4.50	0.04	0.06	0.06	0.11	0.00	0.39	0.52	0.56	0.66	
280	4.67	0.04	0.06	0.07	0.13	0.00	0.39	0.52	0.56	0.67	
290	4.83	0.05	0.07	0.09	0.15	0.00	0.43	0.57	0.62	0.74	
300	5.00	0.05	0.08	0.11	0.19	0.00	0.47	0.62	0.68	0.82	
310	5.17	0.05	0.10	0.13	0.22	0.00	0.47	0.63	0.69	0.83	
320	5.33	0.05	0.12	0.16	0.25	0.00	0.48	0.64	0.70	0.85	
330	5.50	0.05	0.14	0.18	0.28	0.00	0.48	0.66	0.72	0.86	
340	5.67	0.06	0.16	0.20	0.30	0.00	0.48	0.67	0.73	0.87	
350	5.83	0.07	0.19	0.23	0.34	0.00	0.52	0.73	0.80	0.95	
360	6.00	0.09	0.22	0.27	0.39	0.00	0.57	0.80	0.87	1.04	
370	6.17	0.10	0.25	0.30	0.43	0.00	0.58	0.81	0.88	1.05	
380	6.33	0.12	0.27	0.33	0.46	0.00	0.58	0.82	0.89	1.07	
390	6.50	0.13	0.30	0.36	0.50	0.00	0.59	0.83	0.90	1.08	
400	6.67	0.15	0.32	0.38	0.53	0.00	0.60	0.84	0.92	1.09	
410	6.83	0.18	0.37	0.44	0.60	0.00	0.73	1.02	1.11	1.33	
420	7.00	0.22	0.45	0.52	0.70	0.00	0.87	1.21	1.32	1.57	
430	7.17	0.26	0.51	0.59	0.79	0.00	0.88	1.23	1.34	1.59	
440	7.33	0.32	0.60	0.69	0.92	0.00	1.06	1.47	1.60	1.90	
450	7.50	0.39	0.72	0.82	1.09	0.00	1.24	1.72	1.86	2.22	
460	7.67	0.55	0.98	1.12	1.45	0.00	1.83	2.53	2.75	3.27	
470	7.83	0.93	1.58	1.79	2.30	0.00	3.19	4.41	4.78	5.66	
480	8.00	1.18	1.97	2.22	2.83	0.00	3.01	4.14	4.49	5.31	
490	8.17	1.13	1.86	2.09	2.65	0.00	1.71	2.35	2.55	3.01	
500	8.33	1.00	1.63	1.83	2.32	0.00	1.21	1.66	1.79	2.12	
510	8.50	0.89	1.43	1.61	2.02	0.00	1.04	1.43	1.54	1.82	

19-071 - Detention-2-pond.xls

	P	re-Develop		• •		
′ear ====)peak	===> cfs =>	2 1.18	5 1.97	10 2.22	25 2.83	100 0.00
/olume	cf =>	26,694	40,632	45,022	2.03 55,549	- 0.00
peak	min =>	480	480	480	480	10
⁻ peak Iydrograph Na	hr =>	8.00 2	8.00 5	8.00 10	8.00 25	0.17 100
ime Tin		Hyd	Hyd	Hyd	Hyd	Hyd
min) (hr		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
520 530	8.67 8.83	0.82 0.74	1.31 1.17	1.46 1.30	1.83 1.63	0.00 0.00
540	9.00	0.74	1.02	1.30	1.03	0.00
550	9.17	0.59	0.92	1.02	1.27	0.00
560	9.33	0.55	0.85	0.95	1.18	0.00
570 580	9.50 9.67	0.53 0.51	0.81 0.79	0.90 0.88	1.12 1.08	0.00 0.00
590	9.83	0.51	0.77	0.86	1.06	0.00
600	10.00	0.50	0.77	0.85	1.05	0.00
610	10.17	0.50	0.77	0.85	1.04	0.00
620 630	10.33 10.50	0.50 0.51	0.77 0.77	0.85 0.85	1.04 1.04	0.00 0.00
640	10.67	0.51	0.77	0.85	1.04	0.00
650	10.83	0.50	0.75	0.83	1.01	0.00
660	11.00	0.48	0.72	0.79	0.97	0.00
670 680	11.17 11.33	0.46 0.46	0.69 0.68	0.77 0.75	0.93 0.91	0.00 0.00
690	11.50	0.40	0.67	0.75	0.91	0.00
700	11.67	0.45	0.67	0.74	0.90	0.00
710	11.83	0.45	0.67	0.73	0.89	0.00
720	12.00	0.45	0.67	0.73	0.89	0.00
730 740	12.17 12.33	0.45 0.45	0.67 0.67	0.74 0.74	0.89 0.89	0.00 0.00
750	12.50	0.46	0.67	0.74	0.90	0.00
760	12.67	0.46	0.68	0.74	0.90	0.00
770	12.83	0.45	0.66	0.72	0.87	0.00
780	13.00	0.42 0.41	0.62	0.68 0.65	0.82	0.00 0.00
790 800	13.17 13.33	0.41	0.59 0.58	0.65	0.79 0.77	0.00
810	13.50	0.39	0.57	0.62	0.75	0.00
820	13.67	0.39	0.56	0.62	0.75	0.00
830	13.83	0.38	0.56	0.61	0.74	0.00
840 850	14.00 14.17	0.38 0.38	0.56 0.56	0.61 0.61	0.74 0.74	0.00 0.00
860	14.17	0.38	0.56	0.61	0.74	0.00
870	14.50	0.39	0.56	0.61	0.74	0.00
880	14.67	0.39	0.56	0.61	0.74	0.00
890	14.83	0.38	0.55	0.60	0.72	0.00
900 910	15.00 15.17	0.37 0.36	0.53 0.52	0.58 0.57	0.70 0.69	0.00 0.00
920	15.33	0.36	0.51	0.56	0.68	0.00
930	15.50	0.35	0.51	0.56	0.67	0.00
940	15.67	0.35	0.51	0.55	0.67	0.00
950	15.83	0.35	0.51	0.55	0.66	0.00
960 970	16.00 16.17	0.35 0.35	0.51 0.51	0.55 0.55	0.66 0.66	0.00 0.00
980	16.33	0.35	0.51	0.55	0.66	0.00
990	16.50	0.35	0.51	0.55	0.66	0.00
1000	16.67	0.35	0.51	0.55	0.66	0.00
1010	16.83	0.34	0.49	0.54	0.64	0.00
1020 1030	17.00 17.17	0.32 0.31	0.46 0.45	0.51 0.49	0.61 0.58	0.00 0.00
1040	17.33	0.30	0.43	0.49	0.57	0.00
1050	17.50	0.30	0.43	0.47	0.56	0.00
1060	17.67	0.29	0.42	0.46	0.55	0.00
1070 1080	17.83	0.29	0.42	0.46 0.45	0.55 0.54	0.00 0.00
1080	18.00 18.17	0.29 0.29	0.42 0.42	0.45	0.54	0.00
1100	18.33	0.29	0.42	0.45	0.54	0.00
1110	18.50	0.29	0.42	0.45	0.54	0.00
1120	18.67	0.29	0.42	0.45	0.54	0.00
1130 1140	18.83 19.00	0.29 0.29	0.42	0.45 0.45	0.54 0.54	0.00 0.00
1140	19.00	0.29	0.42 0.42	0.45	0.54	0.00
1160	19.33	0.29	0.42	0.46	0.54	0.00
1170	19.50	0.29	0.42	0.46	0.54	0.00
1180	19.67	0.29	0.42	0.46	0.54	0.00
1190	19.83	0.30	0.42	0.46	0.54	0.00
1200 1210	20.00 20.17	0.30 0.30	0.42 0.42	0.46 0.46	0.55 0.55	0.00 0.00
1210	20.17	0.30	0.42	0.46	0.55	0.00

19-071 - Detention-2-pond.xls

	P	re-Develop	ed Hydro	graphs			Develope	d Hydrog	raphs
′ear ====	====>	2	5	10	25	100	2	5	10
Qpeak	cfs =>	1.18	1.97	2.22	2.83	0.00	3.19	4.41	4.78
/olume	cf =>	26,694	40,632	45,022	55,549	-	43,836	59,768	64,648
Fpeak	min =>	480	480	480	480	10	470	470	470
Гpeak	hr =>	8.00	8.00	8.00	8.00	0.17	7.83	7.83	7.83
Hydrograph N	ame=>	2	5	10	25	100	2	5	10
Time Tii	ne	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd
(min) (hi	r)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
1220	20.33	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1230	20.50	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1240	20.67	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1250	20.83	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1260	21.00	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1270	21.17	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1280	21.33	0.30	0.42	0.46	0.55	0.00	0.36	0.48	0.5
1290	21.50	0.30	0.43	0.46	0.55	0.00	0.36	0.48	0.5
1300	21.67	0.30	0.43	0.46	0.55	0.00	0.36	0.48	0.5
1310	21.83	0.30	0.43	0.46	0.55	0.00	0.36	0.48	0.5
1320	22.00	0.30	0.43	0.46	0.55	0.00	0.36	0.48	0.5
1330	22.17	0.30	0.43	0.47	0.55	0.00	0.36	0.48	0.5
1340	22.33	0.30	0.43	0.47	0.55	0.00	0.36	0.48	0.5
1350	22.50	0.30	0.43	0.47	0.55	0.00	0.36	0.48	0.5
1360	22.67	0.30	0.43	0.47	0.56	0.00	0.36	0.48	0.5
1370	22.83	0.31	0.43	0.47	0.56	0.00	0.36	0.48	0.5
1380	23.00	0.31	0.43	0.47	0.56	0.00	0.36	0.48	0.5
1390	23.17	0.31	0.43	0.47	0.56	0.00	0.36	0.48	0.5
1400	23.33	0.31	0.43	0.47	0.56	0.00	0.36	0.48	0.5
1410	23.50	0.31	0.43	0.47	0.56	0.00	0.36	0.49	0.5
1420	23.67	0.31	0.43	0.47	0.56	0.00	0.36	0.49	0.5
1430	23.83	0.31	0.43	0.47	0.56	0.00	0.36	0.49	0.5
1440	24.00	0.31	0.43	0.47	0.56	0.00	0.36	0.49	0.5
1450	24.17	0.26	0.36	0.39	0.47	0.00	0.18	0.24	0.2
1460	24.33	0.17	0.24	0.26	0.31	0.00	0.00	0.00	0.0
1470	24.50	0.12	0.16	0.18	0.21	0.00	0.00	0.00	0.0
1480	24.67	0.08	0.11	0.12	0.14	0.00	0.00	0.00	0.0
1490	24.67	0.05	0.07	0.08	0.09	0.00	0.00	0.00	0.0
1500	24.67	0.03	0.05	0.05	0.06	0.00	0.00	0.00	0.0

19-071 - Detention-2-pond.xls

Hydrograph Summary Page 3

25

5.66 76,172

470

7.83 25

Hyd (cfs)

0.60

0.60

0.60 0.60 0.60

0.60

0.61

0.61 0.61 0.61 0.61 0.61

0.61

0.30 0.00 0.00

0.00

0.00

0.00

0.52

0.52

0.52 0.52 0.52

0.52

0.52

0.52 0.52 0.52 0.52

0.52

0.52

0.26 0.00 0.00

0.00

0.00

0.00

100

0.00

10

0.17 100 Hyd (cfs)

0.00

0.00

0.00 0.00 0.00

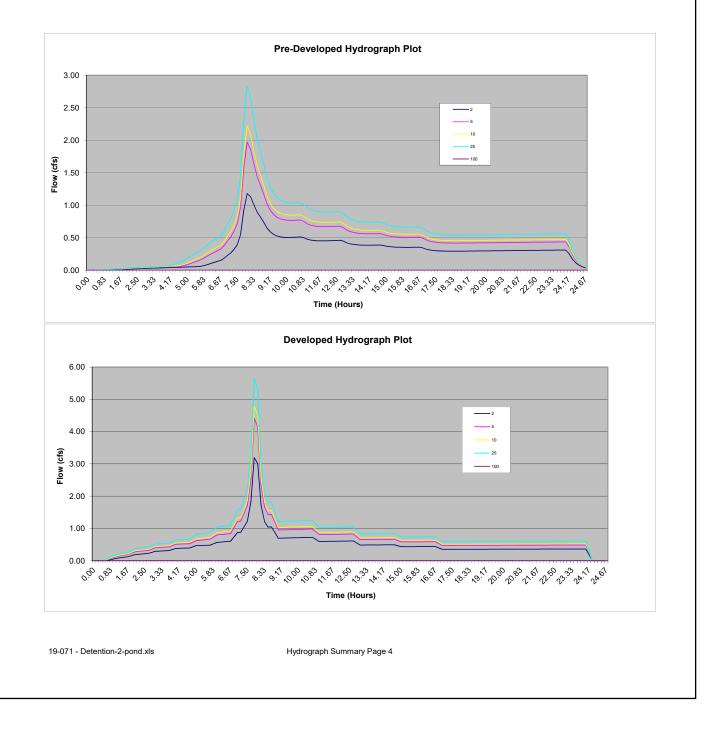
0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

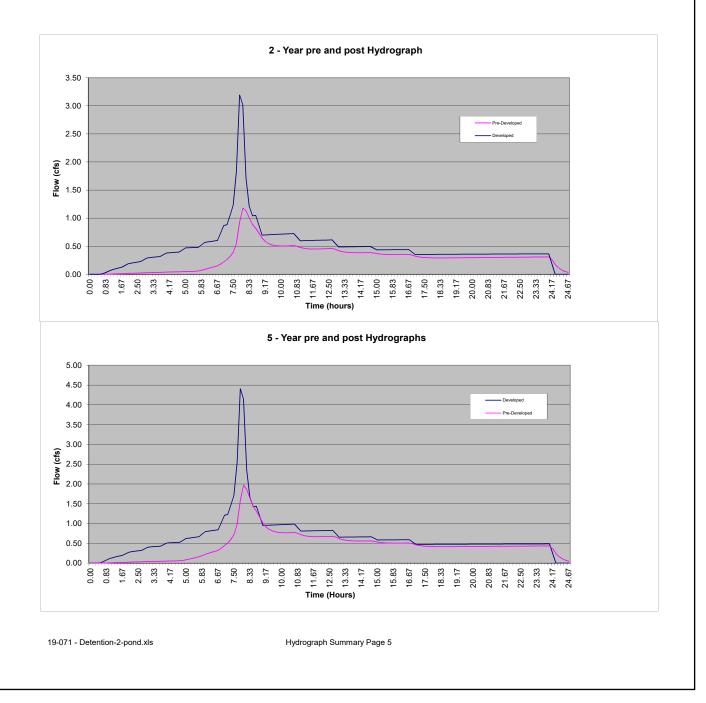
0.00

0.00 0.00 0.00 0.00 0.00 0.00

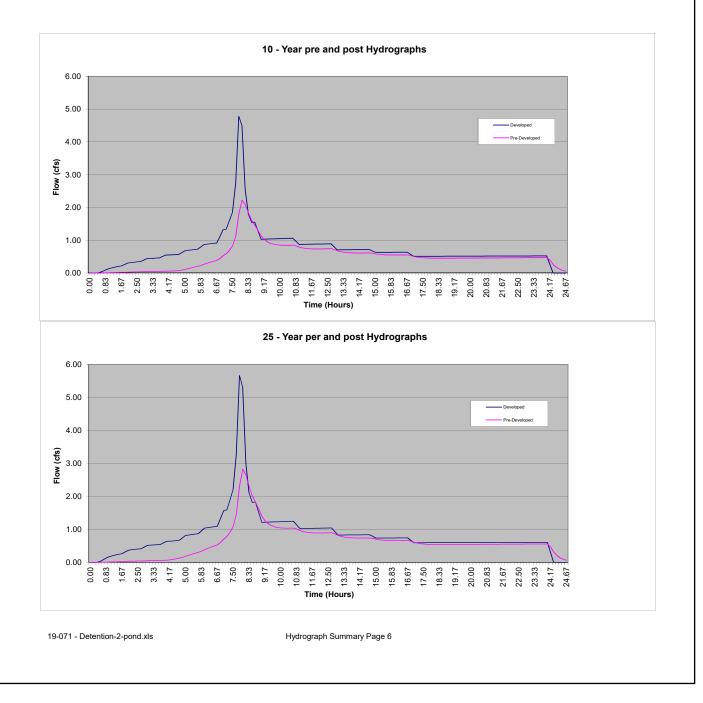

0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00


Pre-Developed Hydrographs									
Year =====>	2	5	10	25	100				
Qpeak cfs =	> 1.18	1.97	2.22	2.83	0.00				
Volume cf =	> 26,694	40,632	45,022	55,549	-				
Tpeak min =	> 480	480	480	480	10				
Tpeak hr =:	> 8.00	8.00	8.00	8.00	0.17				
Hydrograph Name=>	2	5	10	25	100				
Time Time	Hyd	Hyd	Hyd	Hyd	Hyd				
(min) (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				

Developed Hydrographs								
2	5	10	25	100				
3.19	4.41	4.78	5.66	0.00				
43,836	59,768	64,648	76,172	-				
470	470	470	470	10				
7.83	7.83	7.83	7.83	0.17				
2	5	10	25	100				
Hyd	Hyd	Hyd	Hyd	Hyd				
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				


Pre-Developed Hydrographs									
Year =====>	2	5	10	25	100				
Qpeak cfs =>	1.18	1.97	2.22	2.83	0.00				
Volume cf =>	26,694	40,632	45,022	55,549	-				
Tpeak min =>	480	480	480	480	10				
Tpeak hr =>	8.00	8.00	8.00	8.00	0.17				
Hydrograph Name=>	2	5	10	25	100				
Time Time	Hyd	Hyd	Hyd	Hyd	Hyd				
(min) (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				

Developed Hydrographs								
2	5	10	25	100				
3.19	4.41	4.78	5.66	0.00				
43,836	59,768	64,648	76,172	-				
470	470	470	470	10				
7.83	7.83	7.83	7.83	0.17				
2	5	10	25	100				
Hyd	Hyd	Hyd	Hyd	Hyd				
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				

Pre-Developed Hydrographs									
Year =====>	2	5	10	25	100				
Qpeak cfs =>	• 1.18	1.97	2.22	2.83	0.00				
Volume cf =>	26,694	40,632	45,022	55,549	-				
Tpeak min =>	480	480	480	480	10				
Tpeak hr =>	8.00	8.00	8.00	8.00	0.17				
Hydrograph Name=>	2	5	10	25	100				
Time Time	Hyd	Hyd	Hyd	Hyd	Hyd				
(min) (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				

Developed Hydrographs								
2	5	10	25	100				
3.19	4.41	4.78	5.66	0.00				
43,836	59,768	64,648	76,172	-				
470	470	470	470	10				
7.83	7.83	7.83	7.83	0.17				
2	5	10	25	100				
Hyd	Hyd	Hyd	Hyd	Hyd				
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)				

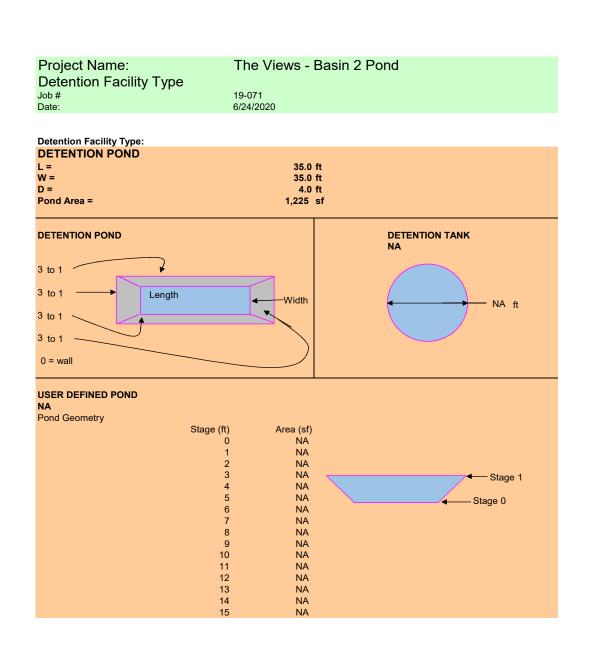
Page 252 of 916

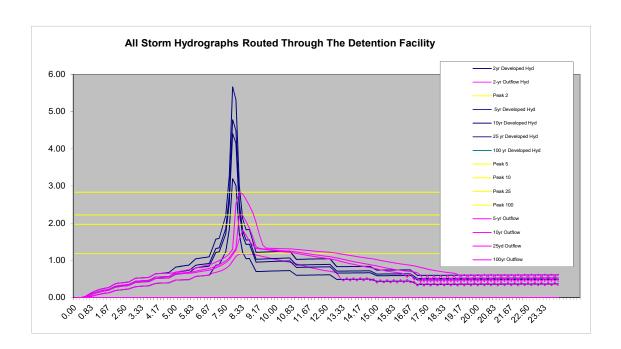
Pro	iect	Nai	me:
	,		

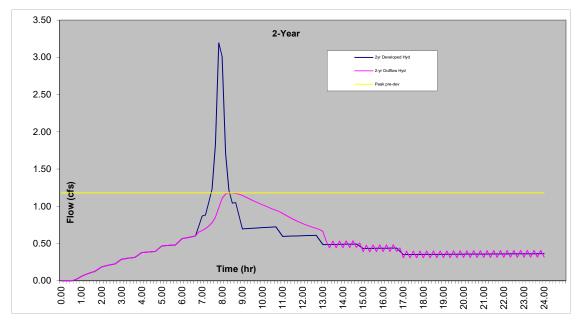
The Views - Basin 2 Pond

Detention System Summary Job # Date:	19-071 6/24/2020		
1) Detention Facility Design Input:			ntion system design is based on the King Facility Design Routine".
2) Type of facility:		DETEN	TION POND
3) Pond side slopes:		3 to 1	
4) Pond storage depth:		4 ft (from	bottom of pond to overflow)
5) Vertical permeability		0 min/in	
6) Number of orifices:		2	
7) Riser dia. =>		12 in	
8) Orifice coefficient		0.62 (typically	(0.62)
9) IE - bottom orifice:		-1 ft (distar	nce below bottom of pond - Negative #)
10) Max Q Bottom Orif. #1		1.45 cfs	
11) Top Orif #2 Height =		3.24 ft	
12) Max Q Mid Orif. #3		0.00 cfs	Orifice not being used
13) Mid Orif #3 Height =		0.00 ft	Orifice not being used

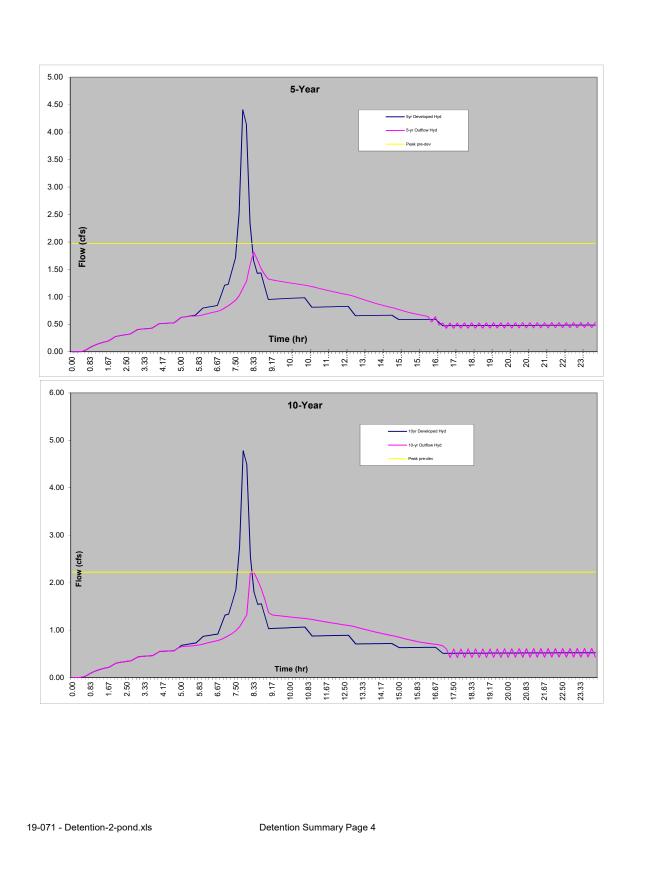
Detention Facility Design Results:

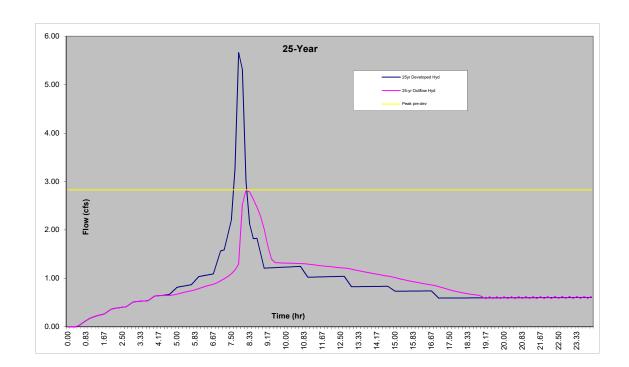

Performance	Developed	Pre-Developed	Actual	Peak	Storage
year	Inflow	Outflow	Outflow	Stage	
	cfs	cfs	cfs	ft	cf
100	0	0	0	0	-
25	5.66	2.83	2.83	4.00	9,029
10	4.78	2.22	2.22	3.52	7,449
5	4.41	1.97	1.82	3.33	6,851
2	3.19	1.18	1.18	2.32	4,127
			Required Sto	orage ====	9,029

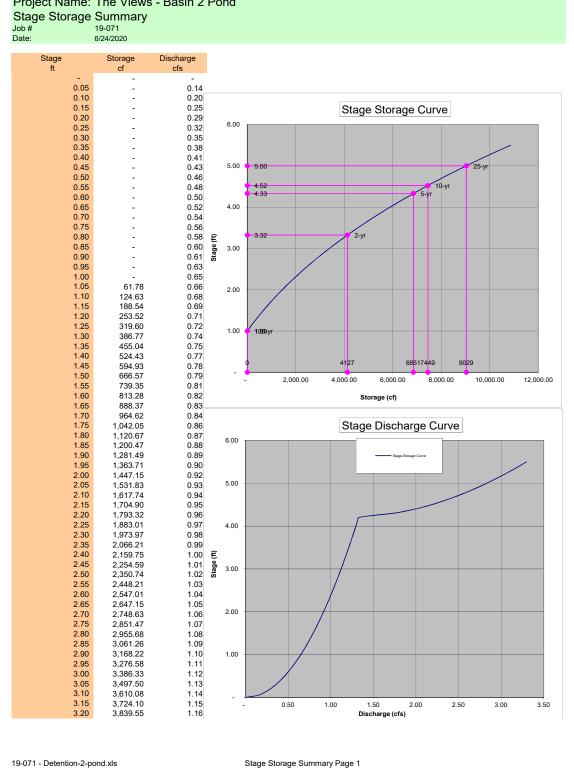

	Bottom Orif.	Middle Orif.	Top Orif.	Optional Weir Design
Total Q =	1.45	0.00	1.38	(for top orifice)
Head (ft) =	5.00	0.00	0.76	0.93 La (ft)
Dist. from bottom of pond (ft) =	-1.00	NA	3.24	106.37 < deg.
Orif. Dia. (in) =	4.88	0.00	7.64	Weir is an option


FLOW CONTROL STRUCTURE SCHEMATIC

		↓		12 (in) Riser dia.
1	Maximum water surface elevation			
≜	↑		7.64	(in) Dia. Orif #2
	4.0		1.38	(cfs) Max Q top Orif #2
	Storage depth or tank dia. (ft)			
			NA	(in) Dia. Orif #3
	Top Orif #2 Height (ft) 3.24 →		NA	(cfs) Max Q Mid Orif #3
	Middle Orif #3 Height (ft) NA			
	↓ ↓			
	Bottom of pond / tank	†		
	· ·			
	Bottom Orif depth below pond / tank (ft) -1.00			
				4.88 (in) Dia. Orif #1
	◄ (ft) Total Head on Bottom Orifice			1.45 (cfs) Max Q Bot. Orif #1


19-071 - Detention-2-pond.xls





19-071 - Detention-2-pond.xls

19-071 - Detention-2-pond.xls

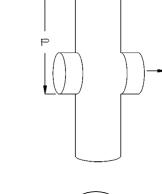
Stage	Storage	Discharge
ft	cf	cfs
3.25	3,956.44	1.17
3.30	4,074.79	1.18
3.35	4,194.61	1.19
3.40	4,315.90	1.19
3.45	4,438.67	1.20
3.50	4,562.93	1.21
3.55	4,688.69	1.22
3.60	4,815.96	1.23
3.65	4,944.75	1.24
3.70	5,075.07	1.25
3.75	5,206.92	1.25
3.80	5,340.32	1.26
3.85	5,475.27	1.27
3.90	5,611.78	1.28
3.95	5,749.87	1.29
4.00	5,889.54	1.30
4.05	6,030.79	1.30
4.10	6,173.65	1.31
4.15	6,318.11	1.32
4.20	6,464.19	1.33
4.25	6,611.90	1.49
4.30	6,761.24	1.73
4.35	6,912.23	1.88
4.40	7,064.87	1.99
4.45	7,219.17	2.09
4.50	7,375.15	2.18
4.55	7,532.80	2.26
4.60	7,692.14	2.34
4.65	7,853.18	2.41
4.70	8,015.93	2.48
4.75	8,180.39	2.54
4.80	8,346.58	2.61
4.85	8,514.50	2.66
4.90	8,684.17	2.72
4.95	8,855.58	2.78
5.00	9,028.76	2.83

19-071 - Detention-2-pond.xls

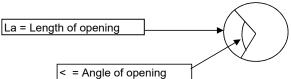
Stage Storage Summary Page 2

Project Name: The Views - Basin 2 Pond Rectangular, Sharp Crested Weir Calculations Job # 19-071 Date: 6/24/2020

Weir Equation: $Q = C(L-0.2H)H^{3/2}$


- Q = Flow over weir (cfs)
- C = 3.27 + 0.40 H/P (ft)
- L = Adjusted length of weir (La 0.1H x 2) this is to account for side constraints
- La = Actual length of weir along pipes interior circumference (ft)
- H = Distance from bottom of weir to maximum head (ft)
- P = Distance from bottom of weir to outfall invert elevation (ft)
- D = Inside riser pipe diameter (in)
- < = Angle of opening for weir (maximum 180 degrees)

Given:


Q	1.38	
Н	0.76	ft
Р	4.24	ft
D	12	in

Find:

С	3.34	ft
L	0.78	ft
La	0.93	
<	106	degrees

Н

<u>Appendix E</u>

Basin 3 Analysis, Data, and Detention Pond Design

(This page intentionally left blank)

Project Name: The Views - Basin 3 Pond

PRE-DEVELOPED - TIME OF CONCENTRATION CALCULATIONS -071 24/2020

Job #	19-
Date:	6/2

= Total Tc (min) 34.4

Overland Flo	ow (max 30	0' total)		total	
Tc =	31.8			31.8	= travel time for less than 300' (min)
Ns =	0.24				= Manning's coefficient (<u>sheet flow</u>)
L =	300			300	= flow length (ft)
P2 =	2.7				= 2-year, 24 hour rainfall (in)
So =	3.00%				= slope of the land (%)

Shallow Concentrated Flow (after initial 300') total

	=	2.6		2.6	= travel time for sheet flow (min)
	L =	376		376	= flow length (ft)
ſ	So =	4.80%			= slope of the land (%)
	k =	11			= time of concentration velocity factor (ft/s)

Flow in Swa	les	total	
Tc =	0.00	0.0	= travel time in swale (min)
A =	6.00		= area of flow (sf)
R =	0.59		= hydraulic radius (ft)
Ls =	4.12		= side slope wet (ft)
Q =	3.12		= quantity of flow (ft^3/sec)
V =	0.52		= velocity
L =	0	0	= flow length (ft)
Ve =	1		= vertical distance of side
Ho =	4		= horizontal distance of side
Bw =	24		= base width of swale (in)
D =	12		= depth of flow ESTIMATE (in)
S =	1.00%		= slope of the swale (%)
n =	0.2		= Manning's coefficient (<u>channel</u>)

Flow in Gutters

Flow in Gutt	ters	total	
Tc =	0.0	0.0	= travel time in gutter (min)
fps =	0.02		= average velocity of flow (ft/sec)
T =	0.0		= calculated width of flow in the gutter (ft)
Qc =	0.00		= quantity of flow (as caluclated Q=CIA) (ft^3/sec)
C =	0.90		= runoff coefficient for rational method (paved=0.9)
=	2.75		= rainfall intensity (assume 5 min tc)
W =	18.00		= width of pavement draining to CB
S =	8.00%		= street longitudinal slope (%)
Sx =	2.50%		= street cross slope (%)
n =	0.016		= Manning's coefficient (<u>pavement</u> = 0.016)
L =	0.0	0	= length of flow and drainage basin (ft)

Flow in Pipe	s		total	
Tc =	0.0		0.0	= travel time in pipe (min)
V =	10.15			= calculated velocity pipe full (ft/sec)
Q =	7.96			= quantity of flow (ft^3/sec)
n =	0.013			= Manning's coefficient (<u>pipe</u>)
D =	12			= pipe diameter (in)
S =	5.00%			= slope of pipe (%)
L =	0.0		0	= length of pipe (ft)

Project Name: The Views - Basin 3 Pond Hydrograph Analysis Summary Job # 19-071 Date: 6/24/2020

Rainfall (year)	Rainfall (inches)	
	2	3.50
	5	4.50
1	0	4.80
2	5	5.50
10	0	0.00

Pre-Developed											
Pervious											
Area =	10.139 acres										
CN =	76 na										
mperviou	s										
Area =	0.317 acres										
CN =	98 na										
Гс =	34.4 min										
Fotal A =	10.456 acres										

Developed	l i	
Pervious		
Area =	4.91	acres
CN =	74	na
Imperviou	s	
Area =	5.546	acres
CN =	98	na
Tc =	5	min
Total A =	10.456	acres

Note: The hydrographs shown are based on the S.C.S. Type - 1A, 24 hour storm using the SBUH method based on the King County Model.

Pre-Developed Hydrographs						Developed Hydrographs						
'ear ====:		2	5	10	25	100		2	5	10	25	
)peak	cfs =>	2.02	3.46	3.93	5.06	0.00		6.31	8.84	9.62	11.49	
olume	cf =>	53,749	82,927	92,142	114,265	-		87,826	120,952	131,137	155,242	
peak	min =>	490	480	480	480	10		470	470	470	470	
peak	hr =>	8.17	8.00	8.00	8.00	0.17		7.83	7.83	7.83	7.83	
ydrograph Na		2	5	10	25	100		2	5	10	25	
ime Tim		Hyd	Hyd	Hyd	Hyd	Hyd		Hyd	Hyd	Hyd	Hyd	
nin) (hr)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		(cfs)	(cfs)	(cfs)	(cfs)	
0	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	
10	0.17	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	
20	0.33	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	
30	0.50	0.00	0.00	0.00	0.00	0.00		0.00	0.01	0.02	0.05	
40	0.67	0.00	0.00	0.00	0.00	0.00		0.02	0.07	0.09	0.15	
50	0.83	0.00	0.00	0.00	0.01	0.00		0.06	0.15	0.18	0.25	
60 70	1.00	0.00	0.01	0.01	0.01	0.00		0.11	0.21	0.24	0.32	
	1.17	0.00	0.01	0.01	0.01	0.00		0.15	0.26	0.30	0.38	
80	1.33	0.01	0.01	0.01	0.02	0.00		0.18	0.30	0.34	0.43	
90	1.50	0.01	0.01	0.01	0.02	0.00		0.21	0.34	0.38	0.47	
100	1.67	0.01	0.01	0.02	0.02	0.00		0.24	0.37	0.41	0.50	
110 120	1.83 2.00	0.01	0.02 0.02	0.02 0.02	0.02 0.03	0.00 0.00		0.29 0.35	0.44	0.49	0.60 0.69	
		0.01							0.52	0.57		
130 140	2.17 2.33	0.02 0.02	0.02 0.03	0.03 0.03	0.03 0.03	0.00 0.00		0.37 0.39	0.55 0.57	0.60 0.62	0.72 0.74	
140	2.33	0.02	0.03	0.03	0.03	0.00		0.39	0.57	0.62	0.74 0.76	
								0.41				
160	2.67	0.02 0.02	0.03 0.03	0.03 0.03	0.04 0.04	0.00		0.43	0.60 0.68	0.66 0.74	0.78 0.88	
170 180	2.83 3.00	0.02	0.03	0.03	0.04	0.00		0.49	0.68	0.74	0.88	
190	3.00	0.02	0.03	0.04	0.05	0.00		0.54	0.78	0.82	0.97	
200	3.33	0.03	0.04	0.04	0.05	0.00		0.50	0.77	0.84	1.00	
200	3.50	0.03	0.04	0.04	0.05	0.00		0.57	0.79	0.85	1.00	
220	3.67	0.03	0.04	0.04	0.05	0.00		0.58	0.80	0.80	1.01	
220	3.83	0.03	0.04	0.05	0.05	0.00		0.65	0.81	0.87	1.11	
230	4.00	0.03	0.04	0.05	0.06	0.00		0.03	0.88	1.03	1.11	
240	4.00	0.03	0.05	0.05	0.00	0.00		0.71	0.90	1.03	1.20	
260	4.17	0.04	0.05	0.05	0.07	0.00		0.72	0.97	1.04	1.21	
270	4.50	0.04	0.05	0.06	0.13	0.00		0.74	0.98	1.05	1.25	
280	4.67	0.04	0.06	0.08	0.16	0.00		0.74	0.99	1.00	1.28	
290	4.83	0.04	0.07	0.10	0.21	0.00		0.81	1.08	1.17	1.42	
300	5.00	0.04	0.09	0.10	0.27	0.00		0.88	1.18	1.29	1.56	
310	5.17	0.05	0.03	0.14	0.27	0.00		0.89	1.20	1.32	1.60	
320	5.33	0.05	0.12	0.10	0.39	0.00		0.89	1.20	1.32	1.63	
330	5.50	0.05	0.20	0.22	0.45	0.00		0.90	1.25	1.37	1.66	
340	5.67	0.06	0.24	0.31	0.51	0.00		0.90	1.27	1.40	1.69	
350	5.83	0.08	0.29	0.37	0.58	0.00		0.98	1.40	1.54	1.86	
360	6.00	0.10	0.34	0.43	0.67	0.00		1.07	1.53	1.68	2.03	
370	6.17	0.13	0.40	0.50	0.75	0.00		1.09	1.56	1.71	2.07	
380	6.33	0.16	0.45	0.56	0.83	0.00		1.11	1.59	1.74	2.10	
390	6.50	0.19	0.51	0.62	0.90	0.00		1.13	1.62	1.77	2.13	
400	6.67	0.23	0.56	0.68	0.97	0.00		1.15	1.64	1.80	2.16	
410	6.83	0.28	0.65	0.78	1.10	0.00		1.41	2.01	2.19	2.64	
420	7.00	0.35	0.78	0.92	1.28	0.00		1.67	2.38	2.60	3.13	
430	7.17	0.42	0.89	1.05	1.45	0.00		1.71	2.42	2.65	3.18	
440	7.33	0.52	1.06	1.24	1.69	0.00		2.06	2.91	3.17	3.81	
450	7.50	0.65	1.28	1.49	1.99	0.00		2.41	3.41	3.71	4.45	
460	7.67	0.92	1.72	1.99	2.63	0.00		3.59	5.06	5.51	6.59	
470	7.83	1.53	2.72	3.11	4.05	0.00		6.31	8.84	9.62	11.49	
480	8.00	2.00	3.46	3.93	5.06	0.00		5.97	8.34	9.07	10.81	
490	8.17	2.02	3.43	3.89	4.98	0.00		3.42	4.76	5.17	6.14	
500	8.33	1.89	3.18	3.59	4.58	0.00		2.42	3.36	3.65	4.34	
510	8.50	1.75	2.91	3.28	4.17	0.00		2.09	2.90	3.15	3.73	

19-071 - Detention-3-pond.xls

Hydrograph Summary Page 1

Year ==== <u>Qpeak</u> Volume Tpeak	===> cfs =>	re-Develop 2	5	10		
olume		0.00			25	100
	cf =>	2.02 53,749	3.46 82,927	3.93 92,142	5.06 114,265	0.00
реак	min =>	490	480	480	480	10
peak	hr =>	8.17	8.00	8.00	8.00	0.17
lydrograph Na ïme Tin		2 Hyd	5 Hyd	10 Hyd	25 Hyd	100 Hyd
nin) (hr		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
520	8.67	1.65	2.72	3.06	3.87	0.00
530	8.83	1.53	2.49	2.80	3.53	0.00
540 550	9.00 9.17	1.38 1.27	2.23 2.04	2.50 2.29	3.15 2.87	0.00 0.00
560	9.33	1.19	1.90	2.29	2.66	0.00
570	9.50	1.14	1.81	2.01	2.51	0.00
580	9.67	1.10	1.74	1.93	2.41	0.00
590 600	9.83 10.00	1.08 1.06	1.69 1.66	1.88 1.84	2.33 2.28	0.00 0.00
610	10.17	1.05	1.64	1.82	2.25	0.00
620	10.33	1.05	1.62	1.80	2.22	0.00
630 640	10.50	1.05 1.06	1.62 1.62	1.79 1.79	2.21 2.21	0.00 0.00
650	10.67 10.83	1.00	1.58	1.79	2.21	0.00
660	11.00	1.00	1.52	1.68	2.07	0.00
670	11.17	0.97	1.48	1.64	2.01	0.00
680	11.33	0.96	1.45	1.60	1.96	0.00
690 700	11.50 11.67	0.95 0.94	1.43 1.42	1.58 1.56	1.93 1.91	0.00 0.00
710	11.83	0.94	1.41	1.55	1.90	0.00
720	12.00	0.94	1.40	1.55	1.89	0.00
730	12.17	0.94	1.40	1.55	1.88	0.00
740 750	12.33 12.50	0.94 0.94	1.40 1.41	1.55 1.55	1.88 1.88	0.00 0.00
760	12.67	0.95	1.41	1.55	1.89	0.00
770	12.83	0.93	1.38	1.52	1.84	0.00
780	13.00	0.89	1.32	1.45	1.76	0.00
790 800	13.17 13.33	0.86 0.84	1.27 1.24	1.40 1.36	1.70 1.65	0.00 0.00
810	13.50	0.82	1.24	1.30	1.62	0.00
820	13.67	0.81	1.20	1.32	1.60	0.00
830	13.83	0.81	1.19	1.31	1.58	0.00
840	14.00	0.80	1.18	1.30	1.57	0.00 0.00
850 860	14.17 14.33	0.80 0.80	1.18 1.18	1.29 1.29	1.56 1.56	0.00
870	14.50	0.80	1.18	1.29	1.56	0.00
880	14.67	0.80	1.18	1.29	1.56	0.00
890	14.83	0.79	1.16	1.27	1.53	0.00
900 910	15.00 15.17	0.77 0.76	1.13 1.11	1.24 1.21	1.49 1.46	0.00 0.00
920	15.33	0.75	1.09	1.20	1.44	0.00
930	15.50	0.74	1.08	1.18	1.42	0.00
940	15.67	0.74	1.07	1.17	1.41	0.00
950 960	15.83 16.00	0.73 0.73	1.07 1.06	1.17 1.17	1.41 1.40	0.00 0.00
960 970	16.00	0.73	1.06	1.17	1.40	0.00
980	16.33	0.73	1.06	1.16	1.40	0.00
990	16.50	0.73	1.06	1.16	1.40	0.00
1000	16.67	0.73	1.06	1.16	1.40	0.00
1010 1020	16.83 17.00	0.72 0.69	1.04 0.99	1.14 1.08	1.36 1.30	0.00 0.00
1030	17.17	0.66	0.96	1.05	1.26	0.00
1040	17.33	0.65	0.93	1.02	1.22	0.00
1050	17.50	0.63	0.91	1.00	1.20	0.00
1060	17.67	0.63	0.90	0.99	1.18	0.00
1070 1080	17.83 18.00	0.62 0.62	0.89 0.89	0.98 0.97	1.17 1.16	0.00 0.00
1090	18.17	0.02	0.89	0.96	1.15	0.00
1100	18.33	0.61	0.88	0.96	1.15	0.00
1110	18.50	0.61	0.88	0.96	1.15	0.00
1120	18.67 18.83	0.61	0.88	0.96	1.14	0.00
1130 1140	18.83	0.61 0.61	0.87 0.88	0.96 0.96	1.14 1.14	0.00 0.00
1150	19.17	0.61	0.88	0.96	1.14	0.00
1160	19.33	0.61	0.88	0.96	1.14	0.00
1170	19.50	0.61	0.88	0.96	1.14	0.00
1180	19.67	0.61	0.88	0.96	1.15	0.00
1190 1200	19.83 20.00	0.61 0.62	0.88 0.88	0.96 0.96	1.15 1.15	0.00 0.00
	20.00	0.02	0.00	0.90	1.10	0.00

19-071 - Detention-3-pond.xls

Hydrograph Summary Page 2

	P	Pre-Develop		graphs			Develope		raphs
Year ====	====>	2	5	10	25	100	2	5	10
Qpeak	cfs =>	2.02	3.46	3.93	5.06	0.00	6.31	8.84	9.62
Volume	cf =>	53,749	82,927	92,142	114,265	-	87,826	120,952	131,137
Tpeak	min =>	490	480	480	480	10	470	470	470
Tpeak	hr =>	8.17	8.00	8.00	8.00	0.17	7.83	7.83	7.83
Hydrograph N		2	5	10	25	100	2	5	10
	me	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd	Hyd
(min) (h	r)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
1220	20.33	0.62	0.88	0.96	1.15	0.00	0.74	1.00	1.0
1230	20.50	0.62	0.88	0.96	1.15	0.00	0.74	1.00	1.0
1240	20.67	0.62	0.89	0.97	1.15	0.00	0.74	1.00	1.0
1250	20.83	0.62	0.89	0.97	1.15	0.00	0.74	1.00	1.0
1260	21.00	0.62	0.89	0.97	1.16	0.00	0.74	1.00	1.0
1270	21.17	0.62	0.89	0.97	1.16	0.00	0.74	1.00	1.0
1280	21.33	0.63	0.89	0.97	1.16	0.00	0.74	1.00	1.0
1290	21.50	0.63	0.89	0.97	1.16	0.00	0.75	1.00	1.0
1300	21.67	0.63	0.89	0.97	1.16	0.00	0.75	1.00	1.0
1310	21.83	0.63	0.89	0.97	1.16	0.00	0.75	1.00	1.0
1320	22.00	0.63	0.90	0.98	1.16	0.00	0.75	1.01	1.0
1330	22.17	0.63	0.90	0.98	1.16	0.00	0.75	1.01	1.0
1340	22.33	0.63	0.90	0.98	1.17	0.00	0.75	1.01	1.0
1350	22.50	0.63	0.90	0.98	1.17	0.00	0.75	1.01	1.0
1360	22.67	0.64	0.90	0.98	1.17	0.00	0.75	1.01	1.0
1370	22.83	0.64	0.90	0.98	1.17	0.00	0.75	1.01	1.0
1380	23.00	0.64	0.90	0.98	1.17	0.00	0.75	1.01	1.0
1390	23.17	0.64	0.90	0.98	1.17	0.00	0.75	1.01	1.0
1400	23.33	0.64	0.91	0.99	1.17	0.00	0.75	1.01	1.0
1410	23.50	0.64	0.91	0.99	1.17	0.00	0.75	1.01	1.0
1420	23.67	0.64	0.91	0.99	1.18	0.00	0.75	1.01	1.0
1430	23.83	0.64	0.91	0.99	1.18	0.00	0.75	1.01	1.0
1440	24.00	0.65	0.91	0.99	1.18	0.00	0.75	1.01	1.0
1450	24.17	0.56	0.80	0.87	1.03	0.00	0.38	0.51	0.5
1460	24.33	0.42	0.59	0.65	0.77	0.00	0.00	0.00	0.0
1470	24.50	0.31	0.44	0.48	0.57	0.00	0.00	0.00	0.0
1480	24.67	0.23	0.33	0.36	0.43	0.00	0.00	0.00	0.0
1490	24.67	0.17	0.25	0.27	0.32	0.00	0.00	0.00	0.0
1500	24.67	0.13	0.18	0.20	0.24	0.00	0.00	0.00	0.0

19-071 - Detention-3-pond.xls

Hydrograph Summary Page 3

25

11.49

155,242

470

7.83 25

Hyd (cfs) 1.26

1.26

1.26 1.26 1.26

1.27 1.27 1.27 1.27 1.27 1.27 1.27

0.64 0.00 0.00

0.00

0.00

0.00

131,137

1.08

1.08

1.08 1.08 1.08

1.08

1.08 1.08 1.08 1.08 1.08 1.08 1.08

1.08 1.09 1.09 1.09

1.09

1.09 1.09 1.09 1.09 1.09

1.09

0.55 0.00 0.00

0.00

0.00

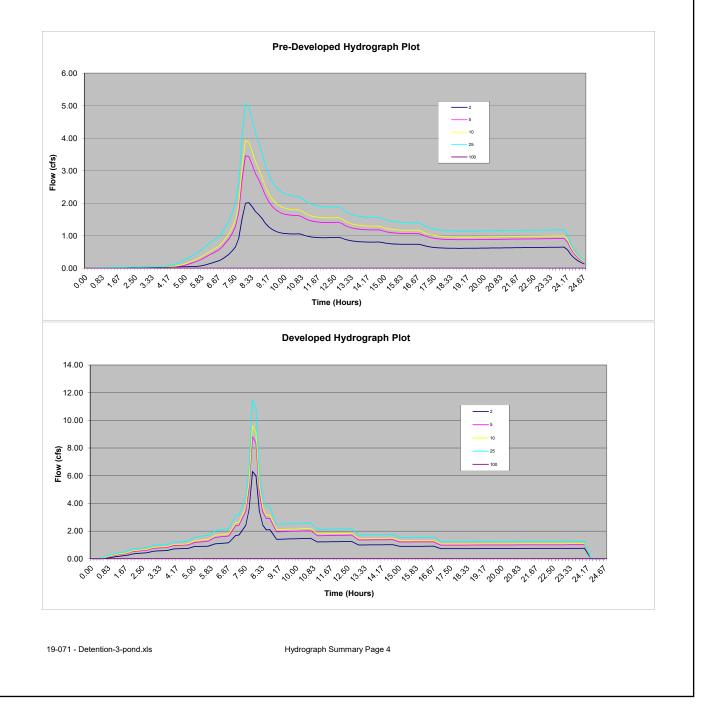
100

0.00

10

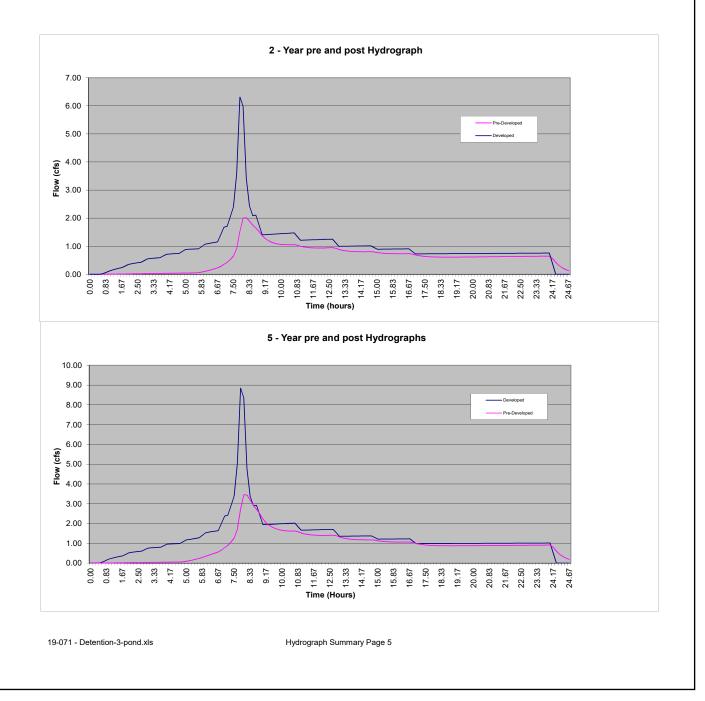
0.17 100 Hyd (cfs)

0.00


0.00

0.00

0.00


	Pre-Developed Hydrographs												
Year	=====>	2	5	10	25	100							
Qpeak	cfs =>	2.02	3.46	3.93	5.06	0.00							
Volume	cf =>	53,749	82,927	92,142	114,265	-							
Tpeak	min =>	490	480	480	480	10							
Tpeak	hr =>	8.17	8.00	8.00	8.00	0.17							
Hydrog	raph Name=>	2	5	10	25	100							
Time	Time	Hyd	Hyd	Hyd	Hyd	Hyd							
(min)	(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)							

Developed Hydrographs										
2	5	10	25	100						
6.31	8.84	9.62	11.49	0.00						
87,826	120,952	131,137	155,242	-						
470	470	470	470	10						
7.83	7.83	7.83	7.83	0.17						
2	5	10	25	100						
Hyd	Hyd	Hyd	Hyd	Hyd						
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)						

Pre-Developed Hydrographs												
Year =====>	2	5	10	25	100							
Qpeak cfs	=> 2.02	3.46	3.93	5.06	0.00							
Volume cf	=> 53,749	82,927	92,142	114,265	-							
Tpeak min	=> 490	480	480	480	10							
Tpeak hr	=> 8.17	8.00	8.00	8.00	0.17							
Hydrograph Name=>	2	5	10	25	100							
Time Time	Hyd	Hyd	Hyd	Hyd	Hyd							
(min) (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)							

Developed Hydrographs						
2	5	10	25	100		
6.31	8.84	9.62	11.49	0.00		
87,826	120,952	131,137	155,242	-		
470	470	470	470	10		
7.83	7.83	7.83	7.83	0.17		
2	5	10	25	100		
Hyd	Hyd	Hyd	Hyd	Hyd		
(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		

Pre-Developed Hydrographs								
Year =====>	2	5	10	25	100			
Qpeak cfs =	> 2.02	3.46	3.93	5.06	0.00			
Volume cf =	> 53,749	82,927	92,142	114,265	-			
Tpeak min =	> 490	480	480	480	10			
Tpeak hr =	> 8.17	8.00	8.00	8.00	0.17			
Hydrograph Name=>	2	5	10	25	100			
Time Time	Hyd	Hyd	Hyd	Hyd	Hyd			
(min) (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)			

2 5 10 25	100
6.31 8.84 9.62 11.49	0.00
87,826 120,952 131,137 155,24	2 -
470 470 470 470	10
7.83 7.83 7.83 7.83	0.17
2 5 10 25	100
Hyd Hyd Hyd Hyd	Hyd
(cfs) (cfs) (cfs) (cfs)	(cfs)

Page 269 of 916

F	Proje	ect N	lame	e:

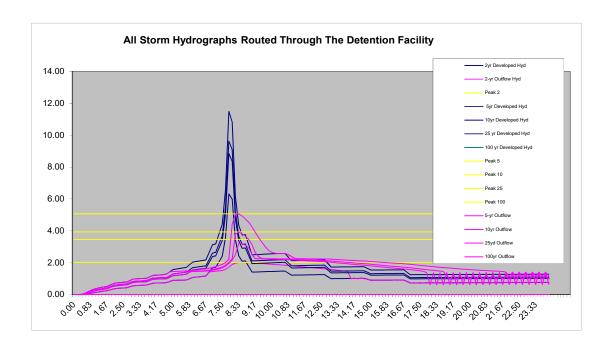
The Views - Basin 3 Pond

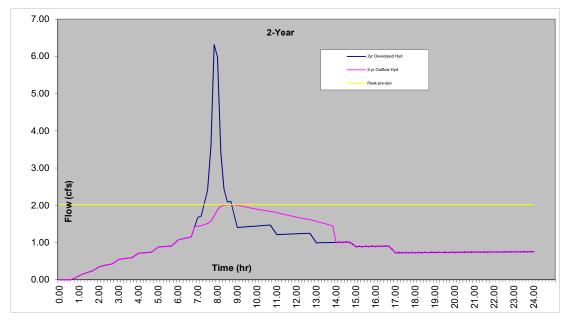
Detention System Summary				
Job #	19-071			
Date:	6/24/2020			
				em design is based on the King
1) Detention Facility Design Input:		County I	Model "Facility D	esign Routine".
2) Type of facility:		[DETENTION PO	ND
3) Pond side slopes:		3 t	o 1	
4) Pond storage depth:		4 f	t (from bottom	of pond to overflow)
5) Vertical permeability		0 r	nin/in	
6) Number of orifices:		2		
7) Riser dia. =>		12 i	n	
8) Orifice coefficient		0.62 (typically 0.62)	
9) IE - bottom orifice:		-2 f	t (distance below	v bottom of pond - Negative #)
10) Max Q Bottom Orif. #1		2.49 c	sfs	
11) Top Orif #2 Height =		2.94 f	t	
12) Max Q Mid Orif. #3		0.00 c	fs	Orifice not being used
13) Mid Orif #3 Height =		0.00 f	t	Orifice not being used

Detention Facility Design Results:

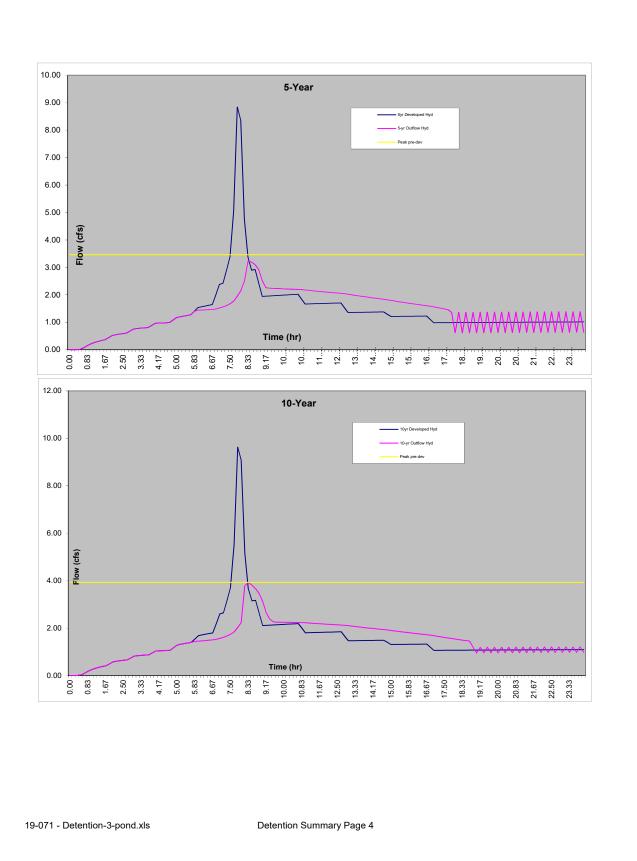
Performance year	Developed Inflow	Pre-Developed Outflow	Actual Outflow	Peak Stage	Storage
	cfs	cfs	cfs	ft	cf
100	0	0	0	0	-
25	11.49	5.06	5.06	4.00	19,983
10	9.62	3.93	3.93	3.34	16,198
5	8.84	3.46	3.23	3.08	14,785
2	6.31	2.02	2.02	1.93	8,785
			Required Sto	orage ====	19,983

	Bottom Orif.	Middle Orif.	Top Orif.	Optional Weir Design
Total Q =	2.49	0.00	2.57	(for top orifice)
Head (ft) =	6.00	0.00	1.06	1.13 La (ft)
Dist. from bottom of pond (ft) =	-2.00	NA	2.94	129.13 < deg.
Orif. Dia. (in) =	6.12	0.00	9.60	Weir is an option

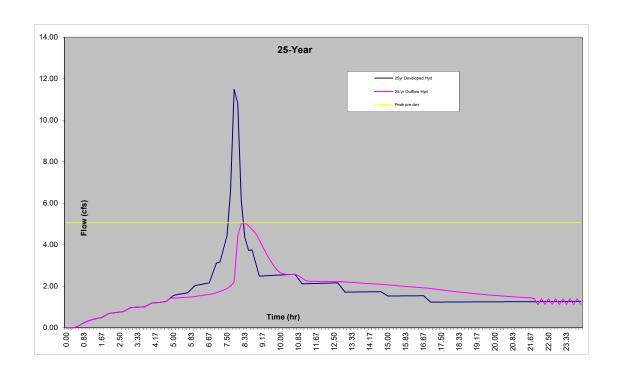

FLOW CONTROL STRUCTURE SCHEMATIC

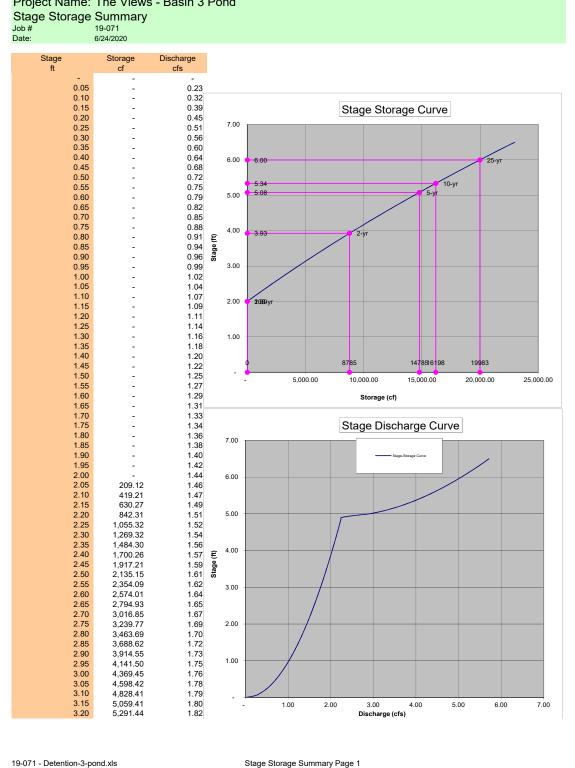

		↓		12 (in) Riser dia.
Ν	Aaximum water surface elevation			
Î	↑		9.60	(in) Dia. Orif #2
	← 4.0 ▲		2.57	(cfs) Max Q top Orif #2
	Storage depth or tank dia. (ft)			
		$ \bigcirc \rightarrow $	NA	(in) Dia. Orif #3
	Top Orif #2 Height (ft) 2.94 →		NA	(cfs) Max Q Mid Orif #3
	Middle Orif #3 Height (ft) NA			
	5 1 1 1			
	↓ ↓			
	Bottom of pond / tank	1		
	Bottom Orif depth below pond / tank (ft) -2.00			
				6.12 (in) Dia. Orif #1
	(ft) Total Head on Bottom Orifice	_		2.49 (cfs) Max Q Bot. Orif #1
ł				

19-071 - Detention-3-pond.xls



19-071 - Detention-3-pond.xls




19-071 - Detention-3-pond.xls

Page 273 of 916

19-071 - Detention-3-pond.xls

Project Name: The Views - Basin 3 Pond

Page 275 of 916

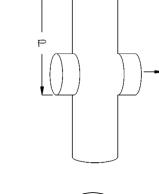
Stage	Storage	Discharge
ft	cf	cfs
3.25	5,524.48	1.83
3.30	5,758.56	1.85
3.35	5,993.66	1.86
3.40	6,229.79	1.87
3.45	6,466.95	1.89
3.50	6,705.15	1.90
3.55	6,944.38	1.92
3.60	7,184.65	1.93
3.65	7,425.96	1.94
3.70	7,668.32	1.94
3.75	7,911.72	1.90
3.80		1.97
	8,156.17	1.98
3.85	8,401.67	
3.90	8,648.22	2.01
3.95	8,895.82	2.02
4.00	9,144.48	2.03
4.05	9,394.20	2.05
4.10	9,644.99	2.06
4.15	9,896.83	2.07
4.20	10,149.74	2.08
4.25	10,403.72	2.10
4.30	10,658.77	2.11
4.35	10,914.89	2.12
4.40	11,172.09	2.13
4.45	11,430.36	2.14
4.50	11,689.71	2.16
4.55	11,950.15	2.17
4.60	12,211.67	2.18
4.65	12,474.27	2.19
4.70	12,737.96	2.20
4.75	13,002.74	2.22
4.80	13,268.62	2.23
4.85	13,535.59	2.24
4.90	13,803.65	2.25
4.95	14,072.82	2.51
5.00	14,343.09	2.89
5.05	14,614.46	3.11
5.10	14,886.94	3.30
5.15	15,160.53	3.45
5.20	15,435.22	3.59
5.25	15,711.03	3.72
5.30	15,987.96	3.84
5.35	16,266.00	3.95
5.40	16,545.17	4.06
5.45	16,825.45	4.16
5.50	17,106.86	4.25
5.55	17,389.39	4.35
5.60	17,673.06	4.44
5.65	17,957.85	4.52
5.70	18,243.78	4.61
5.75	18,530.85	4.69
5.80	18,819.05	4.77
5.85	19,108.39	4.84
5.90	19,398.87	4.92
5.95	19,690.50	4.99
6.00	19,983.27	5.06

19-071 - Detention-3-pond.xls

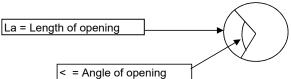
Stage Storage Summary Page 2

Project Name: The Views - Basin 3 Pond Rectangular, Sharp Crested Weir Calculations Job # 19-071 Date: 6/24/2020

Weir Equation: $Q = C(L-0.2H)H^{3/2}$


- Q = Flow over weir (cfs)
- C = 3.27 + 0.40 H/P (ft)
- L = Adjusted length of weir (La 0.1H x 2) this is to account for side constraints
- La = Actual length of weir along pipes interior circumference (ft)
- H = Distance from bottom of weir to maximum head (ft)
- P = Distance from bottom of weir to outfall invert elevation (ft)
- D = Inside riser pipe diameter (in)
- < = Angle of opening for weir (maximum 180 degrees)

Given:


Q	2.57	cfs
Н	1.06	ft
Р	4.94	ft
D	12	in

Find:

С	3.36	ft
L	0.91	ft
La	1.13	
<	129	degrees

Н

Appendix F

Standard Formulas, Coefficients, and Values

(This page intentionally left blank)

COEFFICIENTS

= Manning's coefficient (sheet flow) Ns =

n values are for sheet flow only Design Value

- 0.011 Concrete or asphalt
- 0.010 Bare soil
- 0.020 Graveled surface
- 0.020 Bare clay loam (eroded)
- 0.150 Grass (short prairie)
- 0.240 Grass (dense lawn)
- 0.410 Grass (bermuda)
- 0.400 Woods (light underbrush)
- 0.800 Woods (dense underbrush)

= time of concentration velocity factor (ft/s) k =

- Design Value
 - Forest with heavy ground cover and meadows (n=0.10) 3
 - Brushy ground with some trees (n=0.060) 5
 - 8 Fallow or cultivation (n=0.040)
 - 9 High grass (n=0.035)
 - 11 Short grass, pasture or lawns (n=0.030)
 - Nearly bare ground (n=0.025) 13
 - 27 Paved and gravel areas (n=0.012)

= Manning's coefficient (channel) n = Design Value

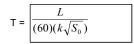
CONSTRUCTED CHANNELS

- A. Earth, straight and uniform
- 0.018 Earth (straight and uniform)
- 0.025 Gravel (straight and uniform)
- 0.027 Grass (with weeds) B. Earth, winding and sluggish
- 0.025 Earth (no vegetation)
- 0.030 Grass (some weeds)
- 0.035 Dense weeds (deep channel)
- 0.030 Earth (rubble bottom and sides)
- 0.035 Stony bottom and weedy banks
- 0.040 Cobble bottom with clean sides C. Rock lined
- 0.035 Smooth and uniform
- 0.040 Jagged and irregular

D. Channels not maintained (weeds and brush uncut)

- 0.050 Dense weeds (high as flow depth)
- 0.050 Clean bottom (brush on sides)
- 0.100 Dense brush (high stage)
- 0.200 Water quality swales (mowed regulary) NATURAL STREAMS
- 0.029 Clean (straight no pools)
- 0.035 Clean (straight no pools with weeds and stones)
- 0.039 Clean (winding pools)
- 0.042 Clean (winding pools weeds and stones)
- 0.052 Clean (winding pools weeds and large stones)
- 0.065 Weedy (sluggish with deep pools)
- 0.112 Very weedy (sluggish with deep pools)

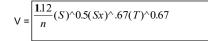
Standard formulas used for the Time of Concentration Calculations


Overland Flow (max 300' total)

 time of concentration for less than 300' of travel (minutes)
 sheet flow Manning's effective roughness coefficient = flow length (ft) = 2-year, 24 hour rainfall (in) = slope of hydraulic grade line (land slope, ft/ft)

Shallow Concentrated Flow (after initial 300')

Т	l
L	l
So	
k	

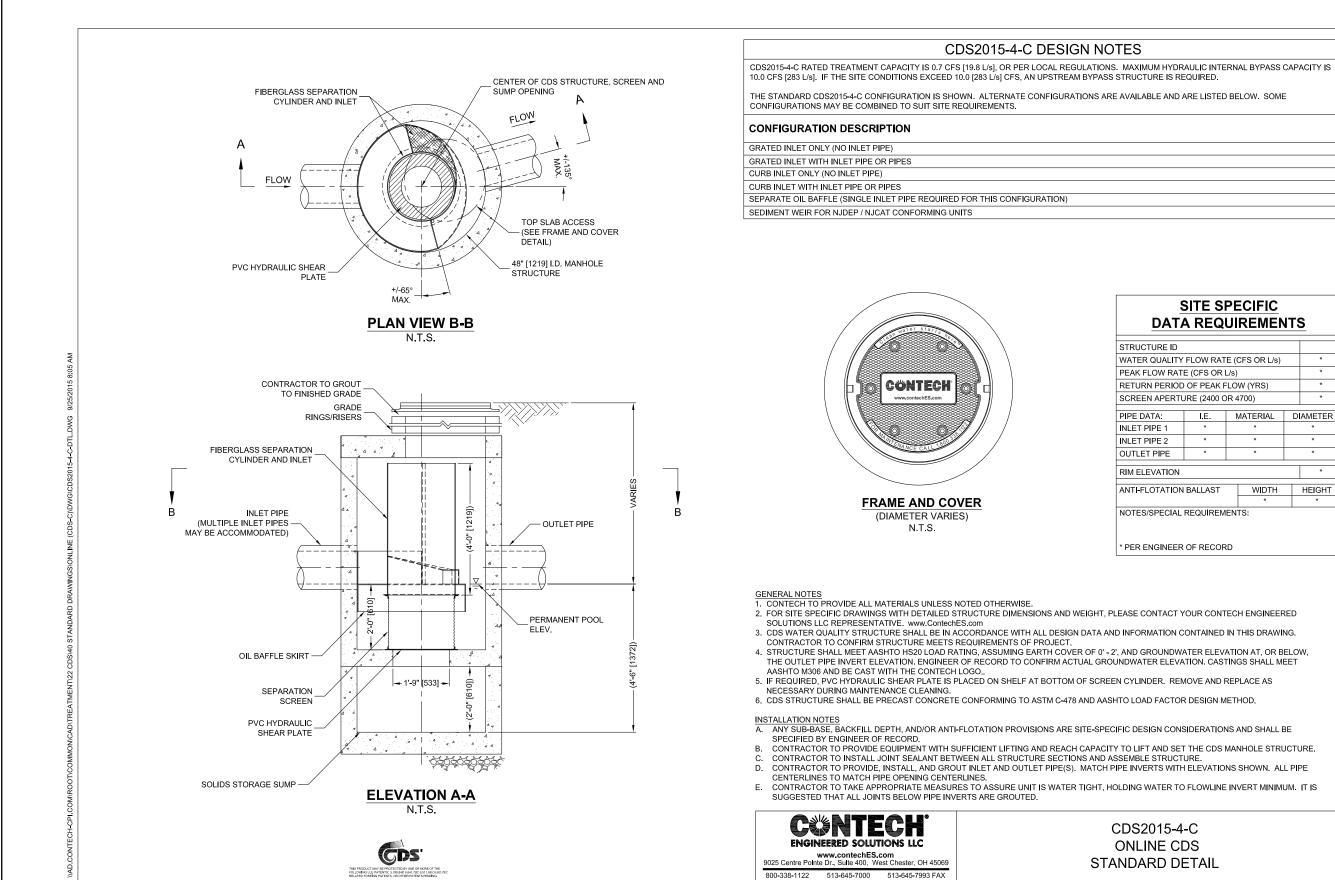

= travel time for sheet flow (min) = flow length (ft) = slope of hydraulic grade line (land slope, ft/ft) = time of concentration velocity factor (ft/s)

Flow in Swales

Q = (1.486/n) x A x R²/3 x S¹/2 (Manning's Equation)

Tc	= time of concentration for gutter flow (minutes)
А	= area of flow (sf)
R	= hydraulic radius (ft)
Ls	= side slope
Q	= quantity of flow (ft^3/sec)
V	= average velocity of flow (ft/sec)
L	= length of flow
Ve	= vertical length of side slope
Ho	= horizontal length of side slope
Bw	= base width (in)
D	= depth (in)
S	= slope (ft/ft)
n	= Manning's n

Flow in gutters

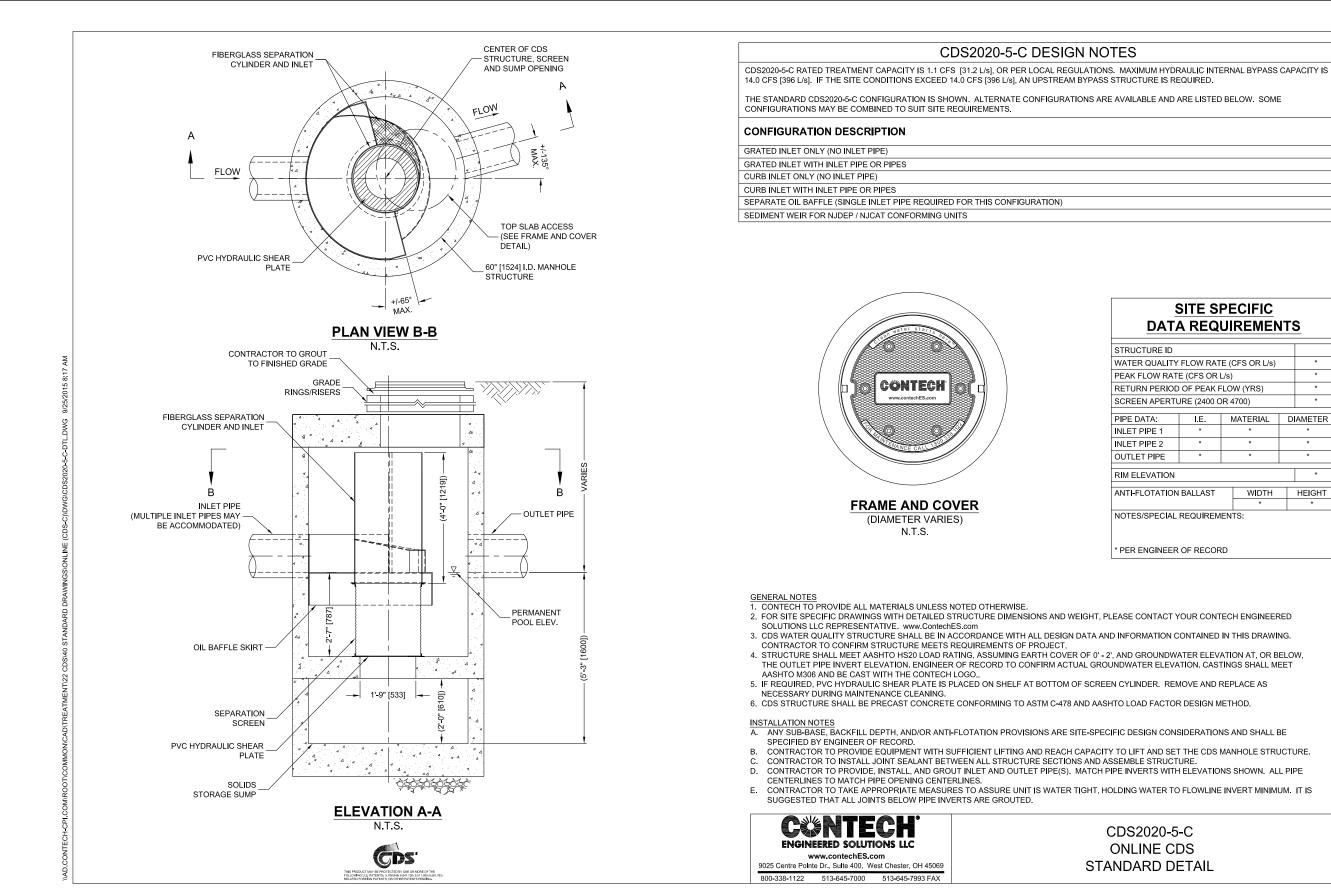

	-
Тс	= time of concentration for gutter flow (minutes)
V	= average velocity of flow (ft/sec)
Q	= quantity of flow (ft^3/sec)
S	= street longitudinal slope (ft/ft)
Sx	= street cross slope (ft/ft)
Т	= total width of flow in the gutter (ft)
n	= sheet flow Manning's (pavement = 0.018)
L	= Length of flow (ft)

Flow in pipes Mannings Equation

Tc	= time of concentration in pipe (minutes)
V	= calculated velocity pipe full (ft/sec)
Q	= quantity of flow (ft^3/sec)
n	= Manning's n
D	= pipe Diameter (in)
S	= slope (ft/ft)
L	= length of pipe

<u>Appendix G</u> Water Quality Manhole Details

(This page intentionally left blank)



SITE SPECIFIC DATA REQUIREMENTS

STRUCTURE ID						
WATER QUALITY FLOW RATE (CFS OR L/s)					*	
PEAK FLOW RATE (CFS OR L/s)					*	
RETURN PERIOD OF PEAK FLOW (YRS)					*	
SCREEN APERTURE (2400 OR 4700)					*	
		_				
PIPE DATA:	I.E.	ſ	MATERIAL	DIAMETER		
INLET PIPE 1	*		*	*		
INLET PIPE 2	*		*	*		
OUTLET PIPE	*		*	*		
RIM ELEVATION					*	
ANTI-FLOTATION BALLAST			WIDTH	HEIGHT		
			*		*	
NOTES/SPECIAL REQUIREMENTS:						

* PER ENGINEER OF RECORD

CDS2015-4-C **ONLINE CDS** STANDARD DETAIL

SITE SPECIFIC DATA REQUIREMENTS

					1
STRUCTURE ID					
WATER QUALITY FLOW RATE (CFS OR L/s)					*
PEAK FLOW RATE (CFS OR L/s)					*
RETURN PERIOD OF PEAK FLOW (YRS)					*
SCREEN APERTURE (2400 OR 4700)					*
		_			
PIPE DATA:	I.E.	ſ	MATERIAL	DIAMETER	
INLET PIPE 1	*		*	*	
INLET PIPE 2	*		*	*	
OUTLET PIPE	*		* *		*
RIM ELEVATION				*	
ANTI-FLOTATION BALLAST		WIDTH		HEIGHT	
			*		*
NOTES/SPECIAL REQUIREMENTS:					

* PER ENGINEER OF RECORD

CDS2020-5-C **ONLINE CDS** STANDARD DETAIL

EXHIBIT F

THE VIEWS TRAFFIC IMPACT STUDY

SANDY, OREGON

PREPARED FOR: Mac Even

PREPARED BY: Michael Ard, PE Ard Engineering

DATE: June 15, 2020

21370 SW Langer Farms Parkway, Suite 142, Sherwood, OR 97140 - (503)862-6960

TABLE OF CONTENTS

Executive Summary	3
Project Description & Location	4
Existing Conditions	5
Site Trips	11
Future Conditions Analysis	14
Safety Analysis	19
Conclusions	21
Appendix	22

The Views - Traffic Impact Study

2

EXECUTIVE SUMMARY

- 1. A residential development is proposed on the northeast side of US Highway 26 at SE Vista Loop Drive in Sandy, Oregon. The proposed development will include 48 apartment dwelling units, 32 four-plex dwelling units and 88 single-family homes. The site will take access via three new driveways on SE Vista Loop Road, with two serving development on the west side of SE Vista Loop Road and one serving the property on the east side of SE Vista Loop Road.
- 2. Upon completion of proposed development, the subject property is projected to generate 109 new site trips during the morning peak hour, 136 trips during the evening peak hour, and 1,564 new daily site trips.
- 3. Based on the operational analysis, the study intersections currently operate acceptably and are projected to continue to operate acceptably under year 2022 traffic conditions either with or without the addition of site trips from the proposed development.
- 4. Based on the queuing analysis, there is sufficient distance along SE Vista Loop Drive between the Highway 26 and the proposed site access location for the Picking Property to allow the intersections to operate without interference from queues. No queuing-related mitigations are necessary or recommended in conjunction with the proposed development.
- 5. Based on the crash data, the study intersections are currently operating acceptably with respect to safety.
- 6. Based on the warrant analysis, no new traffic signals or turn lanes are recommended.
- 7. Intersection sight distance was evaluated for the proposed points of access along SE Vista Loop Drive. Based on the analysis, it is projected that adequate sight distance can be achieved for all access locations with clearing of vegetation from the roadside. No other sight distance mitigations are necessary or recommended.

The Views - Traffic Impact Study

PROJECT DESCRIPTION & LOCATION

INTRODUCTION

The proposed residential development comprises two properties. The 9.6-acre Knapp property is located between SE Vista Loop Road and US Highway 26. The 23.3-acre Picking property is located on the east side of SE Vista Loop Road near its southern intersection with Highway 26.

The proposed development will consist of 168 total dwelling units on 122 lots. It will take access via three new driveways intersecting SE Vista Loop Road, with one serving the 72 lots on the east side of SE Vista Loop Road and two serving the remaining 50 lots on the west side.

This report addresses the impacts of the proposed development on the surrounding street system. Based on discussions with the City of Sandy and ODOT staff, an operational and safety analysis was conducted for the proposed site access intersections on SE Vista Loop Drive as well as the intersections of Highway 26 at SE Vista Loop Road (west) and Highway 26 at SE Vista Loop Road (east).

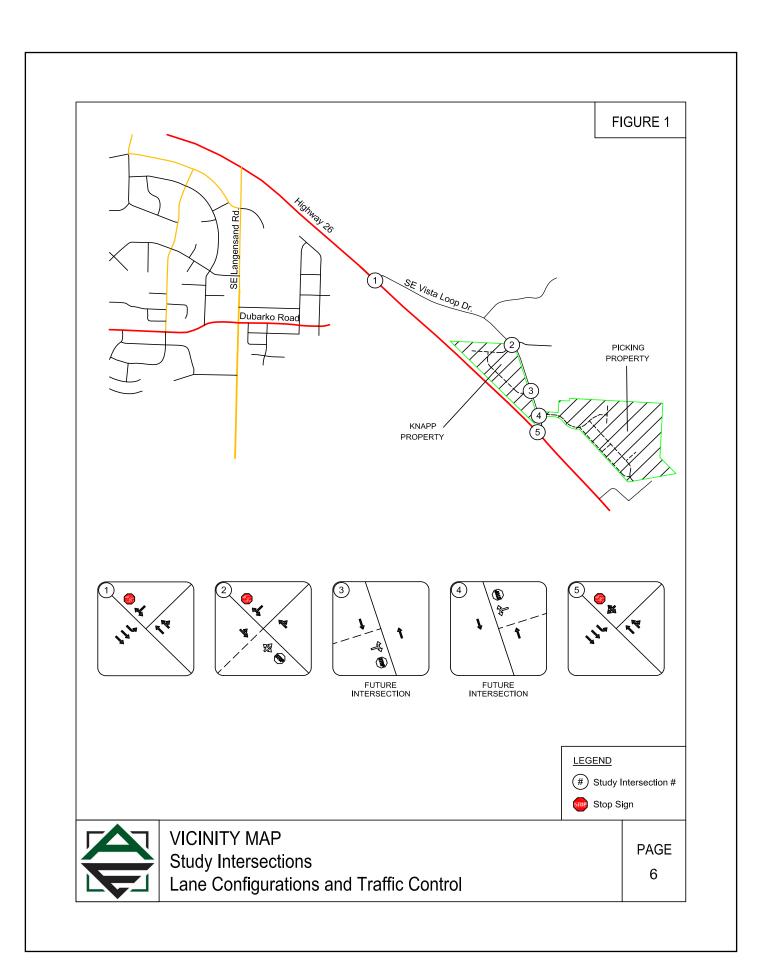
The purpose of this analysis is to determine whether the surrounding transportation system is capable of safely and efficiently supporting the proposed use and to identify any necessary improvements and mitigations.

SITE LOCATION AND STUDY AREA DESCRIPTION

The proposed development has a total area of approximately 33 acres and is currently undeveloped. The subject properties are surrounded primarily by a mixture of existing low-density residential development, agricultural uses, and undeveloped forested land. Immediately southeast of the Picking property is the Johnson RV sales facility.

US Highway 26 (Mt. Hood Highway) is classified by the Oregon Department of Transportation as a Statewide Highway and a Freight Route. It has two through lanes in each direction and added turn lanes at intersections. It has a posted speed limit of 55 mph within the study area. The speed limit is reduced to 40 mph northwest of the subject property approximately halfway between SE Vista Loop Drive (west) and SE Langensand Road.

SE Vista Loop Drive is a narrow street without centerline striping and with a posted residential speed limit of 25 mph. It is classified by the City of Sandy as a collector roadway.



EXISTING CONDITIONS

The intersection of US Highway 26 at SE Vista Loop Drive (west) is currently a T- intersection controlled by a stop sign on the southwest-bound Vista Loop Drive approach. Through traffic traveling along Highway 26 does not stop. The southwest-bound approach has a single, shared lane for all turning movements. The southeast-bound approach has a left-turn lane and two through lanes. The northwest-bound approach has a dedicated through lane and a shared through/right lane.

The intersection of US Highway 26 at SE Vista Loop Drive (east) is also a T-intersection controlled by a stop sign on the southwest-bound Vista Loop Drive approach. Through traffic traveling along Highway 26 does not stop. The southwest-bound approach has a single, shared lane for all turning movements. The southeast-bound approach has a left-turn lane and two through lanes. The northwest-bound approach has a dedicated through lane and a shared through/right lane.

A vicinity map displaying the project site, vicinity streets, and the study intersections including lane configurations is provided in Figure 1 on page 6.

TRAFFIC COUNT DATA

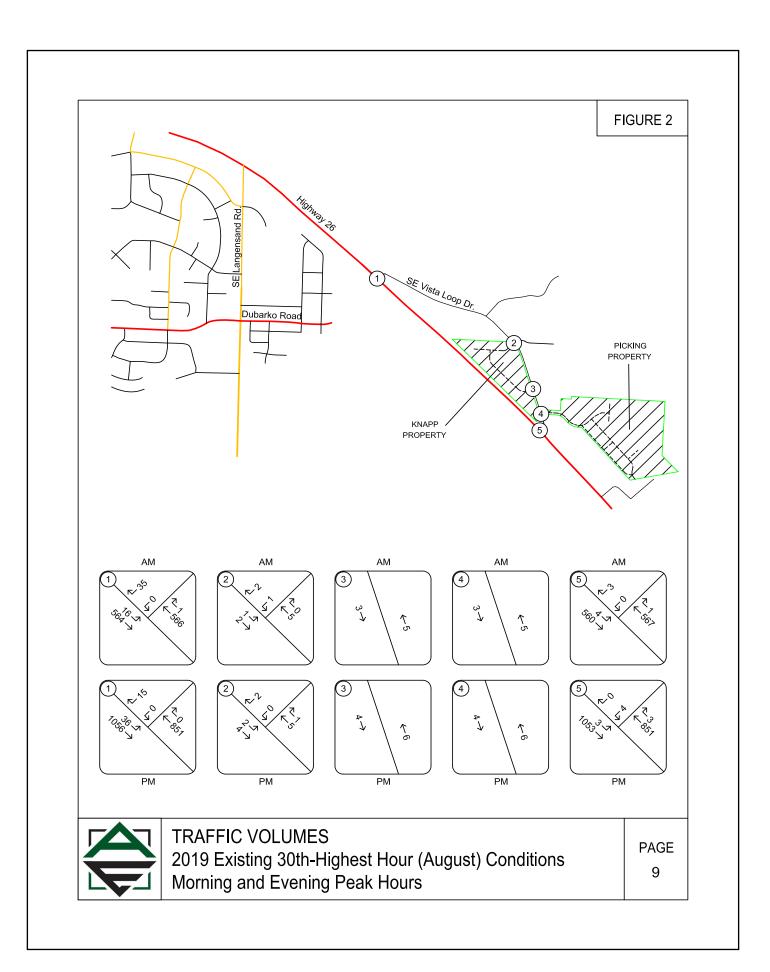
Traffic counts were conducted at the intersection of Highway 26 at SE Vista Loop Drive (west) on Tuesday March 19th, 2019 from 4:00 to 6:00 PM and on Wednesday March 20th, 2019 from 7:00 to 9:00 AM. Traffic counts were conducted at the intersection of Highway 26 at SE Vista Loop Drive (east) on Thursday July 18th from 7:00 AM to 9:00 AM and 4:00 to 6:00 PM. Data was used from the highest-volume hour for each intersection during each analysis period.

The observed traffic volumes were adjusted to account for seasonal traffic variations in order to represent the 30th-highest hour design volumes. Since the July count data was collected closer to the August seasonal peak, this data was used to determine the through traffic volumes on Highway 26, and seasonal-peak through traffic volumes at the intersection of Highway 26 at SE Vista Loop Drive (west) were determined by balancing the turning movement volumes with the 30th-highest hour volumes calculated for Highway 26 at SE Vista Loop Drive (east).

US Highway 26 serves local and commuter traffic as well as trips to and from Mt. Hood and beyond. These trip types would be expected to exhibit very different seasonal variations in travel demands over the course of the year, since local and commuter traffic volumes are relatively stable regardless of season, while travel volumes to and from Mt. Hood vary significantly based on the season.

In order to determine the portion of traffic attributable to each of the two primary travel types, data from ODOT's 2017 Highway Volume Tables was utilized. Specifically, the data used was collected at ODOT's Automatic Count Data station 03-006, located 0.30 miles east of Camp Creek Road in Rhododendron, Oregon. This site is located on Highway 26 approximately 21 miles east of SE Vista Loop Drive. Although the distance to the ATR station means the data cannot be used directly, the ATR data provides useful information regarding the variation in traffic volumes traveling to Mt. Hood and beyond during the time of the count data collection as well as during the peak season of the year. Accordingly, this data allows determination of the likely portion of highway traffic that falls into each of the two seasonal variation categories ("commuter" and "recreational summer/winter"), as well as providing information regarding the most appropriate seasonal adjustment factor for the recreational summer/winter traffic.

Based on the data, 11,291 vehicles per day (approximately 1,129 per hour during the peak hour) travel along Highway 26 to and from Mt. Hood at the Rhododendron permanent count station location during the month of July. This volume represents 60.8 percent of the through traffic volumes measured on Highway 26 east of SE Vista Loop Drive on July 18, 2019. Accordingly, it is expected that no more than 60.8 percent of the trips traveling along Highway 26 in the project vicinity are traveling to and from destinations beyond the Rhododendron count station. Since the remaining 39.2 percent of through traffic volumes on the Highway 26 at the study intersections never reach Mt. Hood, it was assumed that these traffic volumes represent more typical commuter and local trips.


The ODOT data also showed that 11,738 vehicles were measured per day (approximately 1174 per hour during the peak hour) during the peak-season month of August at the ATR station near Rhododendron. This indicates that the seasonal recreational traffic volumes along the Highway 26 corridor increased by no more than 447 vehicles per day (11,738 vehicles per day in August - 11,291

vehicles per day in July). This equates to roughly 45 additional vehicles per hour during the peak hour of the peak recreational season.

In order to seasonally adjust the local and commuter traffic volumes, the through traffic volumes were reduced by the amount of the assumed seasonal traffic (1,129 vehicles per hour during the evening peak hour, and a seasonal adjustment of 1.014 was applied to the remaining local and commuter traffic volumes. Following this adjustment, the 1,129 July recreational trips and the 45 peak-season through trips were added to determine the total peak-season traffic volumes. These calculated through traffic volumes represent the anticipated traffic levels for the intersections along Highway 26 during the 30th-highest hour in August. The morning peak hour traffic volumes along the highway were then increased by the same overall percentage as the evening peak hour volumes (2.96 percent).

Figure 2 on page 9 shows the existing 2019 30th-highest hour traffic volumes for the morning and evening peak hours at the study intersections.

OPERATIONAL ANALYSIS

An operational analysis was conducted for the study intersections using Synchro 10 software, with outputs calculated based on the *HIGHWAY CAPACITY MANUAL*, 6th Edition. The analysis was conducted for the weekday morning and evening peak hours.

The purpose of the existing conditions analysis is to establish how the study area intersections operate currently and allow for calibration of the operational analysis if required.

The results of the operational analysis are reported based on delay, Level of Service (LOS), and volume-to-capacity ratio (v/c). Delays are reported in seconds. Level of service is reported as a letter grade and can range from A to F, with level of service A representing nearly free-flow conditions and level of service F representing high delays and severe congestion. A report of level of service D generally indicates moderately high but tolerable delays, and typically occurs prior to reaching intersection capacity. For unsignalized intersections, the v/c represents the portion of the available intersection capacity that is being utilized on the worst intersection approach. A v/c ratio of 1.0 would indicate that the approach is operating at capacity.

The Oregon Department of Transportation requires that the intersections of Highway 26 at each end of SE Vista Loop Drive operate with a v/c ratio of 0.80 or less on the major-street approaches and a v/c ratio of 0.90 or less on the minor-street approaches.

A summary of the existing conditions operational analysis is provided in Table 1 below. The reported delays and levels-of-service represent the approach lane which experiences the highest delays. The reported v/c ratios represent the highest ratio for the major-street and minor-street movements.

Based on the analysis, the study intersections are currently operating acceptably. Detailed capacity analysis worksheets are provided in the technical appendix.

Intersection	А	M Peak H	our	Р	M Peak H	our
Intersection	Delay	LOS	v/c*	Delay	LOS	v/c*
Highway 26 at Vista Loop Drive (west)	10.5	В	0.19/0.05	11.6	В	0.34/0.03
Vista Loop Drive at Ortiz Street	8.5	Α	0.01	8.4	Α	0.01
Highway 26 at Vista Loop Drive (east)	10.4	В	0.20/0.01	36.6	E	0.35/0.04

Table 1 - Operational Analysis Summary: 2019 Existing 30th-Highest Hour Conditions

*(major street v/c) / (minor-street v/c)

SITE TRIPS

Proposed Development

The proposed new development will consist of 88 single-family homes, 32 four-plex dwelling units and 48 apartment units. To estimate the number of trips that will be generated by the proposed development, trip rates from the *TRIP GENERATION MANUAL*, 10th EDITION were used. Data from land-use codes 210, Single-Family Detached Housing, and 220, Multi-Family Housing, were used. The trip estimates are based on the number of dwelling units.

A summary of the trip generation calculations is provided in Table 2 below. Detailed trip generation worksheets are also included in the technical appendix.

	AN	И Peak Ho	our	PN	Л Peak Ho	bur	Daily
	In	Out	Total	In	Out	Total	Total
80 Multi-Family Dwelling Units	9	28	37	28	16	44	586
88 Single-Family Homes	18	54	72	58	34	92	978
Total Site Trips	27	82	109	86	50	136	1,564

Table 2 - Proposed Development Trip Generation Summary

Density Bonus Analysis

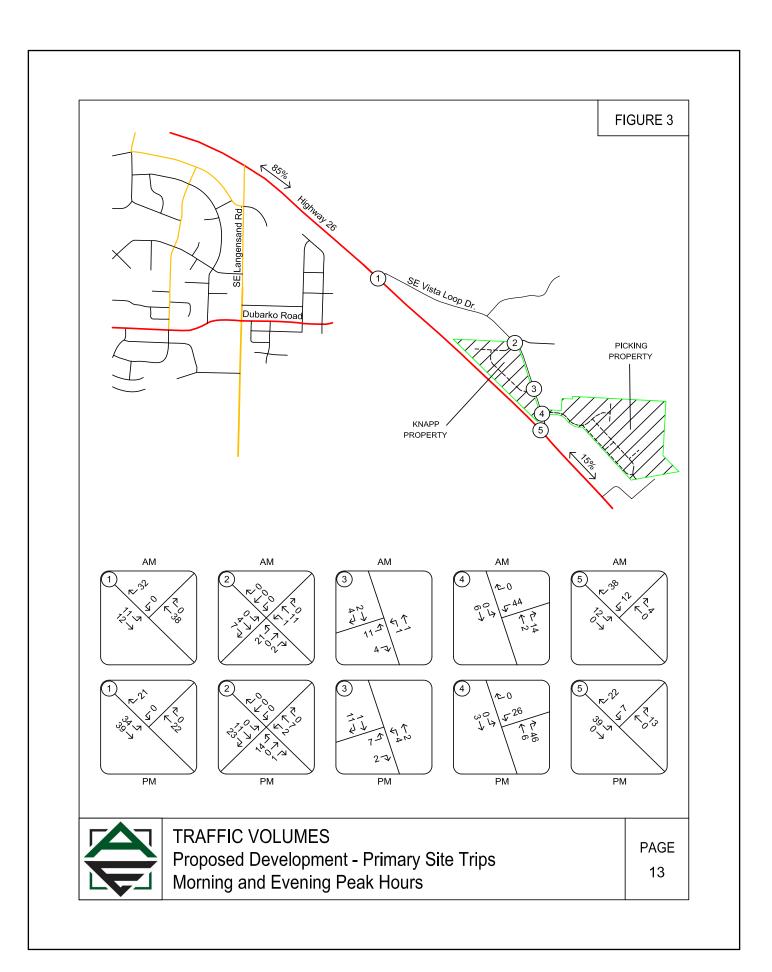
In addition to evaluation of the increase in site trips expected upon completion of the proposed residential development, trip generation calculations were prepared to examine the maximum permitted trip generation without the benefit of bonus density allowed per code section 17.64.40.C for planned developments. This allowed traffic level was compared to the proposed development traffic in order to determine whether the proposed use will result in a meaningful increase over traffic volumes that would otherwise be projected based on the underlying zoning.

The subject property is zoned SFR and has a total area of 32.929 acres and a net site area of 26.170 acres. The City of Sandy allows development of up to 5.8 dwelling units per acre within the SFR zone. Accordingly, the maximum development scenario for the underlying zoning absent a Planned Development would consist of 152 single-family homes.

A summary of the trip generation calculations for this density bonus comparison is provided in Table 3 on the following page. Detailed trip generation calculations are also included in the technical appendix.

	AN	И Peak Ho	our	PN	Л Peak Ho	bur	Daily
	In	Out	Total	In	Out	Total	Total
SFR Zoning (152 homes)	28	85	113	96	56	152	1528
Proposed Development	27	82	109	86	50	136	1564
Net Change In Site Trips	-1	-3	-4	-10	-6	-16	36

Table 3 - Planned Development Trip Generation Calculations


Based on the analysis, the proposed Planned Development will not result in an increase in peak-hour traffic as compared to the maximum development permitted absent a Planned Development based on allowed development within the SFD zoning.

TRIP DISTRIBUTION

The directional distribution of site trips to and from the project site was estimated based the existing travel patterns in the site vicinity, as well as the locations of likely trip destinations and major transportation routes. Overall, 85 percent of the anticipated site trips are projected to travel to and from the northwest on Highway 26 and 15 percent are projected to travel to and from the southeast on Highway 26.

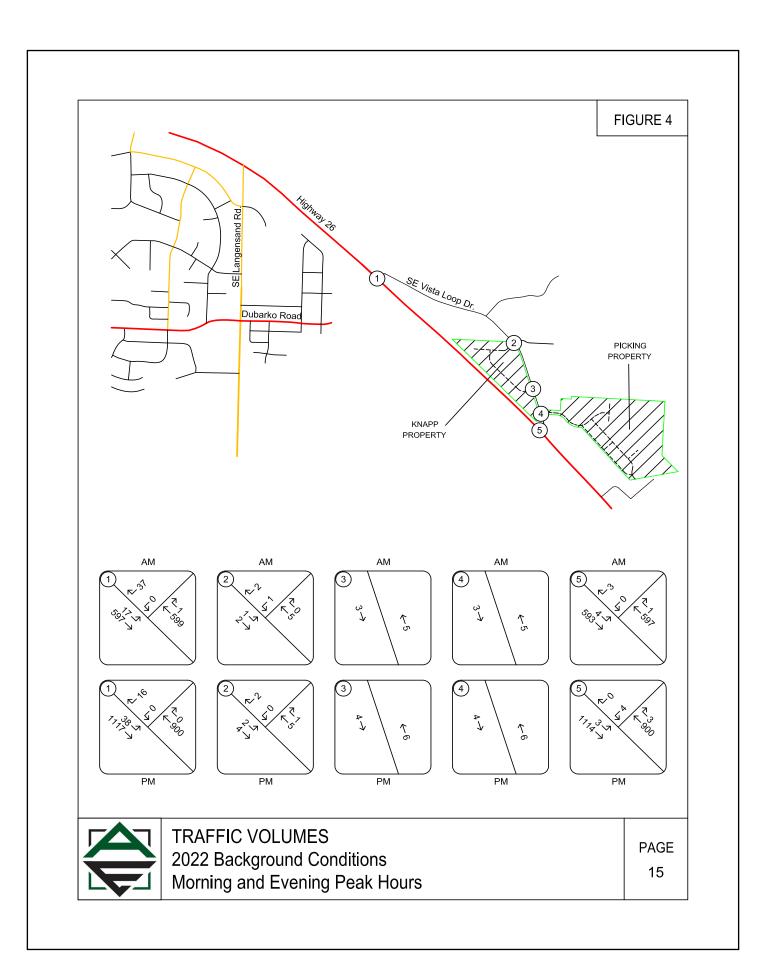
It should be noted that a future development on the west side of Highway 26 may include an extension of Dubarko Road to intersect Highway 26 opposite the Highway 26 at Vista Loop Drive (west) intersection. Upon completion of this future street connection, it would be anticipated that approximately the trip distribution will consist of approximately 70 percent of site trips traveling to and from the north on Highway 26, 15 percent of site trips traveling to and from the west on Dubarko Road, and 15 percent of site trips traveling to and from the south on Highway 26.

The trip distribution percentages and trip assignment for the proposed development are shown in Figure 3 on page 13.

FUTURE CONDITIONS ANALYSIS

BACKGROUND VOLUMES

In order to determine the expected impact of site trips on the study area intersections, it is necessary to compare traffic conditions both with and without the addition of the projected traffic from the proposed development. Since the proposed use cannot be constructed and occupied immediately, the comparison is made for future traffic conditions at the time of project completion. It is anticipated that the proposed use will be completed and occupied by 2022. Accordingly, the analysis was conducted for year 2022 traffic conditions.


Prior to adding the projected site trips to the study intersections, the existing traffic volumes were adjusted to account for background traffic growth over time. Background growth is expected to occur regardless of whether or not the proposed mixed-use development is constructed, and accounts for other developments outside the immediate project area.

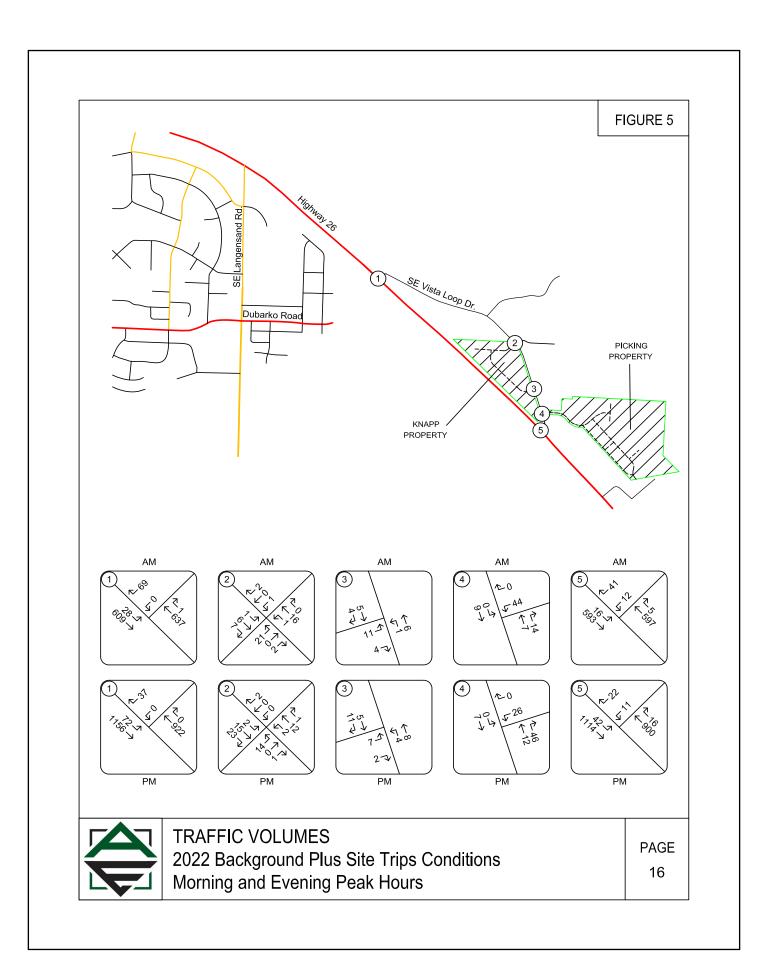

Based on data from ODOT's Future Volume Tables, the growth rate for traffic volumes on Highway 26 in the site vicinity was calculated to be 1.93 percent per year (linear). This growth rate was applied to the through traffic volumes on the highway. All other turning movements had a growth factor of 2 percent per year (exponential) applied.

Figure 4 on page 15 shows the projected year 2022 background traffic volumes at the study intersections during the morning and evening peak hours

BACKGROUND VOLUMES PLUS SITE TRIPS

Peak hour trips calculated to be generated by the proposed development were added to the projected year 2022 background traffic volumes to obtain the year 2022 total traffic volumes following completion of the proposed residential development. The resulting total traffic volumes are shown in figure 5 on page 16.

OPERATIONAL ANALYSIS

The operational analysis for future traffic conditions was again conducted using Synchro analysis software, with outputs based on the analysis methodologies contained in the *HIGHWAY CAPACITY MANUAL*, 6th *Edition*. The analysis was prepared for the intersections' morning and evening peak hours.

The results of the operational analysis are summarized in Table 4 below. Detailed analysis worksheets are also included in the technical appendix.

Intersection	А	M Peak H	our	Р	M Peak H	our
	Delay	LOS	v/c*	Delay	LOS	v/c*
Highway 26 at Vista Loop Drive (west)						
2022 Background Conditions	10.7	В	0.20/0.06	11.9	В	0.36/0.05
2022 Background plus Site	11.2	В	0.22/0.11	12.3	В	0.37/0.11
Vista Loop Drive at Ortiz Street						
2022 Background Conditions	8.5	А	0.01	8.4	А	0.01
2022 Background Plus Site	8.8	А	0.03	9.2	А	0.03
Vista Loop Drive at S Knapp Access						
2022 Background Plus Site	8.6	А	0.02	8.7	А	0.01
Vista Loop Drive at Picking Site Access						
2022 Background Plus Site	8.9	А	0.06	8.9	А	0.04
Highway 26 at Vista Loop Drive (east)						
2022 Background Conditions	10.5	В	0.21/0.01	41.5	E	0.37/0.04
2022 Background plus Site	14.3	В	0.21/0.13	28.0	D	0.37/0.18

Table 4 - Operational Analysis Summary: Year 2021 Future Conditions

*(major street v/c) / (minor-street v/c)

Based on the results of the operational analysis, the study intersections on Highway 26 are projected to operate acceptably per ODOT standards either with or without the addition of site trips from the proposed development. The intersections along Vista Loop Drive are also projected to operate acceptably per the requirements of the City of Sandy. No operational mitigations are necessary or recommended in conjunction with the proposed development.

QUEUING ANALYSIS

In addition to the operational analysis, a queuing analysis was conducted to determine whether the closely spaced intersections of Highway 26 at SE Vista Loop Drive and the proposed Picking property site access on SE Vista Loop Drive can operate without queuing conflicts. The analysis was conducted for the morning and evening peak hours. Since the access will not exist without development of the subject property, the queuing analysis was conducted only for year 2022 background plus site trips conditions.

Based on the analysis, the projected 95th percentile queue lengths for the southwest-bound approach on SE Vista Loop Drive to Highway 26 were 60 feet during the morning peak hour and 63 feet during the evening peak hour (approximately two to three vehicles). Since the projected queue lengths are far shorter than the distance along SE Vista Loop Drive between Highway 26 and the nearest proposed site access, no operational concerns are anticipated in conjunction with the close intersection spacing and no queuing-related mitigations are recommended.

SAFETY ANALYSIS

CRASH DATA ANALYSIS

Using data obtained from the Oregon Department of Transportation, a review of the five most recent years of available crash history (from January 2013 through December 2017) was performed for the study intersections. None of the study intersections had any reported crashes during the five-year analysis period. Based on the crash data, no safety mitigations are recommended.

WARRANT ANALYSIS

Traffic signal and turn-lane warrants were examined for the study intersections.

Based on the projected traffic volumes, traffic signal warrants are not projected to be met at any of the unsignalized study intersections for any of the analysis scenarios. No new traffic signals are recommended in conjunction with the proposed development.

Turn lane warrants were also examined for the major-street approaches to the unsignalized study intersections. Left-turn lane warrants are intended to evaluate whether a meaningful safety benefit may be expected if the turning vehicles are provided with turn lane within the street, allowing left-turning drivers to move out of the through travel lane so that following vehicles may pass without conflicts.

Southeast-bound left-turn lanes are already in place on Highway 26 at both ends of SE Vista Loop Drive. However, northwest-bound right-turn lanes are not provided. Based on the projected turning movement volumes, right-turn lane warrants are not projected to be met. Since the design hour traffic volumes in the outside (westbound) travel lane are well below 700 vehicles per hour, the need for a shoulder improvement per the ODOT Right Turn Lane Criterion is also not triggered.

By inspection, traffic volumes at the site access intersections along SE Vista Loop Drive are too low to warrant either traffic signals or dedicated turn lanes. No new signals or turn lanes are recommended for these intersections.

INTERSECTION SIGHT DISTANCE

Based on the posted speed limit of 25 mph, a minimum of 280 feet of intersection sight distance is required in each direction for each proposed point of access along SE Vista Loop Drive. With clearing of vegetation from the site frontage it is projected that this minimum can be met for the two new intersections that will serve development within the Knapp property.

For the new site access serving the Picking property, 280 feet of intersection sight distance can be provided to the north with clearing of vegetation along the east side of the roadway north of the proposed access. However, sight distance to the south will be limited by the proximity of the proposed access to Highway 26 since the access is spaced approximately 230 feet from Highway 26.

Notably, sight lined from the proposed access are projected to be continuous to Highway 26, and vehicles turning from the site access onto SE Vista Loop Drive are not required to yield to vehicles that have not yet turned onto Vista Loop Drive. Accordingly, it is appropriate to evaluate whether adequate stopping sight distance is available for vehicles turning from Highway 26 onto Vista Loop Drive to stop if necessary to avoid a collision.

Vehicles turning from Highway 26 would be expected to turn at speeds of up to approximately 25 mph. The minimum required stopping sight distance for this approach speed was calculated to be 155 feet. Since the proposed access is spaced more than 155 feet from Highway 26, the access can operate safely.

Based on the sight distance analysis, adequate sight lines can be attained for safe operation of all proposed points of access for the proposed development.

CONCLUSIONS

Based on the operational analysis, the study intersections currently operate acceptably and are projected to continue to operate acceptably under year 2022 traffic conditions either with or without the addition of site trips from the proposed development.

Based on the queuing analysis, there is sufficient distance along SE Vista Loop Drive between the Highway 26 and the proposed site access location for the Picking Property to allow the intersections to operate without interference of queues. No queuing-related mitigations are necessary or recommended in conjunction with the proposed development.

Based on the crash data, the study intersections are currently operating acceptably with respect to safety.

Based on the warrant analysis, no new traffic signals or turn lanes are recommended.

Intersection sight distance was evaluated for the proposed points of access along SE Vista Loop Drive. Based on the analysis, it is projected that adequate sight distance can be achieved for all access locations with clearing of vegetation from the roadside. No other sight distance mitigations are necessary or recommended.

APPENDIX

Total Vehicle Summary

SE Vista Loop Dr & Hwy 26

Wednesday, March 20, 2019 7:00 AM to 9:00 AM

5-Minute Interval Summary 7:00 AM to 9:00 AM

Interval		bound		Southbo				Eastb			Westb						strians	
Start	SE Vista	a Loop Dr	S	SE Vista Lo	oop D	r		Hwy	/ 26		Hwy	26		Interval		Cros	swalk	
Time		Bikes	L		R	Bikes	L	T		Bikes	Т	R	Bikes	Total	North	South	East	West
7:00 AM		0	0		6	0	1	25		0	68	0	0	100	0	0	0	0
7:05 AM		0	0		2	0	0	25		0	54	0	0	81	0	0	0	0
7:10 AM		0	0		4	0	1	24		0	80	0	0	109	0	0	0	0
7:15 AM		0	0		2	0	2	32		0	71	0	0	107	0	0	0	0
7:20 AM		0	0		2	0	2	51		0	63	0	0	118	0	0	0	0
7:25 AM		0	0		4	0	1	31		0	62	0	0	98	0	0	0	0
7:30 AM		0	0		1	0	2	46		0	62	1	0	112	0	0	0	0
7:35 AM		0	0		4	0	0	43		0	49	0	0	96	0	0	0	0
7:40 AM		0	0		4	0	3	54		0	45	0	0	106	0	0	0	0
7:45 AM		0	0		4	0	0	54		0	44	0	0	102	0	0	0	0
7:50 AM		0	0		0	0	2	53		0	57	0	0	112	0	0	0	0
7:55 AM		0	0		2	0	2	58		0	36	0	0	98	0	0	0	0
8:00 AM		0	0		3	0	1	52		0	31	0	0	87	0	0	0	0
8:05 AM		0	0		2	0	3	44		0	40	0	0	89	0	0	0	0
8:10 AM		0	1		1	0	0	42		0	50	0	0	94	0	0	0	0
8:15 AM		0	0		0	0	1	46		0	32	0	0	79	0	0	0	0
8:20 AM		0	0		1	0	2	38		0	46	0	0	87	0	0	0	0
8:25 AM		0	0		0	0	3	39		0	42	0	0	84	0	0	0	0
8:30 AM		0	0		2	0	0	61		0	42	0	0	105	0	0	0	0
8:35 AM		0	0		0	0	0	56		0	44	0	0	100	0	0	0	0
8:40 AM		0	1		2	0	0	64		0	52	0	0	119	0	0	0	0
8:45 AM		0	0		1	0	0	66		0	56	0	0	123	0	0	0	0
8:50 AM		0	0		0	0	2	56		0	 49	0	0	107	0	0	0	0
8:55 AM		0	0		2	0	2	61		0	42	0	0	107	0	0	0	0
Total Survey		0	2		49	0	30	1,121		0	1,217	1	0	2,420	0	0	0	0

15-Minute Interval Summary 7:00 AM to 9:00 AM

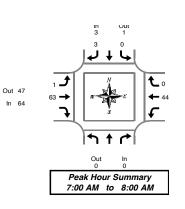
Interval		Northb	ound			South	bound			Easth	ound		Westb	ound				Pedes	trians	
Start	SE	Vista	Loop D	r		SE Vista	Loop D	Dr		Hw	y 26		Hwy	26		Interval		Cros	swalk	
Time				Bikes	L		R	Bikes	L	T		Bikes	Т	R	Bikes	Total	North	South	East	West
7:00 AM		1		0	0		12	0	2	74		0	202	0	0	290	0	0	0	0
7:15 AM				0	0		8	0	5	114		0	196	0	0	323	0	0	0	0
7:30 AM				0	0		9	0	5	143		0	156	1	0	314	0	0	0	0
7:45 AM				0	0		6	0	4	165		0	137	0	0	312	0	0	0	0
8:00 AM				0	1		6	0	4	138		0	121	0	0	270	0	0	0	0
8:15 AM				0	0		1	0	6	123		0	120	0	0	250	0	0	0	0
8:30 AM		1		0	1		4	0	0	181		0	138	0	0	324	0	0	0	0
8:45 AM				0	0		3	0	4	183		0	147	0	0	337	0	0	0	0
Total Survey				0	2		49	0	30	1,121		0	1,217	1	0	2,420	0	0	0	0

Peak Hour Summary 7:00 AM to 8:00 AM

By		North SE Vista	bound	ir	9	South SE Vista		ır.			ound v 26				bound v 26		Total		Pedes	trians swalk	
Approach	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes	Total	North	South	East	West
Volume	0	0	0	0	35	17	52	0	512	726	1,238	0	692	496	1,188	0	1,239	0	0	0	0
%HV		0.0	0%			8.6	3%			12	5%			6.	4%		9.0%	-			
PHF		0.	00			0.	73			0.	76			0.	81		0.93				

By Movement	:	North SE Vista	bound Loop E	Dr	5	South SE Vista	bound Loop E	Dr			ound v 26				ound / 26		Total
wovernern				Total	L		R	Total	L	Т		Total		Т	R	Total	
Volume				0	0		35	35	16	496		512		691	1	692	1,239
%HV	NA	NA	NA	0.0%	0.0%	NA	8.6%	8.6%	6.3%	12.7%	NA	12.5%	NA	6.4%	0.0%	6.4%	9.0%
PHF				0.00	0.00		0.73	0.73	0.80	0.75		0.76		0.81	0.25	0.81	0.93

Rolling Hour Summary 7:00 AM to 9:00 AM


Interval	Northbo	ound		South	bound			Easti	bound		Westb	ound				Pedes	trians	
Start	SE Vista L	.oop Dr		SE Vista	Loop D)r		Hw	y 26		Hwy	26		Interval		Cross	swalk	
Time		Bikes	L		R	Bikes	L	Т	1	Bikes	Т	R	Bikes	Total	North	South	East	West
7:00 AM		0	0		35	0	16	496		0	691	1	0	1,239	0	0	0	0
7:15 AM		0	1		29	0	18	560		0	610	1	0	1,219	0	0	0	0
7:30 AM		0	1		22	0	19	569		0	534	1	0	1,146	0	0	0	0
7:45 AM		0	2		17	0	14	607		0	516	0	0	1,156	0	0	0	0
8:00 AM		0	2		14	0	14	625		0	526	0	0	1,181	0	0	0	0

SE Vista Loop Dr & Hwy 26

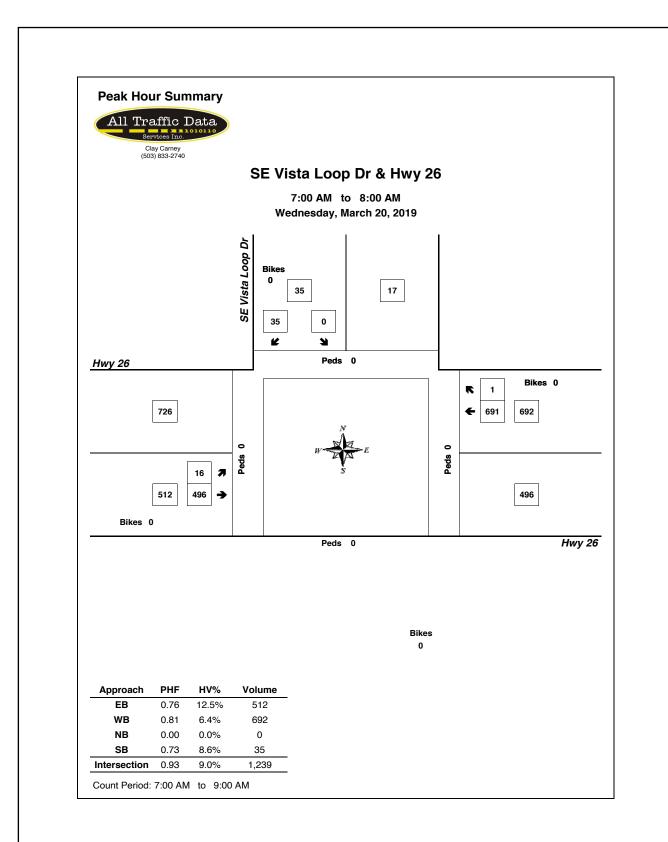
Wednesday, March 20, 2019 7:00 AM to 9:00 AM

Heavy Vehicle 5-Minute Interval Summary 7:00 AM to 9:00 AM

Interval Start	Northb SE Vista		;	South SE Vista	bound Loop D	Dr			y 26			y 26		Interva
Time		Total	L		R	Total	L	T		Total	Т	R	Total	Total
7:00 AM		0	0		0	0	0	6		6	4	0	4	10
7:05 AM		0	0		0	0	0	4		4	5	0	5	9
7:10 AM		0	0		1	1	0	2		2	3	0	3	6
7:15 AM		0	0		0	0	0	3		3	2	0	2	5
7:20 AM		0	0		0	0	0	7		7	1	0	1	8
7:25 AM		0	0		0	0	0	5		5	3	0	3	8
7:30 AM		0	0		0	0	0	8		8	6	0	6	14
7:35 AM		0	0		1	1	0	4		4	5	0	5	10
7:40 AM		0	0		1	1	1	9		10	3	0	3	14
7:45 AM		0	0		0	0	0	7		7	3	0	3	10
7:50 AM		0	0		0	0	0	5		5	8	0	8	13
7:55 AM		0	0		0	0	0	3		3	1	0	1	4
8:00 AM		0	0		0	0	1	8		9	3	0	3	12
8:05 AM		0	0		1	1	1	10		11	5	0	5	17
8:10 AM		0	0		1	1	0	3		3	6	0	6	10
8:15 AM		0	0		0	0	0	4		4	3	0	3	7
8:20 AM		0	0		0	0	1	4		5	2	0	2	7
8:25 AM		0	0		0	0	1	5		6	3	0	3	9
8:30 AM		0	0		0	0	0	11		11	4	0	4	15
8:35 AM		0	0		0	0	0	5		5	8	0	8	13
8:40 AM		0	1		0	1	0	7		7	3	0	3	11
8:45 AM		0	0		0	0	0	8		8	 4	0	4	12
8:50 AM		0	0		0	0	1	5		6	6	0	6	12
8:55 AM		0	0		0	0	0	1		1	3	0	3	4
Total					-		0	404		140				0.40
Survey		0	1		5	6	6	134		140	94	0	94	240

Heavy Vehicle 15-Minute Interval Summary 7:00 AM to 9:00 AM

Interval	North	ound		South	bound			Easti	oound		West			
Start	SE Vista	Loop Dr	:	SE Vista	Loop D)r		Hw	y 26		Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т		Total	Т	R	Total	Total
7:00 AM		0	0		1	1	0	12		12	12	0	12	25
7:15 AM		0	0		0	0	0	15		15	6	0	6	21
7:30 AM		0	0		2	2	1	21		22	14	0	14	38
7:45 AM		0	0		0	0	0	15		15	12	0	12	27
8:00 AM		0	0		2	2	2	21		23	14	0	14	39
8:15 AM		0	0		0	0	2	13		15	8	0	8	23
8:30 AM		0	1		0	1	0	23		23	15	0	15	39
8:45 AM		0	0		0	0	1	14		15	13	0	13	28
Total Survey		0	1		5	6	6	134		140	94	0	94	240

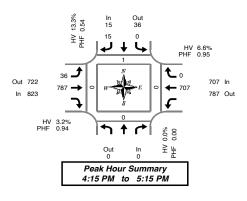

Heavy Vehicle Peak Hour Summary 7:00 AM to 8:00 AM

Bv		North	bound		South	bound		Easti	bound		Westi	ound	
_,	3	SE Vista	Loop Dr		SE Vista	a Loop Dr		Hw	y 26		Hw	y 26	Total
Approach	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	
Volume	0	0	0	3	1	4	64	47	111	44	63	107	111
PHF	0.00			0.38			0.73			0.79			0.73

Bv		bound				bound				ound		West			
	SE Vista	ι Loop D	r		SE Vista	Loop D	r		Hw	y 26		Hwy	/ 26		Total
wovernern			Total	L		R	Total	L	Т		Total	Т	R	Total	
Volume			0	0		3	3	1	63		64	44	0	44	111
PHF			0.00	0.00		0.38	0.38	0.25	0.75		0.73	0.79	0.00	0.79	0.73

Heavy Vehicle Rolling Hour Summary 7:00 AM to 9:00 AM

Interval	North			South					oound	West			
Start	SE Vista	Loop Dr		SE Vista	Loop D)r		Hw	y 26	Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т	Total	Т	R	Total	Total
7:00 AM		0	0		3	3	1	63	64	44	0	44	111
7:15 AM		0	0		4	4	3	72	75	46	0	46	125
7:30 AM		0	0		4	4	5	70	75	48	0	48	127
7:45 AM		0	1		2	3	4	72	76	49	0	49	128
8:00 AM		0	1		2	3	5	71	76	50	0	50	129



Total Vehicle Summary

SE Vista Loop Dr & Hwy 26

Tuesday, March 19, 2019 4:00 PM to 6:00 PM

5-Minute Interval Summary 4:00 PM to 6:00 PM

Interval	North	bound		South	bound			Eastb	ound		Westb	ound				Pedes	strians	
Start	SE Vista	a Loop Dr	5	SE Vista	Loop D			Hwy			Hwy			Interval			swalk	
Time		Bikes	L		R	Bikes	L	Т		Bikes	Т	R	Bikes	Total	North	South	East	West
4:00 PM		0	0		2	0	1	53		0	55	0	0	111	0	0	0	0
4:05 PM		0	1		0	0	2	65		0	60	0	0	128	0	0	0	0
4:10 PM		0	0		3	0	5	61		0	62	0	0	131	0	0	0	0
4:15 PM		0	0		1	0	7	68		0	53	0	0	129	0	0	0	0
4:20 PM		0	0		3	0	2	86		0	68	0	0	159	0	0	0	0
4:25 PM		0	0		2	0	1	50		0	44	0	0	97	0	0	0	0
4:30 PM		0	0		2	0	3	76		1	63	0	0	144	0	0	0	0
4:35 PM		0	0		1	0	4	69		0	54	0	0	128	0	0	0	0
4:40 PM		0	0		0	0	2	51		1	68	0	0	121	1	0	0	0
4:45 PM		0	0		1	1	1	59		0	59	0	0	120	0	0	0	0
4:50 PM		0	0		0	0	2	70		0	59	0	0	131	0	0	0	0
4:55 PM		0	0		1	0	4	64		0	58	0	0	127	0	0	0	0
5:00 PM		0	0		2	0	3	69		0	54	0	0	128	0	0	0	0
5:05 PM		0	0		1	0	3	64		0	58	0	0	126	0	0	0	0
5:10 PM		0	0		1	0	4	61		0	69	0	0	135	0	0	0	0
5:15 PM		0	0		0	0	0	57		0	44	0	0	101	0	0	0	0
5:20 PM		0	0		0	0	1	73		0	39	0	0	113	0	0	0	0
5:25 PM		0	0		4	0	2	61		0	41	0	0	108	0	0	0	0
5:30 PM		0	0		2	0	4	76		0	39	0	0	121	0	0	0	0
5:35 PM		0	0		0	0	1	56		0	39	0	0	96	0	0	0	0
5:40 PM		0	0		3	0	0	62		0	 29	0	0	94	0	0	0	0
5:45 PM		0	0		1	0	0	79		0	 46	0	0	126	0	0	0	0
5:50 PM		0	0		0	0	1	60		0	45	0	0	106	0	0	0	0
5:55 PM		0	0		2	0	3	70		0	42	0	0	117	0	0	0	0
Total Survey		0	1		32	1	56	1,560		2	1,248	0	0	2,897	1	0	0	0

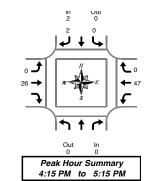
15-Minute Interval Summary 4:00 PM to 6:00 PM

Interval	Northbo			Southbound			Eastb		Westb						trians	
Start	SE Vista L	Loop Dr	SE	Vista Loop E	Dr		Hwy	26	Hwy	26		Interval		Cross	swalk	
Time		Bikes	L	R	Bikes	L	Т	Bikes	T	R	Bikes	Total	North	South	East	West
4:00 PM		0	1	5	0	8	179	0	177	0	0	370	0	0	0	0
4:15 PM		0	0	6	0	10	204	0	165	0	0	385	0	0	0	0
4:30 PM		0	0	3	0	9	196	2	185	0	0	393	1	0	0	0
4:45 PM		0	0	2	1	7	193	0	176	0	0	378	0	0	0	0
5:00 PM		0	0	4	0	10	194	0	181	0	0	389	0	0	0	0
5:15 PM		0	0	4	0	3	191	0	124	0	0	322	0	0	0	0
5:30 PM		0	0	5	0	5	194	0	107	0	0	311	0	0	0	0
5:45 PM		0	0	3	0	4	209	0	133	0	0	349	0	0	0	0
Total Survey		0	1	32	1	56	1,560	2	1,248	0	0	2,897	1	0	0	0

Peak Hour Summary

4.15 FW	10 2).15 F	IVI																	
Bv		North	bound			South	bound			Easth	ound			West	bound				Pedes	strians
,		SE Vista	ι Loop Ε)r		SE Vista	Loop D)r		Hw	y 26			Hw	y 26		Total		Cros	swalk
Approach	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes		North	South	East
Volume	0	0	0	0	15	36	51	1	823	722	1,545	2	707	787	1,494	0	1,545	1	0	0
%HV		0.0	0%			13.	3%			3.3	2%			6.	6%		4.9%			
PHF		0.	00			0.	54			0.	94			0.	95		0.97			

Ву	:	North SE Vista	bound Loop D	Dr	5	South SE Vista	bound Loop D)r			ound v 26			Westt	ound / 26		Total
Movement				Total	L		R	Total	L	Т		Total		Т	R	Total	
Volume				0	0		15	15	36	787		823		707	0	707	1,545
%HV	NA	NA	NA	0.0%	0.0%	NA	13.3%	13.3%	0.0%	3.3%	NA	3.2%	NA	6.6%	0.0%	6.6%	4.9%
PHF				0.00	0.00		0.54	0.54	0.90	0.93		0.94		0.95	0.00	0.95	0.97


Rolling Hour Summary 4:00 PM to 6:00 PM

Interval	N	lorthbo	ound			South	bound			Easth	ound		Westb	ound				Pedes	trians	
Start	SE	Vista L	_oop Dr			SE Vista	Loop D)r		Hw	y 26		Hwy	/ 26		Interval		Cross	swalk	
Time				Bikes	L	L R Bikes				Т		Bikes	Т	R	Bikes	Total	North	South	East	West
4:00 PM				0	1		16	1	34	772		2	703	0	0	1,526	1	0	0	0
4:15 PM				0	0		15	1	36	787		2	707	0	0	1,545	1	0	0	0
4:30 PM				0	0		13	1	29	774		2	666	0	0	1,482	1	0	0	0
4:45 PM			1	0	0		15	1	25	772		0	588	0	0	1,400	0	0	0	0
5:00 PM				0	0		16	0	22	788		0	545	0	0	1,371	0	0	0	0

East West

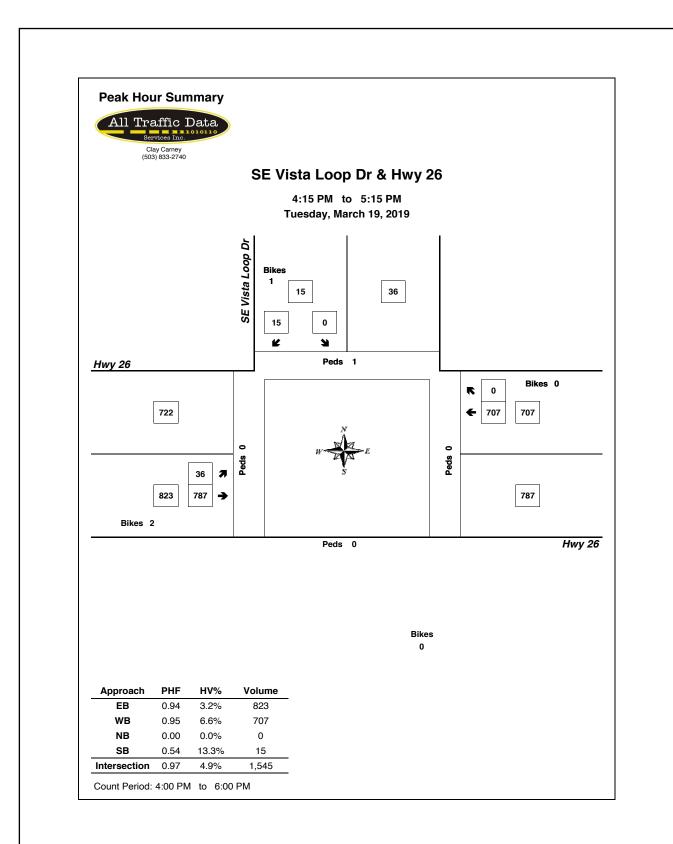
Tuesday, March 19, 2019 4:00 PM to 6:00 PM

Heavy Vehicle 5-Minute Interval Summary 4:00 PM to 6:00 PM

Interval Start	Northbo SE Vista L		ş	South SE Vista	bound Loop E	Dr			y 26			y 26		Interva
Time		Total	L		R	Total	L	Т		Total	Т	R	Total	Total
4:00 PM		0	0		1	1	0	2		2	10	0	10	13
4:05 PM		0	1		0	1	1	6		7	 2	0	2	10
4:10 PM		0	0		1	1	1	2		3	7	0	7	11
4:15 PM		0	0		0	0	0	3		3	3	0	3	6
4:20 PM		0	0		1	1	0	6		6	4	0	4	11
4:25 PM		0	0		1	1	0	3		3	3	0	3	7
4:30 PM		0	0		0	0	0	1		1	1	0	1	2
4:35 PM		0	0		0	0	0	0		0	5	0	5	5
4:40 PM		0	0		0	0	0	3		3	3	0	3	6
4:45 PM		0	0		0	0	0	1		1	3	0	3	4
4:50 PM		0	0		0	0	0	2		2	8	0	8	10
4:55 PM		0	0		0	0	0	1		1	1	0	1	2
5:00 PM		0	0		0	0	0	4		4	4	0	4	8
5:05 PM		0	0		0	0	0	1		1	8	0	8	9
5:10 PM		0	0		0	0	0	1		1	4	0	4	5
5:15 PM		0	0		0	0	0	2		2	1	0	1	3
5:20 PM		0	0		0	0	0	0		0	5	0	5	5
5:25 PM		0	0		0	0	0	0		0	1	0	1	1
5:30 PM		0	0		0	0	0	2		2	2	0	2	4
5:35 PM		0	0		0	0	0	0		0	4	0	4	4
5:40 PM		0	0		0	0	0	2		2	2	0	2	4
5:45 PM		0	0		0	0	0	2		2	 1	0	1	3
5:50 PM		0	0		0	0	0	0		0	 2	0	2	2
5:55 PM		0	0		0	0	0	2		2	3	0	3	5
Total		0	1		4	5	2	46		48	87	0	87	140
Survey		0	1		4	5	2	40		48	0/	0	6/	140

Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

Interval	North	oound		South	bound			East	bound		Westh	ound		
Start	SE Vista	Loop Dr		SE Vista	Loop D)r		Hw	y 26		Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т		Total	Т	R	Total	Total
4:00 PM		0	1		2	3	2	10		12	19	0	19	34
4:15 PM		0	0		2	2	0	12		12	10	0	10	24
4:30 PM		0	0		0	0	0	4		4	9	0	9	13
4:45 PM		0	0	1	0	0	0	4		4	12	0	12	16
5:00 PM		0	0		0	0	0	6		6	16	0	16	22
5:15 PM		0	0		0	0	0	2		2	7	0	7	9
5:30 PM		0	0		0	0	0	4		4	8	0	8	12
5:45 PM		0	0		0	0	0	4		4	6	0	6	10
Total Survey		0	1		4	5	2	46		48	87	0	87	140

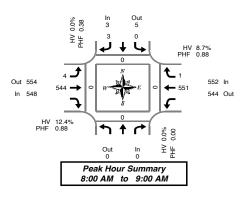

Heavy Vehicle Peak Hour Summary 4:15 PM to 5:15 PM

By	:	North SE Vista	bound Loop Dr	:		bound Loop Dr			y 26			bound y 26	Total
Approach	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	
Volume	0	0	0	2	0	2	26	49	75	47	26	73	75
PHF	0.00			0.25			0.54			0.73			0.78

Ву		North SE Vista	bound	r	ŝ	South SE Vista	bound	Ir			ound v 26			oound v 26		Total
Movement	······						R	Total	L	T		Total	 Т	R	Total	. otai
Volume				0	0		2	2	0	26		26	47	0	47	75
PHF				0.00	0.00		0.25	0.25	0.00	0.54		0.54	0.73	0.00	0.73	0.78

Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

Interval		bound		Southbo					ound	West			
Start	SE Vista	Loop Dr		SE Vista L	_oop D)r		Hw	y 26	Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т	Total	Т	R	Total	Total
4:00 PM		0	1		4	5	2	30	32	50	0	50	87
4:15 PM		0	0		2	2	0	26	26	47	0	47	75
4:30 PM		0	0		0	0	0	16	16	44	0	44	60
4:45 PM		0	0		0	0	0	16	16	43	0	43	59
5:00 PM		0	0		0	0	0	16	16	37	0	37	53



Total Vehicle Summary

SE Vista Loop Dr & Hwy 26

Thursday, July 18, 2019 7:00 AM to 9:00 AM

5-Minute Interval Summary 7:00 AM to 9:00 AM

Interval		bound		South				Eastb			Westb						strians	
Start	SE Vista	Loop Dr		SE Vista					y 26		 Hwy			Interval			swalk	
Time		Bikes	L		R	Bikes	L	Т		Bikes	Т	R	Bikes	Total	North	South	East	West
7:00 AM		0	0		1	0	0	23		0	41	0	0	65	0	0	0	0
7:05 AM		0	0		0	0	0	23		0	55	0	0	78	0	0	0	0
7:10 AM		0	0		1	0	1	31		0	47	0	0	80	0	0	0	0
7:15 AM		0	0		0	0	0	35		0	53	0	0	88	0	0	0	0
7:20 AM		0	1		0	0	0	30		0	56	0	0	87	0	0	0	0
7:25 AM		0	0		0	0	0	38		1	43	0	0	81	0	0	0	0
7:30 AM		0	1		1	0	0	34		0	52	0	0	88	0	0	0	0
7:35 AM		0	0		0	0	0	45		0	47	0	0	92	0	0	0	0
7:40 AM		0	0		0	0	0	36		0	41	0	0	77	0	0	0	0
7:45 AM		0	0		0	0	0	34		0	52	0	0	86	0	0	0	0
7:50 AM		0	0		0	0	0	43		0	35	0	0	78	0	0	0	0
7:55 AM		0	0		0	0	0	26		0	44	1	0	71	0	0	0	0
8:00 AM		0	0		0	0	1	60		0	42	0	0	103	0	0	0	0
8:05 AM		0	0		0	0	1	45		0	31	0	0	77	0	0	0	0
8:10 AM		0	0		2	0	1	28		0	40	0	0	71	0	0	0	0
8:15 AM		0	0		0	0	0	40		0	45	0	0	85	0	0	0	0
8:20 AM		0	0		0	0	0	35		0	51	0	0	86	0	0	0	0
8:25 AM		0	0		0	0	0	53		0	36	0	0	89	0	0	0	0
8:30 AM		0	0		0	0	1	36		0	50	0	0	87	0	0	0	0
8:35 AM		0	0		0	0	0	44		0	50	0	0	94	0	0	0	0
8:40 AM		0	0		0	0	0	50		0	56	0	0	106	0	0	0	0
8:45 AM		0	0		0	0	0	62		0	50	0	0	112	0	0	0	0
8:50 AM		0	0		1	0	0	40		0	 46	1	0	88	0	0	0	0
8:55 AM		0	0		0	0	0	51		0	54	0	0	105	0	0	0	0
Total Survey		0	2		6	0	5	942		1	1,117	2	0	2,074	0	0	0	0

15-Minute Interval Summary 7:00 AM to 9:00 AM

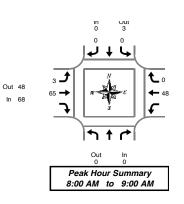
Interval Start		bound a Loop Dr		South SE Vista	bound)r			ound v 26		Westt			Interval			s trians swalk	
Time	02 1.010	Bikes	L		R	Bikes	L	T	20	Bikes	T T	R	Bikes	Total	North	South	East	West
7:00 AM		0	0	1	2	0	1	77		0	143	0	0	223	0	0	0	0
7:15 AM		0	1		0	0	0	103		1	152	0	0	256	0	0	0	0
7:30 AM		0	1		1	0	0	115		0	140	0	0	257	0	0	0	0
7:45 AM		0	0		0	0	0	103		0	131	1	0	235	0	0	0	0
8:00 AM		0	0		2	0	3	133		0	113	0	0	251	0	0	0	0
8:15 AM		0	0		0	0	0	128		0	132	0	0	260	0	0	0	0
8:30 AM		0	0		0	0	1	130		0	156	0	0	287	0	0	0	0
8:45 AM		0	0		1	0	0	153		0	150	1	0	305	0	0	0	0
Total Survey		0	2		6	0	5	942		1	1,117	2	0	2,074	0	0	0	0

Peak Hour Summary 8:00 AM to 9:00 AM

By		North SE Vista	bound			South SE Vista					ound v 26			Westi Hw	bound		Total		Pedes		
Approach		SE VISIA	і соор с	r		SE VISIA	LOOD D	r i		HW	y 26			HW	y 26		Total		Cross	swalk	
Approach	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes		North	South	East	West
Volume	0	0	0	0	3	5	8	0	548	554	1,102	0	552	544	1,096	0	1,103	0	0	0	0
%HV		0.0	0%			0.0)%			12.	4%			8.	7%		10.5%				
PHF		0.	00			0.38				0.	88			0.	88		0.88				

Ву	:	North SE Vista	bound Loop D	Dr	5	South SE Vista	bound Loop D	Dr			ound v 26				y 26		Total
Movement				Total	L		R	Total	L	Т		Total		Т	R	Total	
Volume				0	0		3	3	4	544		548		551	1	552	1,103
%HV	NA	NA	NA	0.0%	0.0%	NA	0.0%	0.0%	75.0%	11.9%	NA	12.4%	NA	8.7%	0.0%	8.7%	10.5%
PHF				0.00	0.00		0.38	0.38	0.33	0.87		0.88		0.88	0.25	0.88	0.88

Rolling Hour Summary 7:00 AM to 9:00 AM


Interval	Northbo	ound		Southboun	d		Easti	bound		Westb	ound				Pedes	strians	
Start	SE Vista L	oop Dr	:	SE Vista Loop	Dr		Hw	y 26		Hwy	26		Interval		Cross	swalk	
Time		Bikes	L	R	Bikes	L	Т	1	Bikes	Т	R	Bikes	Total	North	South	East	West
7:00 AM		0	2	3	0	1	398		1	566	1	0	971	0	0	0	0
7:15 AM		0	2	3	0	3	454		1	536	1	0	999	0	0	0	0
7:30 AM		0	1	3	0	3	479		0	516	1	0	1,003	0	0	0	0
7:45 AM		0	0	2	0	4	494		0	532	1	0	1,033	0	0	0	0
8:00 AM		0	0	3	0	4	544		0	551	1	0	1,103	0	0	0	0

SE Vista Loop Dr & Hwy 26

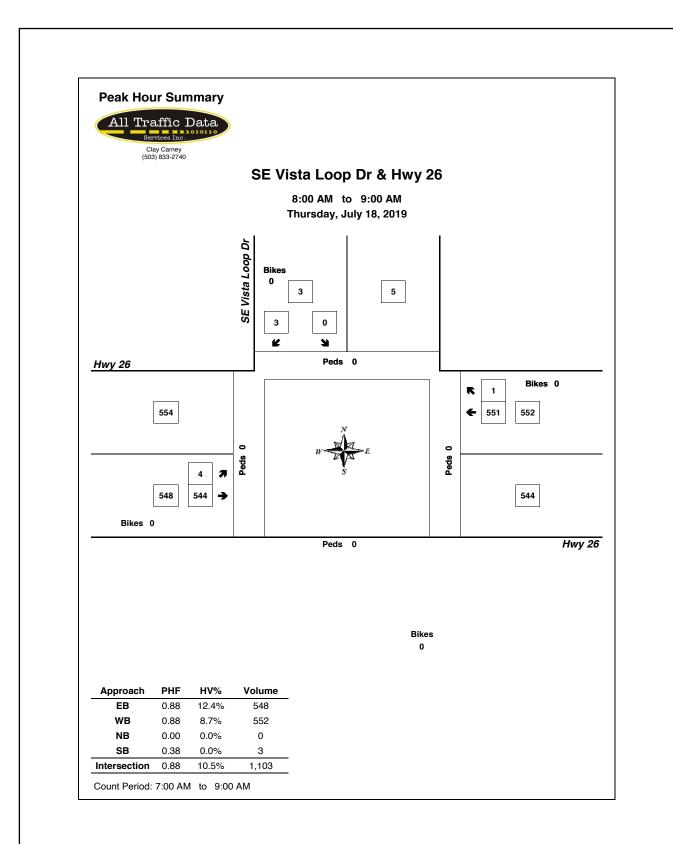
Thursday, July 18, 2019 7:00 AM to 9:00 AM

Heavy Vehicle 5-Minute Interval Summary 7:00 AM to 9:00 AM

Interval Start	Northb SE Vista		;	South SE Vista	bound Loop D	Dr			y 26			y 26		Interva
Time		Total	L		R	Total	L	T		Total	T	R	Total	Total
7:00 AM		0	0		0	0	0	5		5	5	0	5	10
7:05 AM		0	0		0	0	0	4		4	4	0	4	8
7:10 AM		0	0		0	0	0	2		2	2	0	2	4
7:15 AM		0	0		0	0	0	3		3	1	0	1	4
7:20 AM		0	0		0	0	0	6		6	4	0	4	10
7:25 AM		0	0		0	0	0	5		5	2	0	2	7
7:30 AM		0	0		0	0	0	2		2	1	0	1	3
7:35 AM		0	0		0	0	0	9		9	2	0	2	11
7:40 AM		0	0		0	0	0	4		4	2	0	2	6
7:45 AM		0	0		0	0	0	3		3	4	0	4	7
7:50 AM		0	0		0	0	0	5		5	2	0	2	7
7:55 AM		0	0		0	0	0	2		2	4	1	5	7
8:00 AM		0	0		0	0	1	8		9	1	0	1	10
8:05 AM		0	0		0	0	0	13		13	2	0	2	15
8:10 AM		0	0		0	0	1	5		6	3	0	3	9
8:15 AM		0	0		0	0	0	4		4	4	0	4	8
8:20 AM		0	0		0	0	0	2		2	3	0	3	5
8:25 AM		0	0		0	0	0	7		7	7	0	7	14
8:30 AM		0	0		0	0	1	7		8	6	0	6	14
8:35 AM		0	0		0	0	0	2		2	6	0	6	8
8:40 AM		0	0		0	0	0	2		2	6	0	6	8
8:45 AM		0	0		0	0	0	5		5	4	0	4	9
8:50 AM		0	0		0	0	0	4		4	3	0	3	7
8:55 AM		0	0		0	0	0	6		6	3	0	3	9
Total		0	0		0	0	3	115		118	81	4	82	200
Survey		0	U		0	U	3	115		1 118		1	62	200

Heavy Vehicle 15-Minute Interval Summary 7:00 AM to 9:00 AM

Interval	North				bound				oound		West			
Start	SE Vista	Loop Dr	:	SE Vista	Loop E)r		Hw	y 26		Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т		Total	Т	R	Total	Total
7:00 AM		0	0		0	0	0	11		11	11	0	11	22
7:15 AM		0	0		0	0	0	14		14	7	0	7	21
7:30 AM		0	0		0	0	0	15		15	5	0	5	20
7:45 AM		0	0	1	0	0	0	10		10	10	1	11	21
8:00 AM		0	0		0	0	2	26		28	6	0	6	34
8:15 AM		0	0		0	0	0	13		13	14	0	14	27
8:30 AM		0	0		0	0	1	11		12	18	0	18	30
8:45 AM		0	0		0	0	0	15		15	10	0	10	25
Total Survey		0	0		0	0	3	115		118	81	1	82	200

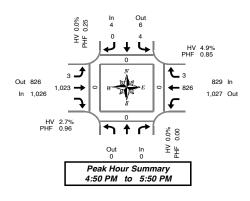

Heavy Vehicle Peak Hour Summary 8:00 AM to 9:00 AM

Bv		North	bound		South	bound		Easti	ound		West	bound	
	:	SE Vista	Loop Dr		SE Vista	Loop Dr		Hw	y 26		Hw	y 26	Total
Approach	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	
Volume	0	0	0	0	3	3	68	48	116	48	65	113	116
PHF	0.00			0.00			0.61			0.63			0.81

Ву	North SE Vista	bound Loop D	r	5	South SE Vista	bound Loop D	١r			ound v 26			oound v 26		Total
Movement			Total	L		R	Total	L	T		Total	T	R	Total	
Volume			0	0		0	0	3	65		68	48	0	48	116
PHF			0.00	0.00		0.00	0.00	0.38	0.63		0.61	0.63	0.00	0.63	0.81

Heavy Vehicle Rolling Hour Summary 7:00 AM to 9:00 AM

Interval Start	bound Loop Dr		Southbound SE Vista Loop [)r			oound v 26		Westt			Interval
Time	Total	L	R	Total	L	T	1 1	Total	T T	R	Total	Total
7:00 AM	0	0	0	0	0	50		50	33	1	34	84
7:15 AM	0	0	0	0	2	65		67	28	1	29	96
7:30 AM	0	0	0	0	2	64		66	35	1	36	102
7:45 AM	0	0	0	0	3	60		63	48	1	49	112
8:00 AM	0	0	0	0	3	65		68	48	0	48	116



Total Vehicle Summary

SE Vista Loop Dr & Hwy 26

Thursday, July 18, 2019 4:00 PM to 6:00 PM

5-Minute Interval Summary 4:00 PM to 6:00 PM

Interval	North	bound		Southb	ound			Eastb	ound		Westb	ound				Pedes	strians	
Start	SE Vista	a Loop Dr	5	SE Vista L	Loop D	r		Hwy	/ 26		Hwy	26		Interval		Cros	swalk	
Time		Bikes	L		R	Bikes	L	T		Bikes	Т	R	Bikes	Total	North	South	East	Wes
4:00 PM		0	0		1	0	0	75		0	82	0	0	158	0	0	0	0
4:05 PM		0	0		0	0	0	91		0	68	0	0	159	0	0	0	0
4:10 PM		0	0		0	0	0	60		0	82	0	0	142	0	0	0	0
4:15 PM		0	0		0	0	0	89		0	62	0	0	151	0	0	0	0
4:20 PM		0	0		0	0	0	95		0	70	0	0	165	0	0	0	0
4:25 PM		0	0		1	0	2	69		0	63	0	0	135	0	0	0	0
4:30 PM		0	0		1	0	0	72		0	61	0	0	134	0	0	0	0
4:35 PM		0	0		0	0	0	88		0	67	0	0	155	0	0	0	0
4:40 PM		0	0		0	0	0	60		0	66	0	0	126	0	0	0	0
4:45 PM		0	0		0	0	0	76		0	58	0	0	134	0	0	0	0
4:50 PM		0	0		0	0	1	81		0	76	0	0	158	0	0	0	0
4:55 PM		0	0		0	0	0	89		0	68	0	0	157	0	0	0	0
5:00 PM		0	0		0	0	1	79		0	99	0	0	179	0	0	0	0
5:05 PM		0	0		0	0	0	76		0	59	0	0	135	0	0	0	0
5:10 PM		0	0		0	0	1	95		0	60	0	1	156	0	0	0	0
5:15 PM		0	0		0	0	0	92		0	79	1	0	172	0	0	0	0
5:20 PM		0	0		0	0	0	78		0	56	0	0	134	0	0	0	0
5:25 PM		0	0		0	0	0	92		0	76	0	0	168	0	0	0	0
5:30 PM		0	2		0	0	0	82		0	69	0	0	153	0	0	0	0
5:35 PM		0	0		0	0	0	93		0	61	0	0	154	0	0	0	0
5:40 PM		0	2		0	0	0	76		0	67	2	0	147	0	0	0	0
5:45 PM		0	0		0	0	0	90		1	 56	0	0	146	0	0	0	0
5:50 PM		0	0		1	0	0	78		0	 59	0	0	138	0	0	0	0
5:55 PM		0	0		0	0	1	72		0	50	0	0	123	0	0	0	0
Total Survey		0	4		4	0	6	1,948		1	1,614	3	1	3,579	0	0	0	0

15-Minute Interval Summary 4:00 PM to 6:00 PM

Interval	North	bound		South	bound			Easth	ound		Westb	ound				Pedes	strians	
Start	SE Vista	Loop Dr		SE Vista	Loop D	Dr		Hw	y 26		Hwy	26		Interval		Cross	swalk	
Time		Bikes	L		R	Bikes	L	Т		Bikes	Т	R	Bikes	Total	North	South	East	West
4:00 PM		0	0		1	0	0	226		0	232	0	0	459	0	0	0	0
4:15 PM		0	0		1	0	2	253		0	195	0	0	451	0	0	0	0
4:30 PM		0	0		1	0	0	220		0	194	0	0	415	0	0	0	0
4:45 PM		0	0	1	0	0	1	246		0	202	0	0	449	0	0	0	0
5:00 PM		0	0		0	0	2	250		0	218	0	1	470	0	0	0	0
5:15 PM		0	0		0	0	0	262		0	211	1	0	474	0	0	0	0
5:30 PM		0	4		0	0	0	251		0	197	2	0	454	0	0	0	0
5:45 PM		0	0		1	0	1	240		1	165	0	0	407	0	0	0	0
Total Survey		0	4		4	0	6	1,948		1	1,614	3	1	3,579	0	0	0	0

Peak Hour Summary 4:50 PM to 5:50 PM

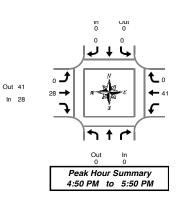
Bv		North	bound			South	bound			Easth	ound			West	ound				Pedes	trians	Ĩ
_,		SE Vista	ι Loop Ε)r	5	SE Vista	Loop D	r		Hw	y 26			Hwy	y 26		Total		Cross	swalk	
Approach	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes	In	Out	Total	Bikes		North	South	East	Î
Volume	0	0	0	0	4	6	10	0	1,026	826	1,852	1	829	1,027	1,856	1	1,859	0	0	0	
%HV		0.0	0%			0.0	0%			2.	7%			4.9	9%		3.7%				
PHF		0	00			0	25			0	96			0.	85		0.94				

By Movement	:	North SE Vista	bound Loop D	Dr	5	South SE Vista	bound Loop D	Dr		Eastb Hwy				Westt Hwy			Total
wovernern				Total	L		R	Total	L	Т		Total		Т	R	Total	
Volume				0	4		0	4	3	1,023		1,026		826	3	829	1,859
%HV	NA	NA	NA	0.0%	0.0%	NA	0.0%	0.0%	0.0%	2.7%	NA	2.7%	NA	5.0%	0.0%	4.9%	3.7%
PHF				0.00	0.25		0.00	0.25	0.38	0.96		0.96		0.85	0.38	0.85	0.94

Rolling Hour Summary

4:00	РМ	to	6:00	РМ

Interval	Nort	hbound			Southi	bound			Eastb	ound		Westb	ound				Pedes	strians	
Start	SE Vis	ta Loop Dr		5	SE Vista	Loop D	Dr		Hwy	/ 26		Hwy	26		Interval		Cross	swalk	
Time		E	Bikes	L		R	Bikes	L	T		Bikes	Т	R	Bikes	Total	North	South	East	West
4:00 PM	1		0	0		3	0	3	945		0	823	0	0	1,774	0	0	0	0
4:15 PM			0	0		2	0	5	969		0	809	0	1	1,785	0	0	0	0
4:30 PM			0	0		1	0	3	978		0	825	1	1	1,808	0	0	0	0
4:45 PM		1 1	0	4		0	0	3	1,009		0	828	3	1	1,847	0	0	0	0
5:00 PM			0	4		1	0	3	1,003		1	791	3	1	1,805	0	0	0	0


Wes

SE Vista Loop Dr & Hwy 26

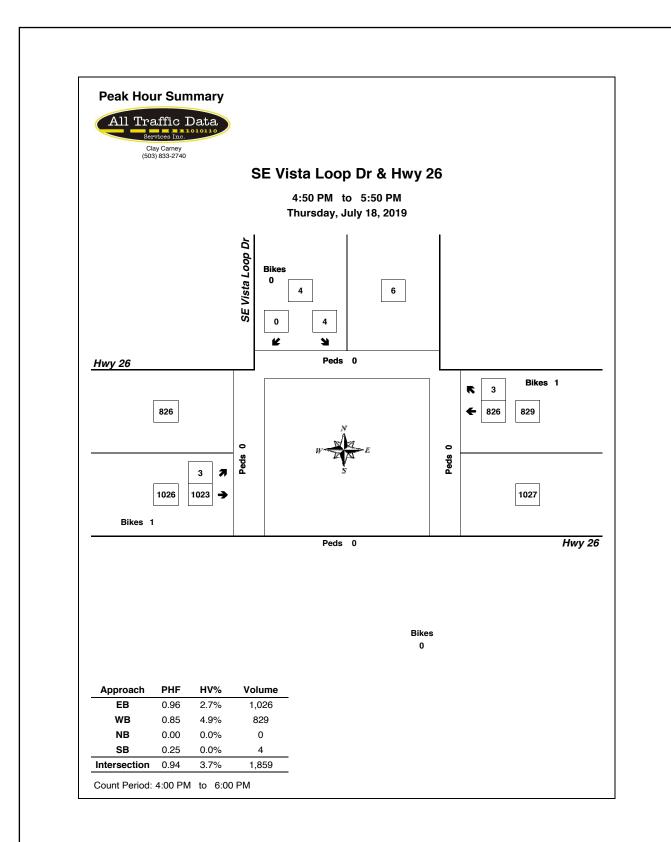
Thursday, July 18, 2019 4:00 PM to 6:00 PM

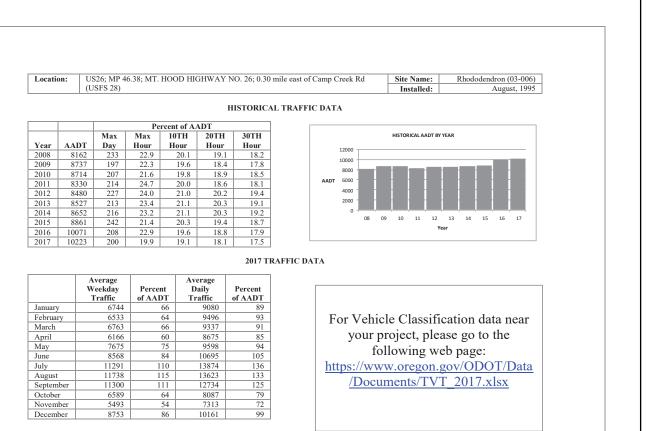
Heavy Vehicle 5-Minute Interval Summary 4:00 PM to 6:00 PM

Interval Start	Northbo SE Vista L			South SE Vista	bound)r			y 26		Westt			Interva
Time		Total	'		B	Total	1	T	<i>y</i> 20	Total	 Γ T	R 8	Total	Total
4:00 PM		0	0		0	0	0	3		3	7	0	7	10
4:05 PM		0	0		0	0	0	2		2	 5	0	5	7
4:10 PM		0	0		0	0	0	5		5	 5	0	5	10
4:15 PM		0	0		0	0	0	3		3	 1	0	1	4
4:20 PM		0	0		0	0	0	2		2	 4	0	4	6
4:25 PM		0	0		0	0	0	4		4	 3	0	3	7
4:30 PM		0	0		0	0	0	1		1	 3	0	3	4
4:35 PM		0	0		0	0	0	5		5	 7	0	7	12
4:40 PM		0	0		0	0	0	0		0	3	0	3	3
4:45 PM		0	0		0	0	0	1		1	4	0	4	5
4:50 PM		0	0		0	0	0	4		4	3	0	3	7
4:55 PM		0	0		0	0	0	1		1	2	0	2	3
5:00 PM		0	0		0	0	0	4		4	4	0	4	8
5:05 PM		0	0		0	0	0	5		5	0	0	0	5
5:10 PM		0	0		0	0	0	4		4	1	0	1	5
5:15 PM		0	0		0	0	0	1		1	8	0	8	9
5:20 PM		0	0		0	0	0	3		3	2	0	2	5
5:25 PM		0	0		0	0	0	1		1	4	0	4	5
5:30 PM		0	0		0	0	0	1		1	1	0	1	2
5:35 PM		0	0		0	0	0	1		1	4	0	4	5
5:40 PM		0	0		0	0	0	2		2	9	0	9	11
5:45 PM		0	0		0	0	0	1		1	3	0	3	4
5:50 PM		0	0		0	0	0	1		1	3	0	3	4
5:55 PM		0	0		0	0	0	2		2	3	0	3	5
Total		0	0		0	0	0	57		57	89	0	89	146
Survey		0	U		0	U	U	5/		5/	09	0	69	146

Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

Interval	North	oound		South	bound			East	oound		Westh	ound		
Start	SE Vista	Loop Dr	:	SE Vista	Loop D)r		Hw	y 26		Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т		Total	Т	R	Total	Total
4:00 PM		0	0		0	0	0	10		10	17	0	17	27
4:15 PM		0	0		0	0	0	9		9	8	0	8	17
4:30 PM		0	0		0	0	0	6		6	13	0	13	19
4:45 PM		0	0	1	0	0	0	6		6	9	0	9	15
5:00 PM		0	0		0	0	0	13		13	5	0	5	18
5:15 PM		0	0		0	0	0	5		5	14	0	14	19
5:30 PM		0	0		0	0	0	4		4	14	0	14	18
5:45 PM		0	0		0	0	0	4		4	9	0	9	13
Total Survey		0	0		0	0	0	57		57	89	0	89	146

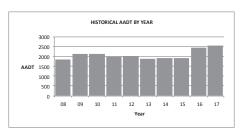

Heavy Vehicle Peak Hour Summary 4:50 PM to 5:50 PM


Bv		North	bound		South	bound		Easth	ound		Westi	ound	
		SE Vista	Loop Dr	5	SE Vista	Loop Dr		Hw	y 26		Hw	y 26	Total
Approach	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	
Volume	0	0	0	0	0	0	28	41	69	41	28	69	69
PHF	0.00			0.00			0.54			0.64			0.86

Bv		bound				bound				ound		West			
. í .	 SE Vista	Loop D	r		SE Vista	Loop D	r		Hw	y 26		Hwy	y 26		Total
wovernern			Total	L		R	Total	L	Т		Total	Т	R	Total	
Volume			0	0		0	0	0	28		28	41	0	41	69
PHF			0.00	0.00		0.00	0.00	0.00	0.54		0.54	0.64	0.00	0.64	0.86

Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

Interval	North	bound		South	bound			Easth	ound	Westh			
Start	SE Vista	Loop Dr		SE Vista	Loop D)r		Hw	y 26	Hwy	/ 26		Interval
Time		Total	L		R	Total	L	Т	Total	Т	R	Total	Total
4:00 PM		0	0		0	0	0	31	31	47	0	47	78
4:15 PM		0	0		0	0	0	34	34	35	0	35	69
4:30 PM		0	0		0	0	0	30	30	41	0	41	71
4:45 PM		0	0		0	0	0	28	28	42	0	42	70
5:00 PM		0	0		0	0	0	26	26	42	0	42	68



Location:	OR35; MP 57.79; MT. HOOD HIGHWAY NO. 26; 0.02 mile east of Warm Springs	Site Name:	Mt. Hood Meadows (03-007)
	Highway No. 53 (US26)	Installed:	September, 1995

			Pe	rcent of AA	ADT	
Year	AADT	Max Day	Max Hour	10TH Hour	20TH Hour	30TH Hour
2008	1854	398	56.8	44.2	39.9	36.1
2009	2130	***	***	***	***	***
2010	2145	374	49.2	39.5	34.8	33.2
2011	1976	476	79.2	49.1	45.0	39.1
2012	2023	452	65.4	43.4	40.3	37.7
2013	1868	427	68.1	48.7	42.0	37.1
2014	1908	400	60.0	41.9	37.4	33.6
2015	1931	393	50.4	38.6	34.4	32.6
2016	2455	366	55.9	38.3	33.1	31.2
2017	2565	340	52.1	37.7	32.5	31.3

2017 TRAFFIC DATA

	Average Weekday Traffic	Percent of AADT	Average Daily Traffic	Percent of AADT
January	2449	95	3616	141
February	1978	77	3362	131
March	1781	69	2833	110
April	1116	44	2050	80
May	1202	47	1609	63
June	1794	70	2070	81
July	2405	94	2837	111
August	2302	90	2614	102
September	3956	154	3993	156
October	1387	54	1614	63
November	768	30	1156	45
December	2499	97	2966	116

For Vehicle Classification data near your project, please go to the following web page: <u>https://www.oregon.gov/ODOT/Data</u> /Documents/TVT_2017.xlsx

233

			SEASO	ONAL TREN	SEASONAL TREND TABLE (Updated: 8/1/2018	Updated: 3	8/1/2018)								
TREND	1-Mar	15-Mar	1-Apr	15-Apr	1-May	15-May	1-Jun	15-Jun	1-Jul	15-Jul	1-Aug	15-Aug	1-Sep	15-Sep	Seasonal Trend Peak Period Factor
INTERSTATE URBANIZED	0.9998	0.9832	0.9657	0.9482	0.9460	0.9439	0.9240	0.9042	0.9115	0.9189	0.9374	0.9558	0.9558	0.9557	0.9042
INTERSTATE NONURBANIZED	1.1933	1.0909	1.0645	1.0382	1.0025	0.9667	0.9201	0.8735	0.8557	0.8379	0.8295	0.8211	0.9545	1.0880	0.8211
COMMUTER	0.9841	0.9691	0.9491	0.9292	0.9207	0.9123	0.9016	0.8910	0.9014	0.9119	0.9020	0.8921	0.9074	0.9228	0.8910
COASTAL DESTINATION	1.1609	1.1128	1.1031	1.0934	1.0569	1.0205	0.9791	0.9377	0.8842	0.8306	0.8299	0.8293	0.8775	0.9257	0.8293
COASTAL DESTINATION ROUTE	1.3599	1.2675	1.2537	1.2400	1.1531	1.0662	1.0030	0.9399	0.8492	0.7584	0.7570	0.7556	0.8301	0.9045	0.7556
AGRICULTURE	1.3802	1.2567	1.1986	1.1404	1.1072	1.0740	0.9827	0.8915	0.8529	0.8142	0.7179	0.6215	0.7163	0.8110	0.6215
RECREATIONAL SUMMER	1.7358	1.5512	1.4576	1.3641	1.1766	0.9892	0.9061	0.8230	0.7650	0.7071	0.7124	0.7177	0.9130	1.1082	0.7071
RECREATIONAL SUMMER WINTER	1.6218	1.6172	1.7108	1.8044	1.5925	1.3807	1.2325	1.0844	0.9631	0.8419	0.8674	0.8929	0.9274	0.9619	0.8419
RECREATIONAL WINTER	1.3685	1.4402	1.8693	2.2984	2.2161	2.1339	1.7818	1.4298	1.2481	1.0665	1.0903	1.1142	0.8813	0.6484	0.6484
SUMMER	1.1680	1.1061	1.0661	1.0261	0.9838	0.9415	0.9095	0.8774	0.8570	0.8366	0.8182	0.7997	0.8529	0.906.0	0.7997
SUMMER < 2500	1.1953	1.1025	1.0553	1.0080	0.9476	0.8871	0.8570	0.8268	0.8134	0.7999	0.7782	0.7565	0.8144	0.8723	0.7565

*Seasonal Trend Table factors are based on previous year ATR data. The table is updated yearly. *Grey shading indicates months were seasonal factor is greater than 30%

 Commuter Adjustment for Hwy 26: (per Seasonal Trend Table)

 15-Jul
 1-Aug

 Delta
 18-Jul

 0.9119
 0.9020
 0.0023

Seasonal Adjustment Calculations

Rhododendron ATR 11738 August Average Weekday Traffic 11291 July Average Weekday Traffic 447 ADT Delta 45 PM Peak Hour Delta July 18 PM Peak Hour Volume: 1856

July 18 PM Peak Hour Volume: July Seasonal PM Traffic July 18 Commuter Volume:	1129	vehicles vehicles vehicles
Commuter Adjustment: July 18 Commuter Volume: Times Adjustment Factor (1.014)		vehicles vehicles
July 18 PM Peak-Hour Volume: Recreational Traffic Adjustment: Commuter Traffic Adjustment:	45	vehicles vehicles vehicles
August PM Peak Hour Traffic: Equivalent Adjustment Factor:	1911 1.0296	vehicles

HCM 6th TWSC 1: Highway 26 & Vista Loop Drive (W)

Intersection							
Int Delay, s/veh	0.5						
Movement	SEL	SET	NWT	NWR	SWL	SWR	2
Lane Configurations	٦	- 11	_ ≜ î≽		۰¥		
Traffic Vol, veh/h	16	564	566	1	0	35	5
Future Vol, veh/h	16	564	566	1	0	35	5
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None)
Storage Length	155	-	-	-	0	-	-
Veh in Median Storage	e, # -	0	0	-	0	-	-
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	93	93	93	93	93	93	
Heavy Vehicles, %	12	12	9	9	2	2	-
Mvmt Flow	17	606	609	1	0	38	3
Major/Minor I	Major1	I	Major2	I	Minor2		
Conflicting Flow All	610	0	-	0	947	305	5
Stage 1	-	-	-	-	610	-	-
Stage 2	-	-	-	-	337	-	-
Critical Hdwy	4.34	-	-	-	6.84	6.94	1
Critical Hdwy Stg 1	-	-	-	-	5.84	-	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-	-
Follow-up Hdwy	2.32	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	900				259	691	1

Mov Cap-2 Maneuver	-	-	-	-	254 -	
Stage 1	-	-	-	-	495 -	
Stage 2	-	-	-	-	695 -	
Approach	SE		NW		SW	
HCM Control Delay, s	0.3		0		10.5	
HCM LOS					В	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SETSWLn1	
Capacity (veh/h)		-	-	900	- 691	
HCM Lane V/C Ratio		-	-	0.019	- 0.054	

The Views 08/13/2019 Existing 2019 AM Peak Hour MTA

-

-

-

-

-

-

-

-

-

900

Stage 1

Stage 2

Mov Cap-1 Maneuver

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

Platoon blocked, %

-

-

-

-

-

-

-

-

9.1

А

0.1 -

-

-

505

695

254

-

-

691

10.5

В

-

-

-0.2

> Synchro 10 Light Report Page 1

HCM 6th TWSC 2: Vista Loop Drive & Ortiz Street

Intersection						
Int Delay, s/veh	3					
Movement	SEL	CET	NWT		C/V/I	SWR
	SEL	SET		NWR	SWL	SWR
Lane Configurations	,	्र	- î÷	^	Y	0
Traffic Vol, veh/h	1	2	5	0	1	2
Future Vol, veh/h	1	2	5	0	1	2
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	50	50	50	50	50	50
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	4	10	0	2	4
	_			•		
	lajor1		Major2		Minor2	
Conflicting Flow All	10	0	-	0	18	10
Stage 1	-	-	-	-	10	-
Stage 2	-	-	-	-	8	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1610	-	-	-	1000	1071
Stage 1	-	-	-	-	1013	-
Stage 2	-	-	-	-	1015	-
Platoon blocked, %		_	-	-	1010	
Mov Cap-1 Maneuver	1610	-	-	-	999	1071
Mov Cap-1 Maneuver Mov Cap-2 Maneuver		-	-	-	999	1071
	-		-			
Stage 1	-	-	-	-	1012	-
Stage 2	-	-	-	-	1015	-
Approach	SE		NW		SW	
HCM Control Delay, s	2.4		0		8.5	
HCM LOS	<u> </u>		0		0.0 A	
					A	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-	1610		1046
HCM Lane V/C Ratio		-	-	0.001	-	0.006
HCM Control Delay (s)		-	-	7.2	0	8.5
HCM Lane LOS		-	-	А	A	A
HCM 95th %tile Q(veh)				0	-	0
		-	-	U	-	U

The Views $\,$ 08/13/2019 Existing 2019 AM Peak Hour MTA $\,$

Synchro 10 Light Report Page 2

08/14/2019

HCM 6th TWSC 5: Highway 26 & Vista Loop Drive (E)

Intersection						
Int Delay, s/veh	0.1					
	-	_				
Movement	SEL	SET	NWT	NWR		SWR
Lane Configurations	<u> </u>	- 11	∱ î≽		۰¥	
Traffic Vol, veh/h	4	560	567	1	0	3
Future Vol, veh/h	4	560	567	1	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	140	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	12	12	9	9	2	2
Mvmt Flow	5	636	644	1	0	3
interior iow	0	000	017		0	0
	Major1	1	Major2	ľ	Minor2	
Conflicting Flow All	645	0	-	0	973	323
Stage 1	-	-	-	-	645	-
Stage 2	-	-	-	-	328	-
Critical Hdwy	4.34	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.32	-	_	_	3.52	3.32
Pot Cap-1 Maneuver	871	-	-	-	250	673
Stage 1		-	-	-	484	- 075
Stage 2	-	-	-	-	702	-
	-				702	-
Platoon blocked, %	074	-	-	-	040	070
Mov Cap-1 Maneuver	871	-	-	-	249	673
Mov Cap-2 Maneuver	-	-	-	-	249	-
Stage 1	-	-	-	-	481	-
Stage 2	-	-	-	-	702	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.1		0		10.4	
	0.1		0		10.4 B	
HCM LOS					В	
Minor Lane/Major Mvm	t	NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-	871	_	673
HCM Lane V/C Ratio		-		0.005		0.005
HCM Control Delay (s)		-		9.2	_	10.4
HCM Lane LOS		-	-	9.2 A	-	10.4 B
HCM 25th %tile Q(veh)		-	-	0	-	0
LIGIVE SOLL WILL GIVEN		-	-	0	-	0

The Views $\,$ 08/13/2019 Existing 2019 AM Peak Hour MTA $\,$

Synchro 10 Light Report Page 3

08/14/2019

HCM 6th TWSC 1: Highway 26 & Vista Loop Drive (W)

Intersection						
Int Delay, s/veh	0.3					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	<u>۲</u>	- 11	∱ î,		۰¥	
Traffic Vol, veh/h	36	1056	851	0	0	15
Future Vol, veh/h	36	1056	851	0	0	15
Conflicting Peds, #/hr	1	0	0	1	1	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	155	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	3	3	5	5	2	2
Mymt Flow	37	1089	877	0	0	15
	- 57	1009	011	0	0	10
Major/Minor M	Major1	1	Major2	I	Minor2	
Conflicting Flow All	878	0	-	0	1498	441
Stage 1	-	-	-	-	878	-
Stage 2	-	-	-	-	620	-
Critical Hdwy	4.16	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
	2.23	-	-	-	3.52	3.32
Follow-up Hdwy	2.23 759	-	-			
Pot Cap-1 Maneuver	759	-	-	-	113	564
Stage 1	-	-	-	-	367	-
Stage 2	-	-	-	-	499	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	758	-	-	-	107	563
Mov Cap-2 Maneuver	-	-	-	-	107	-
Stage 1	-	-	-	-	349	-
Stage 2	-	-	-	-	499	-
, , , , , , , , , , , , , , , , , , ,						
Approach	SE		NW		SW	
Approach	0.3		0		11.6	
HCM Control Delay, s	0.3		U			
HCM LOS					В	
Minor Lane/Major Mvm	t	NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-	758	-	563
HCM Lane V/C Ratio		-		0.049		0.027
HCM Control Delay (s)		-	-	10	-	11.6
HCM Lane LOS		-	-	A	-	B
HCM 25th %tile Q(veh)		-	-	0.2	-	в 0.1
		-	-	0.2	-	0.1

The Views 08/13/2019 Existing 2019 PM Peak Hour MTA

Synchro 10 Light Report Page 1

08/14/2019

HCM 6th TWSC 2: Vista Loop Drive & Ortiz Street

Intersection						
Int Delay, s/veh	2.2					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		र्भ	4		Y	
Traffic Vol, veh/h	2	4	5	1	0	2
Future Vol, veh/h	2	4	5	1	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	. # -	0	0	-	Ũ	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	50	50	50	50	50	50
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	4	8	10	2	0	4
		0	10	2	0	
	Major1		Major2		Minor2	
Conflicting Flow All	12	0	-	0	27	11
Stage 1	-	-	-	-	11	-
Stage 2	-	-	-	-	16	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1607	-	-	-	988	1070
Stage 1	-	-	-	-	1012	-
Stage 2	-	-	-	-	1007	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1607	-	-	-	985	1070
Mov Cap-2 Maneuver	-	_	_	-	985	-
Stage 1	_	-	-	-	1009	-
Stage 2	-	-	-	-	1009	-
Staye 2	-	-	-	-	1007	-
Approach	SE		NW		SW	
HCM Control Delay, s	2.4		0		8.4	
HCM LOS					А	
Minor Long /Main M					OFT	NA/I 4
Minor Lane/Major Mvm	It	NWT	NWR	SEL		WLn1
Capacity (veh/h)		-	-	1607	-	1070
HCM Lane V/C Ratio		-	-	0.002		0.004
HCM Control Delay (s)		-	-	7.2	0	8.4
HCM Lane LOS		-	-	A	A	Α
HCM 95th %tile Q(veh))	-	-	0	-	0

The Views $\,$ 08/13/2019 Existing 2019 PM Peak Hour MTA $\,$

HCM 6th TWSC 5: Highway 26 & Vista Loop Drive (E)

08/14/2019

Intersection						
Int Delay, s/veh	0.1					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	_	- 11	∱ î∌		۰Y	
Traffic Vol, veh/h	3	1053	851	3	4	0
Future Vol, veh/h	3	1053	851	3	4	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	140	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	3	3	5	5	2	2
Mvmt Flow	3	1120	905	3	4	0
Maior/Minor	oio4		Mais -0		Aim c = O	
	ajor1		Major2		Minor2	454
Conflicting Flow All	908	0	-	0	1473	454
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	566	-
Critical Hdwy	4.16	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.23	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	739	-	-	-	118	553
Stage 1	-	-	-	-	354	-
Stage 2	-	-	-	-	532	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	739	-	-	-	118	553
Mov Cap-2 Maneuver	-	-	-	-	118	-
Stage 1	-	-	-	-	353	-
Stage 2	-	-	-	-	532	-
A	05		NIX A		014	
Approach	SE		NW		SW	
HCM Control Delay, s	0		0		36.6	
HCM LOS					E	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-	739	-	118
HCM Lane V/C Ratio		-		0.004		0.036
HCM Control Delay (s)		-	-	9.9	-	36.6
HCM Lane LOS		-	-	9.9 A	-	30.0 E
		-		A 0	-	0.1
HCM 95th %tile Q(veh)		-	-	0	-	0.1

The Views 08/13/2019 Existing 2019 PM Peak Hour MTA

Land Use Description: Single-Family Detached Housing ITE Land Use Code: 210 Independent Variable: Dwelling Units Quantity: 39 Dwelling Units

Summary of ITE Trip Generation Data

AM Peak Hour of Adjacent Stree Trip Equation: T = 0.71(X) + 4.80	t Traffic	
Directional Distribution:	25% Entering	75% Exiting
PM Peak Hour of Adjacent Stree Trip Equation: Ln(T) = 0.96 Ln(X) Directional Distribution:		37% Exiting
	03% Littering	5776 Exiting
Total Weekday Traffic		
Trip Equation: Ln(T) = 0.92 Ln(X)	+ 2.71	
Directional Distribution:	50% Entering	50% Exiting

Site Trip Generation Calculations

39 Dwelling Units						
Entering Exiting Total						
AM Peak Hour	8	24	32			
PM Peak Hour	26	15	41			
Weekday	219	219	438			

Land Use Description: Multi-Family Housing (Low-Rise) ITE Land Use Code: 220 Independent Variable: Dwelling Units Quantity: 56 Dwelling Units

Summary of ITE Trip Generation Data

AM Peak Hour of Ad Trip Rate:	•	et Traffic os per dwelling unit	
Directional Distribut	•	23% Entering	77% Exiting
PM Peak Hour of Ad	jacent Stre	et Traffic	
Trip Rate:	0.56 trip	os per dwelling unit	
Directional Distribut	on:	63% Entering	37% Exiting
Total Weekday Traf	ic		
Trip Rate:	7.32 trip	os per dwelling unit	
Directional Distribut	on:	50% Entering	50% Exiting

Site Trip Generation Calculations

56 Dwelling Units							
Entering Exiting Total							
AM Peak Hour	6	20	26				
PM Peak Hour	20	11	31				
Weekday	205	205	410				

Land Use Description: Single-Family Detached Housing ITE Land Use Code: 210 Independent Variable: Dwelling Units Quantity: 49 Dwelling Units

Summary of ITE Trip Generation Data

AM Peak Hour of Adjacent Stree Trip Equation: T = 0.71(X) + 4.80	t Traffic	
Directional Distribution:	25% Entering	75% Exiting
PM Peak Hour of Adjacent Stree Trip Equation: Ln(T) = 0.96 Ln(X)	+ 0.20	270/ Eviting
Directional Distribution:	63% Entering	37% Exiting
Total Weekday Traffic		
Trip Equation: Ln(T) = 0.92 Ln(X)	+ 2.71	
Directional Distribution:	50% Entering	50% Exiting

Site Trip Generation Calculations

49 Dwelling Units							
Entering Exiting Total							
AM Peak Hour	10	30	40				
PM Peak Hour	32	19	51				
Weekday	270	270	540				

Land Use Description: Multi-Family Housing (Low-Rise) ITE Land Use Code: 220 Independent Variable: Dwelling Units Quantity: 24 Dwelling Units

Summary of ITE Trip Generation Data

AM Peak Hour of Ad	jacent Stre	et Traffic	
Trip Rate:	0.46 trip	os per dwelling unit	
Directional Distributi	on:	23% Entering	77% Exiting
PM Peak Hour of Ad	jacent Stre	et Traffic	
Trip Rate:	0.56 trip	os per dwelling unit	
Directional Distributi	on:	63% Entering	37% Exiting
Total Weekday Traff	ic		
Trip Rate:	7.32 trip	os per dwelling unit	
Directional Distributi	on:	50% Entering	50% Exiting

Site Trip Generation Calculations

24 Dwelling Units							
Entering Exiting Total							
AM Peak Hour	3	8	11				
PM Peak Hour	8	5	13				
Weekday	88	88	176				

Land Use Description: Single-Family Detached Housing ITE Land Use Code: 210 Independent Variable: Dwelling Units Quantity: 152 Dwelling Units

Summary of ITE Trip Generation Data

AM Peak Hour of Adjacent Stree Trip Equation: T = 0.71(X) + 4.80	t Traffic	
Directional Distribution:	25% Entering	75% Exiting
PM Peak Hour of Adjacent Stree Trip Equation: Ln(T) = 0.96 Ln(X)	+ 0.20	27% Sviting
Directional Distribution:	63% Entering	37% Exiting
Total Weekday Traffic		
Trip Equation: Ln(T) = 0.92 Ln(X)	+ 2.71	
Directional Distribution:	50% Entering	50% Exiting

Site Trip Generation Calculations

152	Dwelling	Units	
	Entering	Exiting	Total
AM Peak Hour	28	85	113
PM Peak Hour	96	56	152
Weekday	764	764	1528

026 22.32 1 $0.02 \text{ mile northwest of S.E. 362nd Drive, west city limits ofSandy2950041400MODEL02623.8510.02 \text{ mile west of Bluff Road}2010021600MODEL02623.8910.02 \text{ mile west of Bluff Road}1510021600MODEL02624.3210.02 \text{ mile west of Bluff Road}1510021600MODEL02624.3510.02 mile west of Eagle Creek-Sandy Highway (OR211)1480021600MODEL02624.4210.02 \text{ mile west of Eagle Creek-Sandy Highway (OR211)148000.17100MODEL02624.4210.02 \text{ mile west of Eagle Creek-Sandy Highway (OR211)1120017100MODEL02624.4210.02 \text{ mile west of Ten Eyck Road1120017100MODEL02624.402W0.02 \text{ mile west of Eagle Creek-Sandy Highway (OR211)1250016000MODEL02624.402W0.02 \text{ mile west of Eagle Creek-Sandy Highway (OR211)1450016900MODEL02624.402W0.02 \text{ mile west of Eagle Creek-Sandy Highway (OR211)1450016900MODEL02624.402W0.02 \text{ mile west of Eagle Creek-Sandy Highway (OR211)1450016900MODEL02624.402W0.02 \text{ mile west of Eagle Creek-Sandy Highway $	ΗWY	MP	DIR	SH	Location	2014	2015	2016	2036	RSQ
22.721Sandy 22.72 18 andy 23.85 10.02 mile west of Bluff Road 30100 42600 23.85 10.02 mile west of Bluff Road 30100 21600 23.89 10.02 mile west of Bluff Road 30100 21600 24.02 10.02 mile west of Beers Avenue 15100 21600 24.35 10.02 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.42 10.02 mile west of Eagle Creek-Sandy Highway (OR211) 12000 17100 24.45 10.02 mile west of Eagle Creek-Sandy Highway (OR211) 12000 17100 24.59 10.02 mile west of Eagle Creek-Sandy Highway (OR211) 12000 17000 24.60 2.10.02 mile west of Eagle Creek-Sandy Highway (OR211) 15200 21300 24.04 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 15200 21300 24.04 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 15200 21300 24.01 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 15200 21300 24.01 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.01 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.01 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21600 24.01 2W 0.02					0.02 mile northwest of S.E. 362nd Drive, west city limits of					
23.851 0.02 mile west of Bluff Road 3100 42600 23.89 1 0.02 mile west of Bluff Road 15100 21600 24.02 1 0.02 mile west of Beers Avenue 15100 21600 24.35 1 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.35 1 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.35 1 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 12000 17100 24.42 1 0.02 mile west of Ten Eyck Road 11200 15200 21300 24.42 1 0.02 mile west of Ten Eyck Road 11200 15200 21300 24.42 2W 0.02 mile west of Beers Avenue 15200 21300 21300 24.61 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.04 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.10 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.10 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.10 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.10 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 27400 24.10 2W 0.02 mile west of Tan Eyck Road 211700 16900 <td>026</td> <td></td> <td>1</td> <td></td> <td>Sandy</td> <td></td> <td>29500</td> <td></td> <td>41400</td> <td>MODEL</td>	026		1		Sandy		29500		41400	MODEL
23.891 0.02 mile east of Bluff Road 15100 21600 24.02 1 0.02 mile west of Beers Avenue 15100 21600 24.35 1 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.35 1 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.42 1 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 12000 17100 24.42 1 0.02 mile west of Ten Eyck Road 11200 11200 21300 24.42 1 0.02 mile west of Ten Eyck Road 11200 15200 21300 24.52 W 0.02 mile west of Bluff Road 15200 21300 21300 24.04 2W 0.02 mile west of Beers Avenue 15200 16000 21300 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 2300 24.61 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.61 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.61 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 27600 24.61 2W 0.02 mile west of Ten Eyck Road 21000 <td>026</td> <td>23.85</td> <td>1</td> <td></td> <td>0.02 mile west of Bluff Road</td> <td></td> <td>30100</td> <td></td> <td>42600</td> <td>MODEL</td>	026	23.85	1		0.02 mile west of Bluff Road		30100		42600	MODEL
24.021 0.02 mile west of Beers Avenue 15100 21600 24.35 1 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.42 1 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.42 1 0.02 mile west of Ten Eyck Road 11200 17100 24.59 1 0.02 mile west of Ten Eyck Road 11200 21300 24.61 2W 0.02 mile west of Buff Road 21300 21300 24.04 2W 0.02 mile west of Beers Avenue 15200 21300 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 21300 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.61 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 2700 24.61 2W 0.02 mile west of Ten Eyck Road 11700 16900 24.61 1 0.02 mile west of Ten Eyck Road 21000 2500 2500 24.61 1000 0.02 mile west of Tangensand Road 11700 19700 25400 25.10 1000 10000 100000 1000000 254000 25600 25.10 $1000000000000000000000000000000000000$	026	23.89	1		0.02 mile east of Bluff Road		15100		21600	MODEL
24.351 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14800 21600 24.42 1 0.02 mile east of Eagle Creek-Sandy Highway (OR211) 12000 17100 24.59 1 0.02 mile east of Ten Eyck Road 11200 1000 24.51 2W 0.02 mile west of Ten Eyck Road 15200 15200 24.61 2W 0.02 mile west of Buff Road 21300 21300 24.04 2W 0.02 mile west of Beers Avenue 21300 21300 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.61 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.61 2W 0.02 mile west of Ten Eyck Road 11700 16900 24.61 10 0.02 mile west of Ten Eyck Road 11700 16900 25.10 1 0.02 mile west of Tangensand Road 11700 16900 25.10 1 0.000 mile west of Vista Loop Drive 19700 25400	026	24.02	1		0.02 mile west of Beers Avenue		15100		21600	MODEL
24.42 1 0.02 mile east of Eagle Creek-Sandy Highway (OR211) 12000 17100 24.59 1 0.02 mile west of Ten Eyck Road 11200 16000 23.89 2 W 0.02 mile west of Bluff Road 15200 21300 23.89 2 W 0.02 mile west of Bluff Road 21300 21300 24.40 2 W 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2 W 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2 W 0.02 mile west of Ten Eyck Road 1700 16900 24.61 2 W 0.02 mile west of Ten Eyck Road 1700 16900 24.61 1 0 0.02 mile west of Ten Eyck Road 1700 16900 24.61 1 0 0.02 mile west of	026	24.35	1		0.05 mile west of Eagle Creek-Sandy Highway (OR211)		14800		21600	MODEL
24.591 0.02 mile west of Ten Eyck Road 11200 16000 23.89 2W 0.02 mile west of Bluff Road 15200 21300 24.04 2W 0.02 mile west of Beers Avenue 15200 21300 24.04 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2W 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 11700 16900 24.61 2W 0.02 mile west of Ten Eyck Road 11700 16400 25.10 10.02 mile west of Tangensand Road 25400 25400 25.10 10.010 mile east of Vista Loop Drive 19700 25400	026	24.42	1		0.02 mile east of Eagle Creek-Sandy Highway (OR211)		12000		17100	MODEL
23.89 2 W 0.02 mile east of Bluff Road 15200 15200 21300 24.04 2 W 0.02 mile west of Beers Avenue 15200 15200 21300 24.36 2 W 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 11700 16400 24.61 2 W 0.02 mile west of Ten Eyck Road 11700 16400 25.10 1 0.02 mile west of Langensand Road 18000 25400 25.10 1 0.02 mile west of Vista Loop Drive 19700 25400	026	24.59	1		0.02 mile west of Ten Eyck Road		11200		16000	MODEL
24.04 2 W 0.02 mile west of Beers Avenue 15200 21300 24.36 2 W 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 14500 16900 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 12100 16900 24.61 2 W 0.02 mile west of Ten Eyck Road 11700 16400 25.10 1 0.02 mile west of Tangensand Road 18000 25400 25400 25.10 1 0.010 mile west of Vista Loop Drive 19700 25400 26400	026	23.89	2	M	0.02 mile east of Bluff Road		15200		21300	MODEL
24.36 2 W 0.05 mile west of Eagle Creek-Sandy Highway (OR211) 14500 20700 24.40 2 W 0.02 mile west of Eagle Creek-Sandy Highway (OR211) 12100 16900 24.40 2 W 0.02 mile west of Tene Fagle Creek-Sandy Highway (OR211) 12100 16900 24.61 2 W 0.02 mile west of Ten Eyck Road 11700 16400 25.10 1 0.02 mile west of Langensand Road 18000 25400 25.10 1 0.010 mile west of Langensand Road 18000 25400	026	24.04	2	M	0.02 mile west of Beers Avenue		15200		21300	MODEL
24.40 2 W 0.02 mile east of Eagle Creek-Sandy Highway (OR211) 12100 16900 24.61 2 W 0.02 mile west of Ten Eyck Road 11700 16400 25.10 1 0.02 mile west of Langensand Road 18000 25400 25.16 1 0.02 mile west of Langensand Road 25400 25400	026	24.36	2	M	0.05 mile west of Eagle Creek-Sandy Highway (OR211)		14500		20700	MODEL
24.61 2 W 0.02 mile west of Ten Eyck Road 11700 16400 25.10 1 0.02 mile west of Langensand Road 18000 25400 25.66 1 0.10 mile cast of Vista Loop Drive 19700 27600	026	24.40	2	M	0.02 mile east of Eagle Creek-Sandy Highway (OR211)		12100		16900	MODEL
25.10 1 0.02 mile west of Langensand Road 18000 25400 25.66 1 0.10 mile east of Vista Loop Drive 19700 27600	026	24.61	2	M	0.02 mile west of Ten Eyck Road		11700		16400	MODEL
25.66 1 0.10 mile east of Vista Loop Drive 19700 2560	026	25.10	1		0.02 mile west of Langensand Road		18000		25400	MODEL
	026		1		0.10 mile east of Vista Loop Drive		19700		27600	MODEL

HCM 6th TWSC 1: Highway 26 & Vista Loop Drive (W)

Intersection						
Int Delay, s/veh	0.5					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		<u></u>	†	INVVIX		OWIX
Traffic Vol, veh/h	17	TT 597	T ₽ 599	1	- T	37
Future Vol, veh/h	17	597 597	599 599	1	0	37
Conflicting Peds, #/hr	0	0	099	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	Free -	None	Free -	None	Stop -	None
		None	-	None		None -
Storage Length	155 #				0	
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	12	12	9	9	2	2
Mvmt Flow	18	642	644	1	0	40
Major/Minor M	1ajor1		Major2		Minor2	
			_			2000
Conflicting Flow All	645	0	-	0	1002	323
Stage 1	-	-	-	-	645	-
Stage 2	-	-	-	-	357	-
Critical Hdwy	4.34	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.32	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	871	-	-	-	239	673
Stage 1	-	-	-	-	484	-
Stage 2	-	-	-	-	679	-
Platoon blocked, %	-	-	-	-	019	-
Mov Cap-1 Maneuver	871	-	-	-	234	673
	-		-			
Mov Cap-2 Maneuver	-	-	-	-	234	-
Stage 1	-	-	-	-	474	-
Stage 2	-	-	-	-	679	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.3		0		10.7	
HCM LOS	0.0		0		B	
					٥	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-	871	-	673
HCM Lane V/C Ratio		-	-	0.021		0.059
HCM Control Delay (s)		_	-	9.2	-	10.7
HCM Lane LOS		-	-	9.2 A	-	10.7 B
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	0.1	-	В 0.2
HOW SOUL WILLE O(VED)		-	-	0.1	-	0.2

The Views $\,$ 08/13/2019 2021 Background AM Peak Hour MTA

Synchro 10 Light Report Page 1

06/15/2020

HCM 6th TWSC 2: Vista Loop Drive & Ortiz Street

Intersection Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h	3					
Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h						
Movement Lane Configurations Traffic Vol, veh/h						
Lane Configurations Traffic Vol, veh/h	05	057	NILA/T		0)4//	
Traffic Vol, veh/h	SEL	SET	NWT	NWR	SWL	SWR
		र्च	-		۰Y	
	1	2	5	0	1	2
Future Vol, veh/h	1	2	5	0	1	2
Conflicting Peds, #/hi		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	le, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	50	50	50	50	50	50
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	4	10	0	2	4
	_					
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	10	0	-	0	18	10
Stage 1	-	-	-	-	10	-
Stage 2	-	-	-	-	8	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1610	-	-	-	1000	1071
Stage 1	-	-	-	-	1013	-
	-	-	-	-	1015	-
Stade 2		-	-	-	1013	-
Stage 2			-	-		
Platoon blocked, %	1610				000	1071
Platoon blocked, % Mov Cap-1 Maneuve		-	-	-	999	1071
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve	· -	-	-	-	999	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1	· -	-	-	-	999 1012	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve	· -	-		-	999	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1	· -	-	-	-	999 1012	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2	-	-	-	-	999 1012 1015	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach	 - - SE	-	- - NW	-	999 1012 1015 SW	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s	 - - SE	-	-	-	999 1012 1015 SW 8.5	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach	 - - SE	-	- - NW	-	999 1012 1015 SW	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s	 - - SE	-	- - NW	-	999 1012 1015 SW 8.5	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s	SE 3 2.4	-	- - NW	-	999 1012 1015 SW 8.5 A	-
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mv	SE 3 2.4	-	- - NW 0	-	999 1012 1015 SW 8.5 A	- - - SWLn1
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mv Capacity (veh/h)	SE 3 2.4	-	- - - 0 - -	- - - - - - - - - - - - - - - - - - -	999 1012 1015 <u>SW</u> 8.5 A <u>SETS</u>	- - - <u>-</u> <u>-</u> <u>-</u> - - - - - - - - - - -
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio		- - - - - - - -	- - - 0 - -	- - - - - - - - - - - - - - - - - - -	999 1012 1015 SW 8.5 A SETS	- - - SWLn1 1046 0.006
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		- - - - - - - - - - -	- - 0 - NWR - -	SEL 1610 0.001 7.2	999 1012 1015 8.5 A SETS - - - 0	- - - 3WLn1 1046 0.006 8.5
Platoon blocked, % Mov Cap-1 Maneuve Mov Cap-2 Maneuve Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio		- - - - - - - - - - - -	- - NW 0 - -	- - - - - - - - - - - - - - - - - - -	999 1012 1015 SW 8.5 A SETS	- - - SWLn1 1046 0.006

The Views $\,$ 08/13/2019 2021 Background AM Peak Hour MTA

HCM 6th TWSC 5: Highway 26 & Vista Loop Drive (E)

0.1					
SEL	SET			S\MI	SWR
			INVIR		SWK
			1		3
					3
					0
					Stop
					None
					-
			-	-	-
<i>π</i> -					-
					88
					2
					2
0	014	010		0	0
ajor1		Major2			
679	0	-	0	1026	340
-	-	-	-		-
-	-	-	-	347	-
4.34	-	-	-	6.84	6.94
-	-	-	-	5.84	-
-	-	-	-	5.84	-
2.32	-	-	-	3.52	3.32
845	-	-	-	231	656
-	-	-	-	465	-
-	-	-	-	687	-
	-	-	-		
845	-	-	-	230	656
-	-	-	-	230	-
-	-	-	-	462	-
-	-	-	-	687	-
SE		NIW		SW	
0.1		0			
				D	
	NWT	NWR			
			845	-	656
	-				
	-	-	0.005		0.005
	-	-	0.005 9.3	-	10.5
			0.005		
	SEL 4 4 0 Free 140 # 88 12 5 lajor1 679 - 2.32 845 - 845 - SE 0.1	SEL SET ↑ ↑ 4 593 0 0 Free Free 140 - # 0 140 - # 0 88 88 12 12 5 674 lajor1 1 679 0 - - 4.34 - - - 2.32 - 845 - - - 845 - - - 845 - - - 845 - - - 0.1 -	SEL SET NWT 1 1 1 4 593 597 0 0 0 70 0 0 Free Free Free - None - 140 - - 140 - - 140 - 0 - 0 0 # 0 0 88 88 88 12 12 9 5 674 678 679 0 - 679 0 - - - - 4.34 - - - - - 2.32 - - - - - 845 - - - - - - - - - - - <	SEL SET NWT NWR ↑ ↑↑ ↑↑ 4 593 597 1 4 593 597 1 0 0 0 0 0 Free Free Free Free Free None - None - 140 - - - 140 - - - 140 - - - 140 - - - 140 - - - 140 0 0 - 140 - - - 140 0 0 - 8 88 88 88 13 12 12 9 9 5 674 678 1 679 0 - - - - - - 2.32 - -	SEL SET NWT NWR SWL 1 1 1 0 1 0 4 593 597 1 0 0 4 593 597 1 0 0 0 0 0 0 0 0 0 0 Free Free Free Free Stop - 140 - - None - 0 140 - - None - 0 - 0 0 - 0 0 - 140 - - 0 0 - 0 - 0 0 0 - 0 0 3 5 674 678 1 0 1026 - - - 679 0 - 679 - - - 5.84 - - 5.84

The Views $\,$ 08/13/2019 2021 Background AM Peak Hour MTA

Synchro 10 Light Report Page 3

06/15/2020

HCM 6th TWSC 1: Highway 26 & Vista Loop Drive (W)

Intersection						
Int Delay, s/veh	0.3					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations				INVIR	SWL M	SWR
Traffic Vol, veh/h	1 38		₩ 900	0	 0	16
Future Vol, veh/h	38 38	1117 1117	900	0	0	16
,	38		900	1	1	16
Conflicting Peds, #/hr		0	U Free	-		
Sign Control	Free	Free		Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	155	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	3	3	5	5	2	2
Mvmt Flow	39	1152	928	0	0	16
Major/Miner	Anie 1		Anie - O		liner	
	Major1		Major2		Minor2	400
Conflicting Flow All	929	0	-	0	1584	466
Stage 1	-	-	-	-	929	-
Stage 2	-	-	-	-	655	-
Critical Hdwy	4.16	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.23	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	726	-	-	-	99	543
Stage 1	-	-	-	-	345	-
Stage 2	-	-	-	-	479	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	725	_	_	-	93	542
Mov Cap-1 Maneuver	125	-	-	-	93	J4Z
Stage 1	-	-	-	-	326	-
	-	-	-	-		
Stage 2	-	-	-	-	479	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.3		0		11.9	
HCM LOS	0.0				B	
					5	
Minor Lane/Major Mvm	t	NWT	NWR	SEL	SETS	WLn1
Capacity (veh/h)		-	-	725	-	542
HCM Lane V/C Ratio		-	-	0.054	-	0.03
HCM Control Delay (s)		-	-	10.2	-	11.9
HCM Lane LOS		-	-	B	-	B
HCM 95th %tile Q(veh)		-	-	0.2	-	0.1
				0.2		0.1

The Views $\,$ 08/13/2019 2021 Background PM Peak Hour MTA

HCM 6th TWSC 2: Vista Loop Drive & Ortiz Street

-						
Intersection						
Int Delay, s/veh	2.2					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	JLL			TIMMIN	<u> </u>	SWI
Traffic Vol, veh/h	2	ର୍କ 4	₽ 5	1	"	2
	2	4	5 5	1	0	2
Future Vol, veh/h	2	4	5	0	0	2
Conflicting Peds, #/hr				-		-
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	50	50	50	50	50	50
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	8	10	2	0	4
Major/Minor	Major1		Major2		Minor2	
						44
Conflicting Flow All	12	0	-	0	27	11
Stage 1	-	-	-	-	11	-
Stage 2	-	-	-	-	16	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	0.0.0	
Pot Cap-1 Maneuver	1607	-	-	-	988	1070
Stage 1	-	-	-	-	1012	-
Stage 2	-	-	-	-	1007	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1607	-	-	-	985	1070
Mov Cap-2 Maneuver	-	-	-	-	985	-
Stage 1	-	-	-	-		-
Stage 2	-	_	_	-	1003	-
Slaye Z	-	-	-	-	1007	-
Approach	SE		NW		SW	
HCM Control Delay, s	2.4		0		8.4	
HCM LOS					А	
Minor Lane/Major Mvm	ht.	NWT	NWR	SEL	SET	SWLn1
Capacity (veh/h)	n		-	1607	- 0ETC	
		-		0.002		0.004
HCM Lane V/C Ratio		-				
HCM Control Delay (s)		-	-	7.2	0	8.4
HCM Lane LOS		-	-	A	A	A
HCM 95th %tile Q(veh))	-	-	0	-	0

The Views $\,$ 08/13/2019 2021 Background PM Peak Hour MTA

HCM 6th TWSC 5: Highway 26 & Vista Loop Drive (E)

Intersection						
Int Delay, s/veh	0.1					
•	-					
Movement	SEL	SET	NWT	NWR		SWR
Lane Configurations	্য	- 11	∱ î≽		۰Y	
Traffic Vol, veh/h	3	1114	900	3	4	0
Future Vol, veh/h	3	1114	900	3	4	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	140	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	3	3	5	5	2	2
Mymt Flow	3	1185	957	3	4	0
	ajor1		Major2		Minor2	
Conflicting Flow All	960	0	-	0	1558	480
Stage 1	-	-	-	-	959	-
Stage 2	-	-	-	-	599	-
Critical Hdwy	4.16	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.23	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	706	-	-	-	103	532
Stage 1	-	-	-	-	333	-
Stage 2	-	-	-	-	511	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	706	-	-	-	103	532
Mov Cap-2 Maneuver	-	-	-	-	103	
Stage 1	-	_	-	-	332	-
Stage 2	_	-	-	_	511	-
Oldye 2	-	-	-	-	511	-
Approach	SE		NW		SW	
HCM Control Delay, s	0		0		41.5	
HCM LOS					E	
Minor Lane/Major Mvmt		NWT	NWR	SEL	SET	SWLn1
		-	-	706	-	103
			-	100		
Capacity (veh/h)				0.005		0041
Capacity (veh/h) HCM Lane V/C Ratio		-		0.005		0.041
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	10.1	-	41.5
Capacity (veh/h) HCM Lane V/C Ratio		-				

The Views $\,$ 08/13/2019 2021 Background PM Peak Hour MTA

HCM 6th TWSC 1: Highway 26 & Vista Loop Drive (W)

Intersection						
Int Delay, s/veh	0.8					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	<u> </u>		†		Y	0001
Traffic Vol, veh/h	28	TT 609	637	1	T	69
Future Vol, veh/h	28 28	609 609	637	1	0	69 69
	28	609 0	637	0	0	09
Conflicting Peds, #/hr		-				
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	155	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	12	12	9	9	2	2
Mvmt Flow	30	655	685	1	0	74
NA ' /NA'	4					
	Major1		Major2		Minor2	
Conflicting Flow All	686	0	-	0	1074	343
Stage 1	-	-	-	-	686	-
Stage 2	-	-	-	-	388	-
Critical Hdwy	4.34	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.32	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	840	-	-	-	215	653
Stage 1	-	-	-	-	461	-
Stage 2	-	-		-	655	-
Platoon blocked, %	-	-	-	-	000	-
	Q40	-	-	-	207	652
Mov Cap-1 Maneuver	840	-	-		207	653
Mov Cap-2 Maneuver	-	-	-	-	207	-
Stage 1	-	-	-	-	444	-
Stage 2	-	-	-	-	655	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.4		0		11.2	
HCM LOS					В	
					5	
				051	0570	NA/L 4
Minor Lane/Major Mvm	τ	NWT	NWR	SEL		WLn1
Capacity (veh/h)		-	-	840	-	653
HCM Lane V/C Ratio		-	-	0.036	-	0.114
HCM Control Delay (s)		-	-	9.4	-	11.2
HCM Lane LOS		-	-	А	-	В
HCM 95th %tile Q(veh)		-	-	0.1	-	0.4

The Views 08/13/2019 2021 Background plus Site Trips AM Peak Hour MTA

Synchro 10 Light Report Page 1

06/15/2020

HCM 6th TWSC 2: Knapp N Site Access/Ortiz Street & Vista Loop Drive

Intersection 4.3 Int Delay, s/veh SEL SER NWL NWT NWR NEL NET NER SWL SWT SWR Movement SET Lane Configurations 4 4 4 4 16 0 0 Traffic Vol, veh/h 5 0 21 2 2 1 7 Future Vol, veh/h 1 7 16 0 21 0 2 1 0 2 5 1 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop **RT** Channelized -None --None -None -None -Storage Length -----_ -. ----Veh in Median Storage, # -0 0 -0 -0 -----Grade, % 0 0 0 0 --------Peak Hour Factor 75 75 75 75 75 75 75 75 75 75 75 75 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 Mvmt Flow 1 7 9 1 21 0 28 0 3 1 0 3 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 21 0 0 16 0 0 39 37 12 38 41 21 23 23 Stage 1 14 14 --------Stage 2 25 23 15 18 ---Critical Hdwy 4.12 4.12 7.12 6.52 6.22 7.12 6.52 6.22 ---Critical Hdwy Stg 1 ---6.12 5.52 _ 6.12 5.52 -Critical Hdwy Stg 2 5.52 5.52 -6.12 6.12 --2.218 - 2.218 Follow-up Hdwy --- 3.518 4.018 3.318 3.518 4.018 3.318 Pot Cap-1 Maneuver 1595 --1602 --966 855 1069 967 851 1056 Stage 1 --- 1006 884 995 876 ----Stage 2 993 876 -1005 880 -----Platoon blocked, % ----849 1069 963 1056 Mov Cap-1 Maneuver 1595 --1602 --962 853 Mov Cap-2 Maneuver 962 853 963 849 --------994 1005 883 875 Stage 1 -----Stage 2 990 875 1001 879 --------SE NW NE SW Approach HCM Control Delay, s 0.6 0.4 8.8 8.5 HCM LOS А А Minor Lane/Major Mvmt NELn1 NWT NWR SEL SET SERSWLn1 NWL Capacity (veh/h) 970 1602 1595 1023 _ HCM Lane V/C Ratio 0.032 0.001 0.001 0.004 --7.3 8.5 HCM Control Delay (s) 8.8 7.2 0 0 --HCM Lane LOS Α А А А А А -_

0

0

The Views 08/13/2019 2021 Background plus Site Trips AM Peak Hour MTA

0.1

0

HCM 95th %tile Q(veh)

Synchro 10 Light Report Page 2

06/15/2020

HCM 6th TWSC 3: Vista Loop Drive & Knapp S Site Access

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EBR	INPL			SBR
Lane Configurations	Y	4	4	र्च	÷.	4
Traffic Vol, veh/h	11	4	1	6	5	4
Future Vol, veh/h	11	4	1	6	5	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	15	5	1	8	7	5
Major/Minor	Minor2		Major1	٨	Aniar?	
					/lajor2	
Conflicting Flow All	20	10	12	0	-	0
Stage 1	10	-	-	-	-	-
Stage 2	10	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	997	1071	1607	-	-	-
Stage 1	1013	-	-	-	-	-
Stage 2	1013	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	996	1071	1607	-	-	-
Mov Cap-2 Maneuver	996	-	-	-	-	-
Stage 1	1012	-	-	-	-	-
Stage 2	1013	-	-	-	-	-
0.0.90 -						
Approach	EB		NB		SB	
HCM Control Delay, s	8.6		1		0	
HCM LOS	А					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1607	- 101	1015	001	ODIX
HCM Lane V/C Ratio		0.001	-	0.02	-	-
		7.2	-0	0.02 8.6	-	-
HCM Control Delay (s)						-
HCM Lane LOS	\	A 0	A _	A 0.1	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

The Views 08/13/2019 2021 Background plus Site Trips AM Peak Hour MTA

HCM 6th TWSC 4: Vista Loop Drive & Picking Site Access

Intersection						
Int Delay, s/veh	5.3					
			NDT		CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y	0	- î÷		0	र्च
Traffic Vol, veh/h	44	0	7	14	0	9
Future Vol, veh/h	44	0	7	14	0	9
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	59	0	9	19	0	12
N 4 = i = = // A i =	Main 1		1-1-4		4-1-0	
Major/Minor	Minor1		/lajor1		Major2	
Conflicting Flow All	31	19	0	0	28	0
Stage 1	19	-	-	-	-	-
Stage 2	12	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	983	1059	-	-	1585	-
Stage 1	1004	-	-	-	-	-
Stage 2	1011	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	983	1059	-	-	1585	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	1004	-			_	_
				-		
			-	-		
Stage 2	1004	-	-	-	-	-
	1011		-	-		-
			- - NB			-
Stage 2 Approach	1011 WB			-	-	-
Stage 2 Approach HCM Control Delay, s	1011 WB 8.9		NB	-	SB	-
Stage 2 Approach	1011 WB		NB	-	SB	-
Stage 2 Approach HCM Control Delay, s HCM LOS	1011 WB 8.9 A	-	<u>NB</u> 0		<u>-</u> SB 0	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvr	1011 WB 8.9 A	NBT	NB 0 NBRW	VBLn1	- SB 0 SBL	SBT
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h)	1011 WB 8.9 A	- NBT	NB 0 NBRV	<u>VBLn1</u> 983	- SB 0 SBL 1585	SBT -
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	1011 <u>WB</u> 8.9 A nt	- NBT -	NB 0 NBRV -	VBLn1 983 0.06	- SB 0 SBL 1585	SBT -
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	1011 <u>WB</u> 8.9 A nt	- NBT - -	<u>NB</u> 0 <u>NBRV</u> - -	VBLn1 983 0.06 8.9	- SB 0 SBL 1585 - 0	SBT - -
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	1011 <u>WB</u> 8.9 A nt	- NBT -	NB 0 NBRV -	VBLn1 983 0.06	- SB 0 SBL 1585	SBT -

The Views 08/13/2019 2021 Background plus Site Trips AM Peak Hour MTA

HCM 6th TWSC 5: Highway 26 & Vista Loop Drive (E)

Intersection						
Int Delay, s/veh	0.7					
	•	_				
Movement	SEL	SET	NWT	NWR		SWR
Lane Configurations	<u>۲</u>	- 11	_ ∱ î⊧		۰¥	
Traffic Vol, veh/h	16	593	597	5	12	41
Future Vol, veh/h	16	593	597	5	12	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	140	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	12	12	9	9	2	2
Mvmt Flow	18	674	678	6	14	47
	10	517	010	0	14	וד
	Major1	١	Major2	I	Minor2	
Conflicting Flow All	684	0	-	0	1054	342
Stage 1	-	-	-	-	681	-
Stage 2	-	-	-	-	373	-
Critical Hdwy	4.34	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.32	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	841	-	-	-	221	654
Stage 1	- 041	-	-	-	464	- 004
Stage 2	-	-	-	-	666	-
	-				000	-
Platoon blocked, %	044	-	-	-	040	054
Mov Cap-1 Maneuver	841	-	-	-	216	654
Mov Cap-2 Maneuver	-	-	-	-	216	-
Stage 1	-	-	-	-	454	-
Stage 2	-	-	-	-	666	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.2		0		14.3	
	0.2		0		14.3 B	
HCM LOS					В	
Minor Lane/Major Mvm	t	NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)			_	841	-	448
HCM Lane V/C Ratio		-		0.022		0.134
HCM Control Delay (s)		-	-	9.4	-	14.3
• • • •		-	-	9.4 A	-	14.3 B
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	0.1	-	0.5

The Views $\,08/13/2019\,2021$ Background plus Site Trips AM Peak Hour MTA

HCM 6th TWSC 1: Highway 26 & Vista Loop Drive (W)

Intersection						
Int Delay, s/veh	0.5					
Movement	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations		<u>→</u>	10001 10001	INVIR		SWR
Traffic Vol, veh/h	72	TT 1156	T⊮ 922	0	 0	37
Future Vol, veh/h	72	1156	922	0	0	37
Conflicting Peds, #/hr	1	0	0		1	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	155	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, %	3	3	5	5	2	2
Mvmt Flow	74	1192	951	0	0	38
	/lajor1		Major2		Minor2	
Conflicting Flow All	952	0	-	0	1697	478
Stage 1	-	-	-	-	952	-
Stage 2	-	-	-	-	745	-
Critical Hdwy	4.16	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.23	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	711	-	-	-	83	534
Stage 1	-		-	-	335	- 50
Stage 2	-	-	-	-	430	-
	-	-	-		430	-
Platoon blocked, %	740	-	-	-		500
Mov Cap-1 Maneuver	710	-	-	-	74	533
Mov Cap-2 Maneuver	-	-	-	-	74	-
Stage 1	-	-	-	-	300	-
Stage 2	-	-	-	-	430	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.6		0		12.3	
HCM LOS	0.0		J J		B	
					J	
Minor Lane/Major Mvm	t	NWT	NWR	SEL	SETS	SWLn1
Capacity (veh/h)		-	-	710	-	533
HCM Lane V/C Ratio		-	-	0.105	-	0.072
HCM Control Delay (s)		-	-	10.7	-	12.3
HCM Lane LOS		-	-	B	-	B
HCM 95th %tile Q(veh)		-	-	0.3	-	0.2
			-	0.0		0.2

The Views $\,08/13/2019\,2021$ Background plus Site Trips PM Peak Hour MTA

Synchro 10 Light Report Page 1

06/15/2020

HCM 6th TWSC 2: Knapp N Site Access/Ortiz Street & Vista Loop Drive

2.6

SEL

2

2

0

SET

♣ 15

15

0

Intersection Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Traffic Vol, veh/h

Future Vol, veh/h

Sign Control

SER NWL NWT NWR NEL NET NER SWL SWT SWR **↔** 0 **4** 12 **₽** 0 23 2 14 2 0 1 1 23 2 12 14 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop None None None None

RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	50	50	50	50	50	50	50	50	50	50	50	50	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	30	46	4	24	2	28	0	2	0	0	4	

Major/Minor	Major1		М	ajor2			Minor1		I	Minor2			
Conflicting Flow All	26	0	0	76	0	0	96	95	53	95	117	25	
Stage 1	-	-	-	-	-	-	61	61	-	33	33	-	
Stage 2	-	-	-	-	-	-	35	34	-	62	84	-	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	- 2	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1588	-	-	1523	-	-	887	795	1014	888	773	1051	
Stage 1	-	-	-	-	-	-	950	844	-	983	868	-	
Stage 2	-	-	-	-	-	-	981	867	-	949	825	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1588	-	-	1523	-	-	880	790	1014	882	768	1051	
Mov Cap-2 Maneuver	-	-	-	-	-	-	880	790	-	882	768	-	
Stage 1	-	-	-	-	-	-	947	841	-	980	865	-	
Stage 2	-	-	-	-	-	-	974	864	-	944	823	-	
-													

	Approach	SE	NW	NE	SW	
HCM LOS A A	HCM Control Delay, s	0.4	1	9.2	8.4	
	HCM LOS			А	A	

Minor Lane/Major Mvmt	NELn1	NWL	NWT	NWR	SEL	SET	SERS	WLn1
Capacity (veh/h)	888	1523	-	-	1588	-	-	1051
HCM Lane V/C Ratio	0.034	0.003	-	-	0.003	-	-	0.004
HCM Control Delay (s)	9.2	7.4	0	-	7.3	0	-	8.4
HCM Lane LOS	A	А	А	-	А	А	-	А
HCM 95th %tile Q(veh)	0.1	0	-	-	0	-	-	0

The Views 08/13/2019 2021 Background plus Site Trips PM Peak Hour MTA

HCM 6th TWSC 3: Vista Loop Drive & Knapp S Site Access

Intersection						
Int Delay, s/veh	2.9					
			ND:		0.0-7	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	_		र्भ	4	
Traffic Vol, veh/h	7	2	4	8	5	11
Future Vol, veh/h	7	2	4	8	5	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	3	5	11	7	15
Major/Minor M	/linor2	- 1	Major1	Ν	Major2	
Conflicting Flow All	36	15	22	0	viaj012 -	0
Stage 1	15	-	- 22	-	-	-
Stage 2	21	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
		0.22	4.12			
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	977	1065	1593	-	-	-
Stage 1	1008	-	-	-	-	-
Stage 2	1002	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	974	1065	1593	-	-	-
Mov Cap-2 Maneuver	974	-	-	-	-	-
Stage 1	1005	-	-	-	-	-
Stage 2	1002	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		2.4		0	
			2.4		0	
HCM LOS	A					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1593	-	993	-	-
HCM Lane V/C Ratio		0.003	-	0.012	-	-
HCM Control Delay (s)		7.3	0	8.7	-	-
HCM Lane LOS		A	Ā	A	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-
				•		

The Views 08/13/2019 2021 Background plus Site Trips PM Peak Hour MTA

HCM 6th TWSC 4: Vista Loop Drive & Picking Site Access

Intersection						
Int Delay, s/veh	2.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations					ODL	
Traffic Vol, veh/h	1 26	0	1 2	46	0	€ 7
						7
Future Vol, veh/h	26	0	12 0	46	0	
Conflicting Peds, #/hr		-		0		0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	35	0	16	61	0	9
		-		• ·		-
NA . ' /NA'	N/ 4		4		4	
Major/Minor	Minor1		/lajor1		Major2	
Conflicting Flow All	56	47	0	0	77	0
Stage 1	47	-	-	-	-	-
Stage 2	9	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	952	1022	-	-	1522	-
Stage 1	975	-	-	-	-	-
Stage 2	1014	-	_	_	_	_
Platoon blocked, %	1014	-	-	-	-	-
	050	1000		-	1522	-
Mov Cap-1 Maneuver		1022	-	-		
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	975	-	-	-	-	-
Stage 2	1014	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s					0	
			0		0	
HCM LOS	Α					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)				952	1522	
HCM Lane V/C Ratio		-		0.036	-	-
HCM Control Delay (s	.)	-	-	8.9	0	-
HCM Lane LOS	7)	-	-	0.9 A	A	-
	-)	-	-		A 0	-
HCM 95th %tile Q(vel	1)	-	-	0.1	0	-

The Views 08/13/2019 2021 Background plus Site Trips PM Peak Hour MTA

HCM 6th TWSC 5: Highway 26 & Vista Loop Drive (E)

Intersection Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control	0.7 SEL 12 42	SET	NWT	NWR		
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control	1 42	- 11		NWR		
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control	1 42	- 11			SWL	SWR
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control	42				<u>SVVL</u>	OWIN
Future Vol, veh/h Conflicting Peds, #/hr Sign Control		111/	TP 900	16	11	22
Conflicting Peds, #/hr Sign Control	N.)	1114 1114	900	16	11	22
Sign Control	42 0	0	900	16	0	22
			Free			
DT Channeller d	Free -	Free		Free	Stop	Stop
RT Channelized			-		-	None
Storage Length	140	-	-	-	0	-
Veh in Median Storag		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	3	3	5	5	2	2
Mvmt Flow	45	1185	957	17	12	23
Major/Minor	Major1		Major2	Ν	/linor2	
		0				107
Conflicting Flow All	974		-		1649	487
Stage 1	-	-	-	-	966	-
Stage 2	-	-	-	-	683	-
Critical Hdwy	4.16	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.23	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	698	-	-	-	90	526
Stage 1	-	-	-	-	330	-
Stage 2	-	-	-	-	463	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	698	-	-	-	84	526
Mov Cap-2 Maneuver		-	-	-	84	
Stage 1	-		-	-	309	-
Stage 2	_		-	_	463	-
Slaye 2	-	-	-	-	403	-
Approach	SE		NW		SW	
HCM Control Delay, s	0.4		0		28	
					D	
HCM LOS					SET	WLn1
HCM LOS	mt	NI//T	NW/P	SEL		
HCM LOS Minor Lane/Major Mvr	mt	NWT	NWR	SEL		
HCM LOS Minor Lane/Major Mvr Capacity (veh/h)	mt	-	-	698	-	191
HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio		-	-	698 0.064	-	191 0.184
HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		-	-	698 0.064 10.5	-	191 0.184 28
HCM LOS Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	5)	-	-	698 0.064	-	191 0.184

The Views 08/13/2019 2021 Background plus Site Trips PM Peak Hour MTA

Synchro 10 Light Report Page 5

06/15/2020

Queuing and Blocking Report 2021 Background plus Site Trips AM Peak Hour

06/15/2020

Intersection: 1: Highway 26 & Vista Loop Drive (W)

Maxamant	05	C14/
Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	59	64
Average Queue (ft)	13	33
95th Queue (ft)	42	54
Link Distance (ft)		32
Upstream Blk Time (%)		9
Queuing Penalty (veh)		4
Storage Bay Dist (ft)	155	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 2: Knapp N Site Access/Ortiz Street & Vista Loop Drive

Movement	NE	SW
Directions Served	LTR	LTR
Maximum Queue (ft)	43	31
Average Queue (ft)	18	4
95th Queue (ft)	46	21
Link Distance (ft)	240	281
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Vista Loop Drive & Knapp S Site Access

Movement	EB
Directions Served	LR
Maximum Queue (ft)	38
Average Queue (ft)	14
95th Queue (ft)	41
Link Distance (ft)	142
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

The Views MTA

Queuing and Blocking Report 2021 Background plus Site Trips AM Peak Hour

06/15/2020

Intersection: 4: Vista Loop Drive & Picking Site Access

Movement	WB
Directions Served	LR
Maximum Queue (ft)	52
Average Queue (ft)	23
95th Queue (ft)	50
Link Distance (ft)	312
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Highway 26 & Vista Loop Drive (E)

Movement	SE	SW
Directions Served	L	LR
Maximum Queue (ft)	32	67
Average Queue (ft)	7	29
95th Queue (ft)	28	60
Link Distance (ft)		35
Upstream Blk Time (%)		8
Queuing Penalty (veh)		4
Storage Bay Dist (ft)	140	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 8

The Views MTA

Queuing and Blocking Report 2021 Background plus Site Trips PM Peak Hour

06/15/2020

Intersection: 1: Highway 26 & Vista Loop Drive (W)

Movement	SE	SE	SE	NW	NW	SW	B13
Directions Served	L	Т	Т	Т	TR	LR	Т
Maximum Queue (ft)	76	24	14	25	26	76	4
Average Queue (ft)	31	1	0	1	1	26	0
95th Queue (ft)	61	11	8	10	12	55	3
Link Distance (ft)		1362	1362	2803	2803	32	1364
Upstream Blk Time (%)						7	
Queuing Penalty (veh)						2	
Storage Bay Dist (ft)	155						
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 2: Knapp N Site Access/Ortiz Street & Vista Loop Drive

Movement	NE	SW
Directions Served	LTR	LTR
Maximum Queue (ft)	48	20
Average Queue (ft)	12	1
95th Queue (ft)	40	9
Link Distance (ft)	240	281
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Vista Loop Drive & Knapp S Site Access

Movement	EB
Directions Served	LR
Maximum Queue (ft)	34
Average Queue (ft)	7
95th Queue (ft)	30
Link Distance (ft)	142
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

The Views MTA

Queuing and Blocking Report 2021 Background plus Site Trips PM Peak Hour

06/15/2020

Intersection: 4: Vista Loop Drive & Picking Site Access

Movement	WB
Directions Served	LR
Maximum Queue (ft)	33
Average Queue (ft)	18
95th Queue (ft)	44
Link Distance (ft)	312
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: Highway 26 & Vista Loop Drive (E)

Movement	SE	SW	B8
Directions Served	L	LR	Т
Maximum Queue (ft)	56	72	23
Average Queue (ft)	17	28	2
95th Queue (ft)	45	63	20
Link Distance (ft)		35	108
Upstream Blk Time (%)		13	0
Queuing Penalty (veh)		4	0
Storage Bay Dist (ft)	140		
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 6

The Views MTA

Page: 1		arty art
		al of crash repo Iit in fewer propr
	B S D S C S	2004, may ress 2004, may ress
	ACT BURNT	sfrective 01/01/
	вкиок	i requirement, requirement,
	007	crash reportin crash reportin
20	X RES RES	ing the highest DMV's vehicle
	E NULLA E SURTY E	tive changes to tive changes to
NISION	P# TYPE	e. Note. Legisla
OL TURNER DI DI OL TURNER DI DI OL TURNER DI DI OL TURNER DI DI DI OL TURNER DI	100 M	lysis and Repo Ish are accurate
sportarion bave sportarion bave Aurering as county, 01/ as county, 01/ spcL UBE		rg to a single cr g to a single cr
- TEANSPOR ASH ANAYLIYO ASH ANAYLIYO ASH ANAYLIYO ASH ANAYLIYO ASH ANAYLIYO ASH ANAYLIYO ASH ANAYLIYO ASH ANAYLIYO Clackanas C	V# TYPE	ORS 811.720. details pertainin
OREGON.: DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSFORTATION DATA SECTION - CRASH AMAVLYSIS AND REPORTING URBAN NON-SYSTEM CRASH LINITIG TRANSFORTANTON DATA SECTION - CRASH LINITIG TRANSFORTATION DATA SECTION - CRASH LINITIG TRANSFORTATION DATA SECTION - TRANSFORTATION DEVELOPMENT DIVISION TRANSFORTATION DATA SECTION - TRANSFORTATION DEVELOPMENT DIVISION TRANSFORTATION DATA SECTION - TRANSFORTATION DEVELOPMENT DIVISION		e made that all e made that all
MENT OF TRANSI UTION DATA SEC UTEAN OD HV, CİLY O OFFRD MTHR	SUR THEORY AND A CONSTRUCTION AN	of Transportatio n assurances b
N., DEPARTW TRANSPORTN R at MT HOU		on Department resented nor cc
OREGON D TEANU VISTA LP DR at NTT-TYPE INTT-TYPE	TRAP- LEARES CONTLA PARES	creatines are repo
NI NI NI		ar all qualifying at all qualifying
	DIRECT	of guarantee th
CLTY STREET	SECOND STREET	rdividual driver unit can n sh Data File. sh Data File.
		compiled from i siyais and Repo Statewide Cra:
	5NO24	in this report is the Crash An inclusion in the inclusion in the
CDS380 08/14/2019 CTTY OF SANDY, CLACKANAS COUNTY STRM P R J Y CDAK	L K LAT	Disclaimer. The information contained in this report is completed from individual driver and police crash reports submitted for teach are accurate. Note: Legislative changes to DMV's vehicle crash reports active submitted of crash report forms is the exposibility of the individual driver; the Crash Taport active set and active changes to DMV's vehicle crash frager actives submitted of crash report forms is the expossibility of the individual driver; the Crash Taport actives are represented nor can assumences be made that all deals pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash frager active of 107/2004, may result in fewer, property dramage only crashs save accurate. Note: Legislative changes to DMV's vehicle crash frager active of 107/2004, may result in fewer, property dramage only crashs are accurate. Note: Legislative changes to DMV's vehicle crash frager active of 107/2004, may result in fewer, property dramage only crashs are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/07/2004, may result in fewer, property dramage only crashs active the frager of antipest active act
10 2019 22019 5 D M 5 D M 5 A U T		er: The inform onsbilling of the i only crashes b
CD5380 08/14/2019 08/14/2019 CTTY OF SA CTTY OF SA	RD DFT UNLOC?	Disclain the resp damage

Page: 1		port forms is perty
	CAUSE	mittal of cash rec
		trior, because sub-
	ACT BVBNT	entationes hove
	REACOR	iny crash data to n epointing requir
٢	LICKIS PED RES LOC	the highest cue
to 12/31/201	S K EVALUATION S S K S CALL	mitted to providing
TTITISION T 01/01/2013	PRTC I P# TYPE 5	orting Unit is com
EVELOPMENT D REPORTING UNI	RROM TO	Analysis and Rep e crash are accur
OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT UBEAN NON-SYSTEM CRASH LAFING	SPCL USE TRLR OTY OMNER V# TYPE	1,120. The Crash entalning to a single
 TRANSPORTATION - TRANSPORTATIO TRANSPORTATION - TRANSPORTATIO TRANSPORTATION TRANSPORTATIO	CRASH COLL SURTY VI	aquired in ORS 8- e that all details p
OF TRANSPOR OF TRANSPOR N DATA SECTIO URBAN NOI URBAN NOI	WTHR SURF LIGHT LIGHT	ansportation as n isurances be made
. DEPARTMENTI RANSPORTATION	L OFFRD - RRUBT - RUNBT - DRVMY	Department of T sented nor can as
OREGON. T T nd Intersect	INT-TYPE (MEDIAN) INT-REL LEGS TRAR- (#LANES) CONTL	tted to the Oregor grashes are repr
VISTA LP DR «	ID RD CHAR () DIRECT () LOCTN ()	aan reports subm That all qualifying
		ther and police or can not guartice e.
	CITY STREET FIRST STREET SECOND STREET LRS	d from individual o ut Reporting Unit die Crash Dala F.J.
~	CLASS DI ST FROM LONG	s report is complie Crash Analysis a son in the Statever
CD5380 08/14/2019 CITY OF SANDY, CLACKAMAS COUNTY	W DATE C DAY R RTIME K LAT	Distance. The informatios constructs is compled frame industrial datase and pacies and more as more associated in the construction as required in Origon Distance. All more approximation is constructed as the construction as required in Origon Distance and the construction as required in Origon Distance and the construction as required in Origon Distance and and the construction as required in Origon Distance and and as a second of the construction as required in Origon Distance and and as a second of the construction as required in Origon Distance and as a second of the construction as required in the construction of the construction as required in the construction of the construction as required in the construction as required in the construction of the construction as required in the construction of the const
10 2019 F SANDY, CLAG	S D M W DATE P R J S W DATE I I C O DAY D C S V L R LAT	er: The informatio onsbiny of the inc only crashes bein
CDS380 08/14/2019 CTTY OF SN	SER# INVEST RD DFT UNLOC?	 Dis dam the respondence

Preliminary Traffic Signal Warrant Analysis

 Project Name: The Views
 Intersection:
 Highway 26 at SE Vista Loop Road (West)

 Scenario:
 2021 Background Plus Site Trips

 Number of Major Street Lanes:
 2
 PM Peak Hour Volume
 2150 (sum of both approaches)

 Number of Minor Street Lanes
 1
 PM Peak Hour Volume
 0 (highest-volume approach)^a

 Posted or 85th percentile speed > 40 mph:
 Yes

 Isolated Population Less than 10,000:
 No

Warrant 1, Eight-Hour Vehicular Volume

Condition A - Minimum Vehicular Volume									
	nes for moving ach approach								
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

Condition B - Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach			les per hou otal of both	-		Vehicles per hour on minor street (total of both approaches)			
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

Warrant Anaylsis Calculations	8th Highest Hour ^b	Minimum Volume	Warrant Satisfied?
Condition A - Minimum Vehicular Volume			
Major Street Volume	1215	420	
Minor Street Volume	0	105	No
Condition B - Interruption of Continuous Traffic			
Major Street Volume	1215	630	
Minor Street Volume	0	53	No
Combination Warrant ^c			
Major Street Volume	1215	504	
Minor Street Volume	0	84	No

^a Minor-Street right turn volumes are reduced to account for the impact of right-turns on red.

^b Eighth-highest hour volumes are calculated as 5.65 percent of the expected daily traffic volume.

^c This warrant should be used only after adequate trial of other alternatives has failed to solve traffic problems.

Preliminary Traffic Signal Warrant Analysis

 Project Name: The Views
 Intersection:
 Highway 26 at SE Vista Loop Road (East)

 Scenario:
 2021 Background Plus Site Trips

 Number of Major Street Lanes:
 2
 PM Peak Hour Volume
 2072 (sum of both approaches)

 Number of Minor Street Lanes
 1
 PM Peak Hour Volume
 11
 (highest-volume approach)^a

 Posted or 85th percentile speed > 40 mph:
 Yes
 Yes
 Yes

 Isolated Population Less than 10,000:
 No
 No

Warrant 1, Eight-Hour Vehicular Volume

Condition A - Minimum Vehicular Volume									
	ber of lanes for moving Vehicles per hour on major street Vehicles per hour on minor street fic on each approach (total of both approaches) (total of both approaches)								
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

Condition B - Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach		Vehicles per hour on major street (total of both approaches)				Vehicles per hour on minor street (total of both approaches)			
Major Street	Minor Street	100%	80%	70%	56%	100%	80%	70%	56%
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

Warrant Anaylsis Calculations	8th Highest Hour ^b	Minimum Volume	Warrant Satisfied?
Condition A - Minimum Vehicular Volume			
Major Street Volume	1171	420	
Minor Street Volume	6	105	No
Condition B - Interruption of Continuous Traffic			
Major Street Volume	1171	630	
Minor Street Volume	6	53	No
Combination Warrant ^c			
Major Street Volume	1171	504	
Minor Street Volume	6	84	No

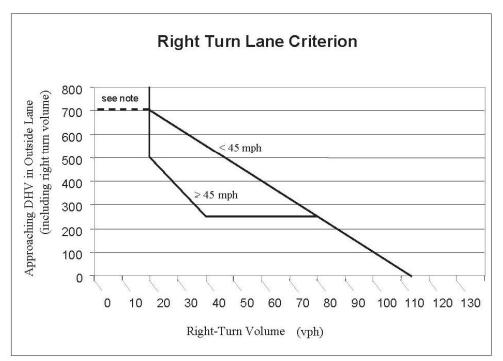
^a Minor-Street right turn volumes are reduced to account for the impact of right-turns on red.

^b Eighth-highest hour volumes are calculated as 5.65 percent of the expected daily traffic volume.

^c This warrant should be used only after adequate trial of other alternatives has failed to solve traffic problems.

Right-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name: The ViewsApproach:Northwest-Bound Highway 26 at SE Vista Loop Drive (West)Scenario:2021 Background Plus Site Trips


Major-Street Design Speed: 60 mph

	AM Volume	PM Volume
Number of Right Turns per Hour:	1	0
Approaching DVH in Outside Lane:	320	461
Calculated Turn Volume Threshold:	34	23
Right Turn Volume Exceeds Threshold?	NO	NO

Criterion 1: Vehicular Volume

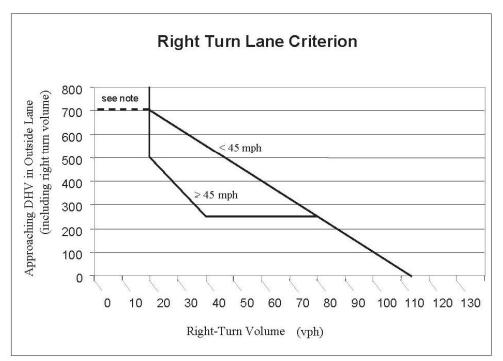
The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a right turn lane. The vehicular volume criteria are determined using the curve in Exhibit 7-2.

Exhibit 7-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

Right-Turn Lane Warrant Analysis (ODOT Methodology)

Project Name:The ViewsApproach:Northwest-Bound Highway 26 at SE Vista Loop Drive (East)Scenario:2021 Background Plus Site Trips


Major-Street Design Speed: 60 mph

	AM Volume	PM Volume
Number of Right Turns per Hour:	5	16
Approaching DVH in Outside Lane:	304	466
Calculated Turn Volume Threshold:	36	23
Right Turn Volume Exceeds Threshold?	NO	NO

Criterion 1: Vehicular Volume

The vehicular volume criterion is intended for application where the volume of intersecting traffic is the principal reason for considering installation of a right turn lane. The vehicular volume criteria are determined using the curve in Exhibit 7-2.

Exhibit 7-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

EXHIBIT G

MEMORANDUM

DATE:	June 15, 2020
то:	Mac Even (Even Better Homes)
FROM:	Todd Prager, RCA #597, ISA Board Certified Master Arborist
RE:	Tree Plan for The Views Subdivision

Summary

This report includes tree removal, preservation, and protection recommendations for the proposed Views Subdivision in Sandy, Oregon.

Background

Even Better Homes is proposing to construct a 122 lot subdivision with new streets, sidewalks, utilities, and open space at 41717 Highway 26 in Sandy, Oregon. The proposed site plan with the proposed tree removal and retention is provided in Attachment 1.

The assignment requested of our firm for this project was to:

- Assess the trees within and adjacent to the portion of the site to be developed;
- Identify the trees to be removed and retained; and
- Provide tree protection recommendations for the trees to be retained.

Tree Assessment

In March, May, and June 2020 I completed the inventory of existing trees at the site.

The complete inventory data for each tree is provided in Attachment 2 and includes the tree number, common name, scientific name, trunk diameter (DBH), crown radius, health condition, structural condition, pertinent comments, whether it is an onsite 11-inch DBH or greater tree in good condition¹, and whether the tree will be retained or removed.

All County Surveyors and Planners added color coded labels to the inventory to denote onsite trees within the restricted development area (green), onsite trees

Section 17.102.50 of the City of Sandy Code requires three onsite trees over 11-inch DBH that are in good condition to be retained.

June 15, 2020 Page 2 of 11

Tree Plan for The Views Mac Even, Even Better Homes

outside the restricted development area (light salmon), offsite trees (gray), trees that are 11-inch DBH or greater and in good condition (yellow), trees that are not 11-inch DBH or greater and/or not in good condition (red), and trees to be removed (dark salmon).

The tree numbers in the inventory in Attachment 2 correspond to the tree numbers on the plans in Attachment 1. The trees were also tagged with their corresponding numbers in the field.

Tree Removal and Retention

This section of the report includes tree removal and retention recommendations based on the proposed site plan.

Tree Removal

The standard tree protection requirements in the City of Sandy Code range from at least 10 feet from the trunks of retained trees (SDC 17.102.50.B.1) to five feet beyond the driplines (SDC 17.92.10.D) unless otherwise approved by the Planning Director.

A typical alternative minimum protection zone allows encroachments no closer than a radius from a tree of .5 feet per inch of DBH as long as no more than 25 percent of the critical root protection zone area (estimated at one foot radius per inch of DBH) is impacted. Figure 1 illustrates this concept.

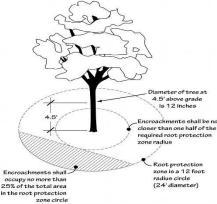


Figure 1: Alterative minimum protection zone

Using the criteria described above, while considering the tree conditions and their locations relative to grading, paving, construction, and other site improvements, 190 of the assessed trees at the site are proposed for removal.

Tree Retention

A total of 212 onsite trees are proposed to be retained. Of these 212 trees, 99 trees are in good condition and over 11-inch DBH. Section 17.102.50.A of the City of Sandy Code includes five criteria for tree retention with development. The five criteria followed by my findings in *italics* are listed below:

1. At least three trees 11 inches DBH or greater are to be retained for every one-acre of contiguous ownership.

Finding: The site is 32.87 acres in size so 98.61 trees over 11-inch DBH in good condition are required to be retained. The proposed preservation includes 99 trees over 11-inch DBH in good condition. This criterion is met.

2. Retained trees can be located anywhere on the site at the landowner's discretion before the harvest begins. Clusters of trees are encouraged.

Tree Plan for The Views Mac Even, Even Better Homes

Finding: The retained trees are clustered primarily within the restricted development areas of the site as shown in Attachment 1. This criterion is met.

3. Trees proposed for retention shall be healthy and likely to grow to maturity, and be located to minimize the potential for blow-down following the harvest.

Finding: All of the trees subject to this standard are in good health condition and likely to grow to maturity. The proposed clustering of retained trees in the restricted development will help to minimize blow down hazards. Therefore, this criterion is met.

4. If possible, at least two of the required trees per acre must be of conifer species.

Finding: Sixty-nine (69) of the 99 trees over 11-inch DBH and in good condition to be retained are conifer species. This criterion is met.

5. Trees within the required protected setback areas may be counted towards the tree retention standard if they meet these requirements.

Finding: There is no protected setback area at the site. This criterion is not applicable.

Tree Protection Recommendations

The standard tree protection requirements in the City of Sandy Code range from at least 10 feet from the trunks of retained trees (SDC 17.102.50.B.1) to five feet beyond the driplines (SDC 17.92.10.D) unless otherwise approved by the Planning Director.

A typical alternative minimum protection zone allows encroachments no closer than a radius from a tree of .5 feet per inch of DBH as long as no more than 25 percent of the critical root protection zone area (estimated at one foot radius per inch of DBH) is impacted. Figure 1 illustrates this concept.

The reason for using this alternative is because it allows the tree protection zone to better relate to the size of the tree and its root zone. For example, a 10 foot tree protection setback would not be adequate for a 48-inch DBH tree which should have a minimum setback of at least 24 feet. Also, driplines can be highly variable based on species growth habits and onsite conditions such as the presence of adjacent trees or past pruning.

The trees to be retained can be adequately protected by placing tree protection fencing as shown in Attachment 1. The tree protection fencing will protect at least 75 percent of their critical roots zones and avoid any encroachments closer than a radius of .5 feet per inch of DBH to a tree to be retained. No grading, stockpiling, storage,

Tree Plan for The Views Mac Even, Even Better Homes

disposal, or any other construction related activity shall occur in the tree protection zones unless specifically reviewed and approved by the project arborist.

The following additional protection measures shall apply to the trees at the site:

- *Tree Protection Fencing*: Establish tree protection fencing in the locations shown in Attachment 1. Required fencing shall be a minimum of six feet tall supported with metal posts placed no farther than ten feet apart installed flush with the initial undisturbed grade. Fence installation may be delayed until immediately after tree removal is complete.
- *Directional Felling*: Fell the trees to be removed away from the trees to be retained so they do not contact or otherwise damage the trunks or branches of the trees to be retained. No vehicles or heavy equipment shall be permitted within the tree protection zones during tree removal operations.
- *Stump Removal*: The stumps of the trees to be removed from within the tree protection zones shall either be retained in place or stump ground to protect the root systems of the trees to be retained.
- *Protect Tree Crowns*: Care will need to be taken to not contact or otherwise damage the crowns of the trees that may extend into the construction area.
- *Monitoring of New Grove Edges*: It will be important to reassess and monitor the trees along the newly exposed tree grove edges following site clearing and periodically during construction and after high wind events to ensure they do not pose a high risk. This monitoring should occur for the next two to three storm seasons following site clearing.
- *Sediment Fencing*: Shift sediment fencing to outside the tree protection zones. If erosion control is required inside the tree protection zones, use straw wattles to minimize root zone disturbance of the trees to be retained.

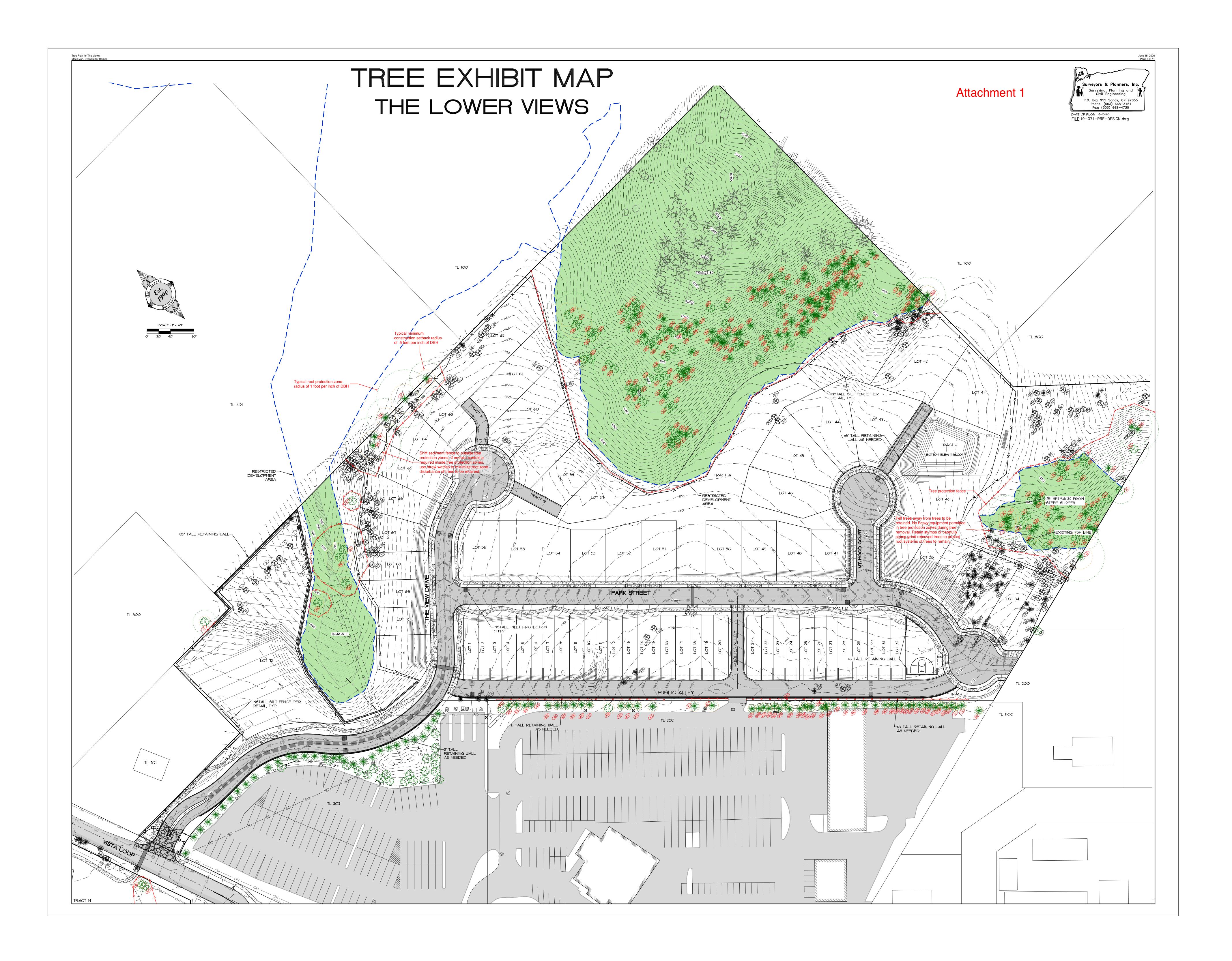
Additional tree protection recommendations for the trees to be retained are provided in Attachment 3.

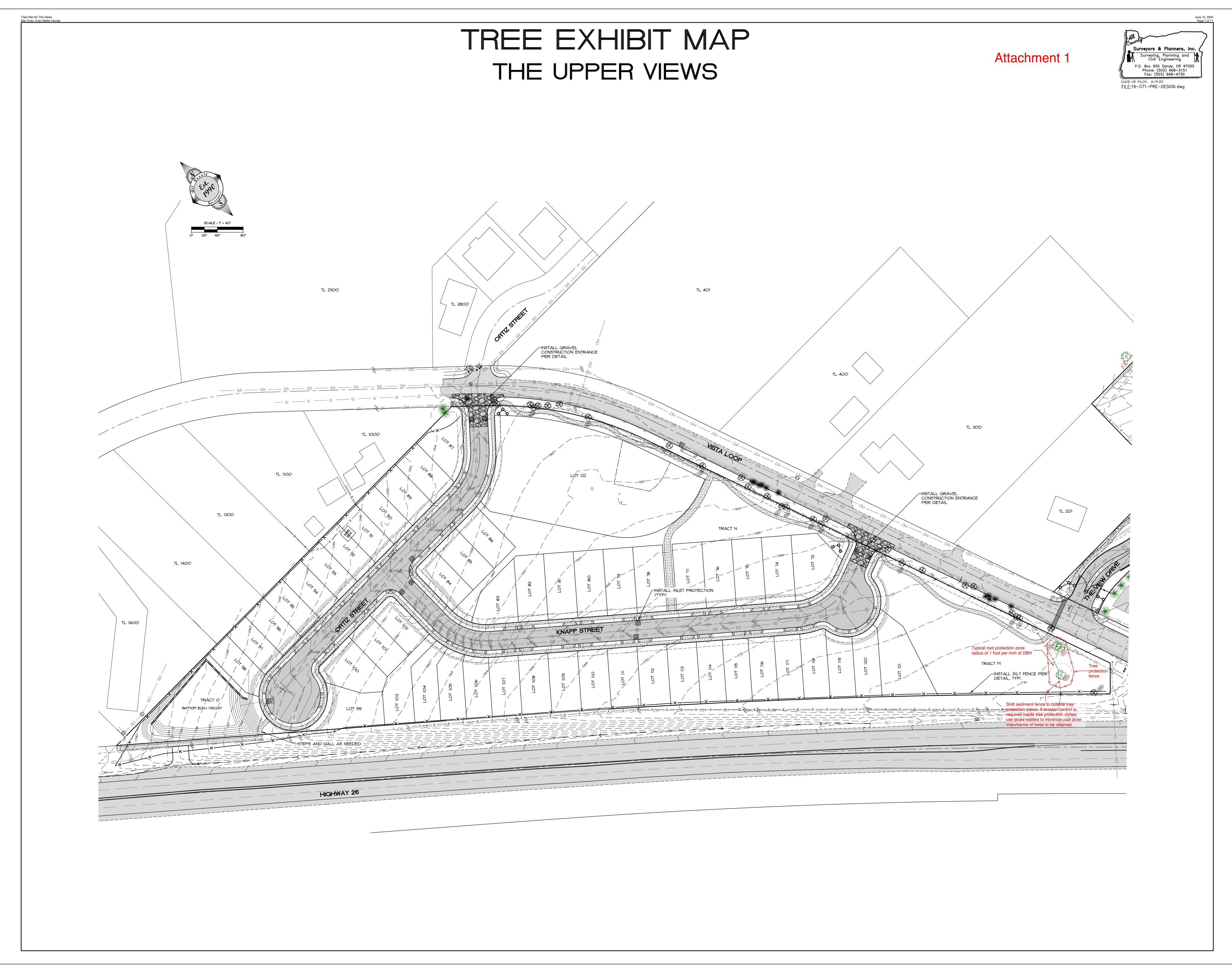
Tree Plan for The Views Mac Even, Even Better Homes

Conclusion

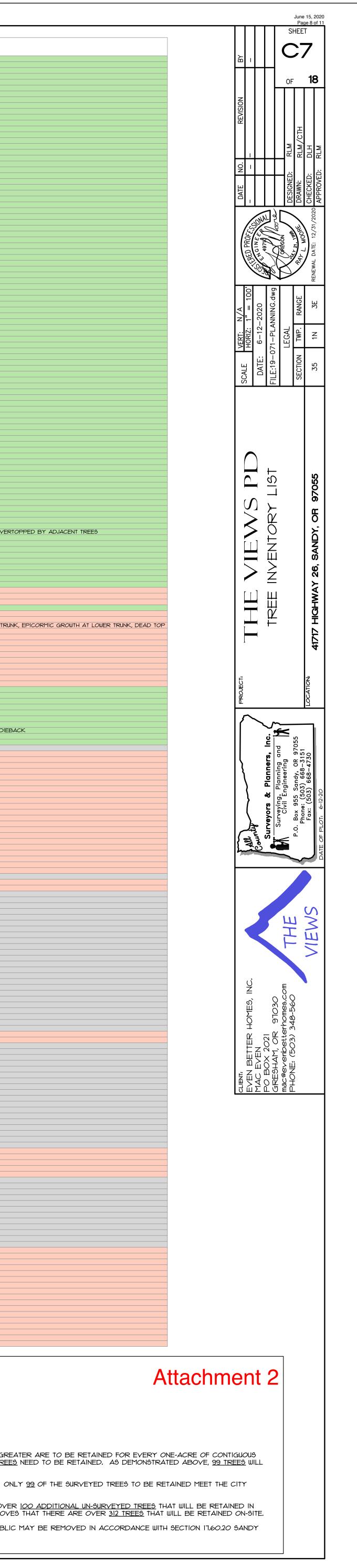
Ninety-nine (99) trees over 11-inch DBH in good condition are proposed to be retained at The Views Subdivision site. The required tree retention for the 32.87 acre site is 98.61 trees.

The trees to be retained will be adequately protected by adhering to the recommendations in this report.


Please contact me if you have questions, concerns, or need any additional information.


Sincerely,

Todd Prager


Todd Prager ASCA Registered Consulting Arborist #597 ISA Board Certified Master Arborist, WE-6723B ISA Qualified Tree Risk Assessor AICP, American Planning Association

Attachments: Attachment 1 - Site Plan w/ Tree Removal, Retention and Protection Attachment 2 - Tree Inventory Attachment 3 - Tree Protection Recommendations Attachment 4 - Assumptions and Limiting Conditions

	BAVED OR REMOVED TREE	No COMMON NAME DOUGLAS-FIR DOUGLAS-FIR	SCIENTIFIC NAME PSEUDOTSUGA MENZIESII PSEUDOTSUGA MENZIESII	DBH ¹ C-1 48 23 46 21	RAD ² CONDITIC GOOD GOOD	FAIR FAIR	YES MODERATELY ONE SIDED, EXTENSIVE IVY, CODOMINANT STEMS WITH NARROW CROTCH YES ONE SIDED		REMOVED	TREE NoCOMMON NAMESCIENTIFIC NAMEDBH'240RED ALDERALNUS RUBRAIO241RED ALDERALNUS RUBRAIO	C-RAD ² CONDITION ³ IO FAIR IO FAIR	STRUCTURE ³ POOR POOR	RETENTION OPTION ⁴ COMMENTS NO POOR TRUNK TAPER, 10% LCR NO POOR TRUNK TAPER, ONE SIDED
RED COLOR_	3 4 5 6	SWEET CHERRY RED ALDER SWEET CHERRY SWEET CHERRY SWEET CHERRY	PRUNUS AVIUM ALNUS RUBRA PRUNUS AVIUM PRUNUS AVIUM PRUNUS AVIUM	12 14 54 29 20 26 32 21	POOR FAIR FAIR FAIR FAIR FAIR	POOR FAIR FAIR FAIR FAIR	NO POOR TAPER, EXTENSIVE IVY, 10% LIVE CROWN RATIO (LCR) NO MULTIPLE LEADERS AT 6, LARGE OVEREXTENDED STEMS NO CODOMINANT AT 3' WITH INCLUDED BARK, OVEREXTENDED BRANCHES NO CODOMINANT AT I' WITH INCLUDED BARK, EXTENSIVE IVY NO ONE SIDED, CODOMINANT AT 8' WITH INCLUDED BARK		X X X	242DOUGLAS-FIRPSEUDOTSUGA MENZIESII21243DOUGLAS-FIRPSEUDOTSUGA MENZIESII28244WESTERN REDCEDARTHUJA PLICATA15245BIGLEAF MAPLEACER MACROPHYLLUM9246RED ALDERALNUS RUBRA19	19 GOOD 15 GOOD 15 GOOD 16 FAIR 20 GOOD	FAIR FAIR FAIR FAIR FAIR	YES BOWED LOWER TRUNK YES ONE SIDED YES DIRECTLY ADJACENT TO TREE 243, ONE SIDED NO ONE SIDED, CODOMINANT AT GROUND LEVEL WITH DECAY SEAM AT 6" STEM
NICATES REES TO BE MOVED	8 9 10	DOUGLAS-FIR SWEET CHERRY SWEET CHERRY SWEET CHERRY	PRUNUS AVIUM PSEUDOTSUGA MENZIESII PRUNUS AVIUM PRUNUS AVIUM PRUNUS AVIUM	22 15 15 16 10 13 13 14 18 14	FAIR FAIR POOR POOR	POOR POOR POOR POOR POOR	NO ONE SIDED, CODOMINANT AT 8 WITH INCLUDED BARK NO ONE SIDED, POOR TAPER NO POOR TAPER, EXTENSIVE IVY NO CODOMINANT AT 20', MARGINAL TRUNK TAPER NO SMOTHERED BY IVY		× × × ×	246RED ALDERALNUS RUBRA19241RED ALDERALNUS RUBRA18248WESTERN REDCEDARTHUJA PLICATA14249RED ALDERALNUS RUBRA12250BIGLEAF MAPLEACER MACROPHYLLUM34	20 GOOD 25 GOOD 15 GOOD 15 POOR 21 GOOD	FAIR FAIR POOR FAIR	YE3 40% LCR YE3 ONE SIDED, PRESSED AGAINST ADJACENT TREE YE3 PRESSED AGAINST ADJACENT TREES NO SIGNIFICANT LEAN, POOR TRUNK TAPER, EPICORMIC GROWTH AT LOWER TRUNK YE3 MODERATELY ONE SIDED, MULTIPLE LEADERS
(TYP)	12 13 14 15	SWEET CHERRY SWEET CHERRY WESTERN REDCEDAR DOUGLAS-FIR WESTERN REDCEDAR	PRUNUS AVIUM PRUNUS AVIUM THUJA PLICATA PSEUDOTSUGA MENZIESII THUJA PLICATA	38 20 20 20 14 10 24 18 14 10	VERY PC FAIR GOOD GOOD GOOD	DOR VERY P FAIR FAIR FAIR FAIR	NO LARGE FAILURES WITH HEARTROT AT 6' NO MULTIPLE LEADERS, EXTENSIVE IVY, NOT TAGGED AND SIZE ESTIMATED BECAUSE OFFSITE YES ONE SIDED, OVERTOPPED BY ADJACENT TREES YES 60% LCR, MARGINAL TRUNK TAPER YES MODERATELY ONE SIDED		× × ×	251RED ALDERALNUS RUBRA8252BIGLEAF MAPLEACER MACROPHYLLUM48253DOUGLAS-FIRPSEUDOTSUGA MENZIESII18254DOUGLAS-FIRPSEUDOTSUGA MENZIESII22255WESTERN REDCEDARTHWA PLICATA15	15 POOR 20 VERY POOR 18 GOOD 20 GOOD 12 GOOD	POOR VERY POOR FAIR FAIR GOOD	NO OVERTOPPED BY ADJACENT TREES, MODERATELY SUPPRESSED R NO EXTENSIVE DECAY AT LOWER TRUNK, HISTORY OF LEADER FAILURE YES 40% LCR YES ONE SIDED YES VES
	17 18 19 20	WE3TERN REDCEDAR WE3TERN REDCEDAR WE3TERN REDCEDAR DOUGLA3-FIR	THUJA PLICATA THUJA PLICATA THUJA PLICATA PSEUDOTSUGA MENZIESII	15 12 16 10 27 16 36 25	GOOD GOOD GOOD GOOD	FAIR FAIR FAIR FAIR	YE3 ONE SIDED YE3 ONE SIDED YE3 MODERATELY ONE SIDED YE3 ONE SIDED	TAN COLOR INDICATES	× ×	256DOUGLAS-FIRPSEUDOTSUGA MENZIESII35251DOUGLAS-FIRPSEUDOTSUGA MENZIESII22258DOUGLAS-FIRPSEUDOTSUGA MENZIESII19259DOUGLAS-FIRPSEUDOTSUGA MENZIESII16	25 GOOD 14 FAIR 15 FAIR 16 GOOD	GOOD FAIR FAIR FAIR	YES NO MODERATELY SUPPRESSED NO MODERATELY SUPPRESSED YES ONE SIDED
	21 22 23 24 24 25	WESTERN REDCEDAR WESTERN REDCEDAR WESTERN REDCEDAR WESTERN REDCEDAR BIGI FAF MAPL F	THUJA PLICATA THUJA PLICATA	12 10 34 20 35 28 33 22 26 25	FAIR GOOD GOOD GOOD GOOD	FAIR FAIR FAIR FAIR FAIR	NO MODERATELY SUPPRESSED, CODOMINANT AT 10' YES MODERATELY ONE SIDED YES ONE SIDED YES ONE SIDED YES ONE SIDED	TREES THAT ARE LOCATED ON-SITE BUT OUTSIDE OF THE RESTRICTED DEVELOPMENT AREA (TYP)	×	260DOUGLAS-FIRPSEUDOTSUGA MENZIESII9261DOUGLAS-FIRPSEUDOTSUGA MENZIESII12262DOUGLAS-FIRPSEUDOTSUGA MENZIESII22263BIGLEAF MAPLEACER MACROPHYLLUM44264DOUGLAS-FIRPSEUDOTSUGA MENZIESII16	9 FAIR 8 FAIR 12 GOOD 30 POOR 11 VERY POOR	FAIR POOR FAIR POOR VERY POOR	NO ONE SIDED, OVERTOPPED BY ADJACENT TREES, MODERATELY SUPPRESSED NO ONE SIDED, OVERTOPPED BY ADJACENT TREES, SUPPRESSED YES ONE SIDED, MARGINAL TRUNK TAPER NO SIGNIFICANT DECAY AT LOWER TRUNK, OVEREXTENDED LEADERS NO OVERTOPPED BY ADJACENT TREES, EXTENSIVE DECAY THROUGHOUT TRUNK
	20 20 27 28 29	 WE3TERN REDCEDAR WE3TERN REDCEDAR WE3TERN REDCEDAR BIGLEAF MAPLE 	THUJA PLICATA THUJA PLICATA THUJA PLICATA ACER MACROPHYLLUM	25 15 13 10 41 20 30 25	GOOD POOR GOOD POOR	FAIR POOR FAIR POOR	YES ONE SIDED NO SUPPRESSED YES ONE SIDED, CODOMINANT AT 5' WITH INCLUDED BARK NO MULTIPLE LEADERS AT GROUND LEVEL, TOP FAILURES	Development area (TTP)	×	265BIGLEAF MAPLEACER MACROPHYLLUM26266DOUGLAS-FIRPSEUDOTSUGA MENZIESII36261DOUGLAS-FIRPSEUDOTSUGA MENZIESII22268RED ALDERALNUS RUBRA9	25 VERY POOR 30 GOOD 15 GOOD 10 POOR	VERY POOR GOOD FAIR POOR	R NOT SIGNIFICANT DECAY AT LOWER TRUNK, TOP FAILED YES YES MARGINAL TRUNK TAPER NOT SUPPRESSED, POOR TRUNK TAPER
	30 31 32 33 34		THUJA PLICATA	33 25 13 20 35 20 31 11 46 18	GOOD POOR GOOD GOOD GOOD	FAIR POOR FAIR FAIR FAIR	YES CANDELABRA AT 35' NO SUPPRESSED YES MODERATELY ONE SIDED, CODOMINANT AT 6' YES ONE SIDED YES ONE SIDED		X	269RED ALDERALNUS RUBRAIO270DOUGLAS-FIRPSEUDOTSUGA MENZIESII30271RED ALDERALNUS RUBRA1272RED ALDERALNUS RUBRAIO273WESTERN REDCEDARTHUJA PLICATA22	20 FAIR 23 GOOD 8 FAIR 15 FAIR 15 FAIR	POOR GOOD POOR POOR POOR	NO POOR TRUNK TAPER, 33% LCR YE3 NO NO POOR TRUNK TAPER, 25% LCR NO POOR TRUNK TAPER, 33% LCR NO LOST TOP AT 25'
	× 35 × 36 3 ⁻ × 38	 WESTERN REDCEDAR WESTERN REDCEDAR WESTERN REDCEDAR WESTERN REDCEDAR 	THUJA PLICATA THUJA PLICATA THUJA PLICATA THUJA PLICATA	39 21 36 24 29 21 36 20	GOOD GOOD FAIR GOOD	FAIR FAIR FAIR FAIR	YES ONE SIDED YES ONE SIDED NO MODERATELY SUPPRESSED YES MODERATELY ONE SIDED	GREEN COLOR INDICATES TREES THAT ARE LOCATED ON-SITE AND IN THE		274RED ALDERALNUS RUBRA13275RED ALDERALNUS RUBRA11276RED ALDERALNUS RUBRA12271RED ALDERALNUS RUBRA11	I5 FAIR I5 FAIR I5 FAIR I5 FAIR I5 FAIR	POOR POOR FAIR POOR	NOPOOR TRUNK TAPER, EPICORMIC GROWTH AT LOWER TRUNKNOPOOR TRUNK TAPER, 33% LCRNO40% LCR, MARGINAL TRUNK TAPER, OTHER 2763 DUPLICATED ON SURVEY SHEETNOPOOR TRUNK TAPER, BOWED TRUNK, 276 ON SURVEY SHEET
ATES S TO AVED TYP)	× 41	 RED ALDER BIGLEAF MAPLE BIGLEAF MAPLE WESTERN REDCEDAR BIGLEAF MAPLE 		8 10 20 15 18 18 41 18 17 20	FAIR POOR GOOD GOOD FAIR	POOR POOR FAIR GOOD POOR	NO POOR TRUNK TAPER, 33% LCR NO TOP DIEBACK, SUPPRESSED YES MARGINAL TRUNK TAPER, 40% LCR, ONE SIDED YES NO POOR TRUNK TAPER, 33% LCR	REGTRICTED DEVELOPMENT AREA (TYP)	X X X X	218RED ALDERALNUS RUBRAIO219RED ALDERALNUS RUBRAIO280DOUGLAS-FIRPSEUDOTSUGA MENZIESII63281WESTERN REDCEDARTHUJA PLICATA28,23282WESTERN REDCEDARTHUJA PLICATA29	15 FAIR 15 FAIR 30 GOOD 18 GOOD 18 GOOD	POOR POOR GOOD FAIR GOOD	NO POOR TRUNK TAPER NO POOR TRUNK TAPER, ONE SIDED, 216 ON SURVEY SHEET YES YES YES CODOMINANT AT 3' WITH INCLUDED BARK
	44 45 44 44 47	 BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE 	ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM	12 10 24 21 8,6,6,6 10 10,8,8,6,6 15	VERY PC GOOD GOOD GOOD	DOR VERY P FAIR FAIR FAIR	NO TOP FAILED YE3 MULTIPLE LEADERS, SIGNIFICANT IVY GROWTH, PAST LEADER FAILURES YE3 MULTIPLE LEADERS AT GROUND LEVEL YE3 MULTIPLE LEADERS AT GROUND LEVEL YE3 MULTIPLE LEADERS AT GROUND LEVEL			283DOUGLAS-FIRPSEUDOTSUGA MENZIESII30284DOUGLAS-FIRPSEUDOTSUGA MENZIESII10285RED ALDERALNUS RUBRA10286RED ALDERALNUS RUBRA11	20 GOOD 15 FAIR 15 FAIR 15 FAIR 15 FAIR	GOOD FAIR POOR POOR	YES NO OVERTOPPED BY ADJACENT TREES, ONE SIDED, CODOMINANT AT 10' NO POOR TRUNK TAPER, 33% LCR NO POOR TRUNK TAPER
	48 49 50 51 51	 BIGLEAF MAPLE BIGLEAF MAPLE N/A BIGLEAF MAPLE DOUGLA3-FIR 	ACER MACROPHYLLUM ACER MACROPHYLLUM N/A ACER MACROPHYLLUM PSEUDOTSUGA MENZIESII	10,8,6 15 12,12,12,10 25 n/a n/a 21 15 25 15	GOOD GOOD N/A FAIR GOOD	FAIR FAIR N/A FAIR FAIR	YES MULTIPLE LEADERS AT GROUND LEVEL YES MULTIPLE LEADERS AT GROUND LEVEL N/A THIS IS A STEM OF TREE 49 NO MODERATELY SUPPRESSED, EXTENSIVE IVY YES 50% LCR, MARGINAL TRUNK TAPER		× 	281RED ALDERALNUS RUBRA20288BIGLEAF MAPLEACER MACROPHYLLUM12289BIGLEAF MAPLEACER MACROPHYLLUM12,12,12,8290WESTERN REDCEDARTHUJA PLICATA9291WESTERN REDCEDARTHUJA PLICATA21	20 GOOD 15 VERY POOR 20 POOR 10 GOOD 15 GOOD	FAIR VERY POOR POOR FAIR FAIR	YES ONE SIDED, MULTIPLE LEADERS NO UPROOTED, SIGNIFICANT DECAY NO MULTIPLE LEADERS AT GROUND LEVEL, MULTIPLE TOP FAILURES NO MULTIPLE LEADERS AT GROUND LEVEL, MULTIPLE TOP FAILURES NO ONE SIDED, OVERTOPPED BY ADJACENT TREES YES PREVIOUSLY LOST TOP WITH NEW TOP AT 20'
GRAY OLOR CATES F-SITE	51 54 54 56	OREGON WHITE OAK SWEET CHERRY N/A RED ALDER	QUERCUS GARRYANA PRUNUS AVIUM N/A ALNUS RUBRA	20 10 31 39 18 26 n/a n/a 20 19	FAIR	FAIR FAIR N/A POOR	YES ONE SIDED, EXTENSIVE IVY YES ONE SIDED, EXTENSIVE IVY N/A THIS IS A STEM OF TREE 54 NO ONE SIDED, SMOTHER BY IVY, NOT ON SURVEY SHEET	GRAY COLOR INDICATES	× ×	292WESTERN REDCEDARTHUJA PLICATA9293WESTERN REDCEDARTHUJA PLICATA11294WESTERN REDCEDARTHUJA PLICATA16295WESTERN REDCEDARTHUJA PLICATA26	IO GOOD IO GOOD IO GOOD 8 FAIR I5 GOOD	FAIR FAIR FAIR FAIR FAIR	NO ONE SIDED YES ONE SIDED NO MODERATELY SUPPRESSED YES ONE SIDED
ES TO BE ECTED		DOUGLAS-FIR BIGLEAF MAPLE N/A RED ALDER	PSEUDOTSUGA MENZIESII ACER MACROPHYLLUM N/A ALNUS RUBRA	19 12 21 28 n/a n/a 12 12 12 12	FAIR GOOD N/A FAIR	POOR FAIR N/A POOR	NO OVERTOPPED BY ADJACENT TREES, SUPPRESSED YES MODERATELY ONE SIDED, MULTIPLE LEADERS N/A STUMP NO POOR TRUNK TAPER, ONE SIDED NO POOR TRUNK TAPER, ONE SIDED	TREES THAT ARE LOCATED ON ADJACENT PROPERTY (TYP)		296WESTERN REDCEDARTHUJA PLICATA30291RED ALDERALNUS RUBRA25298WESTERN REDCEDARTHUJA PLICATA9299WESTERN REDCEDARTHUJA PLICATA13299WESTERN REDCEDARTHUJA PLICATA14	I5 GOOD 0 VERY POOR 5 GOOD 8 GOOD	FAIR VERY POOR FAIR FAIR FAIR	YES CODOMINANT AT 4' NO DEAD NO 50% LCR YES MODERATELY ONE SIDED YES MODERATELY ONE SIDED
(TYP)	X 6	RED ALDER RED ALDER RED ALDER A SWEET CHERRY WEGTERN REDCEDAR	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA PRUNUS AVIUM THUJA PLICATA	15 18 15 20 19 18 14 10 30 15	FAIR FAIR GOOD POOR GOOD	POOR POOR GOOD POOR GOOD	NO POOR TRUNK TAPER, MODERATELY ONE SIDED, EPICORMIC GROWTH AT LOWER TRUNK NO POOR TRUNK TAPER, EPICORMIC GROWTH AT LOWER TRUNK YES NO HISTORY OF BRANCH FAILURES YES		×	300WESTERN REDCEDARTHUJA PLICATA16301WESTERN REDCEDARTHUJA PLICATA15302WESTERN REDCEDARTHUJA PLICATA10303RED ALDERALNUS RUBRA18304WESTERN REDCEDARTHUJA PLICATA15	IO GOOD IO GOOD 8 GOOD 20 VERY POOR 15 GOOD	FAIR FAIR FAIR VERY POOR GOOD	YES MODERATELY ONE SIDED NO ONE SIDED NO ONE SIDED NO TOP FAILED WITH EXTENSIVE DECAY YES
DICATES 5 THAT EET THE TREE	X 60 X 60 X 60	 RED ALDER WEGTERN REDCEDAR WEGTERN REDCEDAR RED ALDER 	ALNUS RUBRA THUJA PLICATA THUJA PLICATA ALNUS RUBRA	II IO 19 12 36 18 15 15	FAIR GOOD GOOD POOR	POOR GOOD GOOD POOR	NO 25% LCR YES YES NO OVERTOPPED BY ADJACENT TREES, SUPPRESSED		× ×	305WESTERN REDCEDARTHUJA PLICATAIO306WESTERN REDCEDARTHUJA PLICATA34301N/AN/AN/A308WESTERN REDCEDARTHUJA PLICATA28	IO GOOD I5 GOOD N/A N/A I5 GOOD	FAIR GOOD N/A FAIR	NO ONE SIDED YES N/A SAME AS TREE 304 YES ONE SIDED
IREE ENTION IMENTS NOTE 4		 WE3TERN REDCEDAR BIGLEAF MAPLE BIGLEAF MAPLE DOUGLAS-FIR BIGLEAF MAPLE 	THUJA PLICATA ACER MACROPHYLLUM ACER MACROPHYLLUM PSEUDOTSUGA MENZIESII ACER MACROPHYLLUM	II I3 21 15 12 10 21 15 22 20	GOOD POOR FAIR FAIR FAIR	GOOD POOR POOR POOR POOR	YE3 NO EXTENSIVE IVY, SUPPRESSED, CODOMINANT AT 3' NO EXTENSIVE IVY, POOR TRUNK TAPER, 33% LCR NO EXTENSIVE IVY, POOR TRUNK TAPER, 33% LCR NO EXTENSIVE IVY, POOR TRUNK TAPER, 33% LCR NO EXTENSIVE IVY, POOR TRUNK TAPER, 40% LCR			309WESTERN REDCEDARTHUJA PLICATA29310RED ALDERALNUS RUBRA21311WESTERN REDCEDARTHUJA PLICATA11312WESTERN REDCEDARTHUJA PLICATA23313WESTERN REDCEDARTHUJA PLICATA20	15 GOOD 25 POOR 15 FAIR 14 GOOD 15 GOOD	FAIR POOR FAIR FAIR FAIR	YES ONE SIDED NO CODOMINANT AT 1' WITH INCLUDED BARK NO CODOMINANT STEM PREVIOUSLY FAILED AT LOWER TRUNK, BOWED LOWER TRUNK YES MODERATELY ONE SIDED YES ONE SIDED
J. (TYP)		 BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE II BIGLEAF MAPLE 	ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM	IO 3 2O 15 13 10 16 10	VERY PO FAIR FAIR FAIR	DOR VERY P POOR POOR POOR	NO SUPPRESSED NO EXTENSIVE IVY, 25% LCR NO OVERTOPPED BY ADJACENT TREES, SIGNIFICANT LEAN, POOR TRUNK TAPER, 20% LCR NO 25% LCR, POOR TRUNK TAPER, ADDED TO SURVEY SHEET BY ARBORIST IN APPROXIMATE LOCATION		× × ×	314RED ALDERALNUS RUBRA31315WESTERN REDCEDARTHUJA PLICATA9316WESTERN REDCEDARTHUJA PLICATA11311WESTERN REDCEDARTHUJA PLICATA21	20 VERY POOR 8 GOOD 10 GOOD 15 GOOD	FAIR FAIR FAIR	NO EXTENSIVE DIEBACK AND DECAY NO OVERTOPPED BY ADJACENT TREES YES ONE SIDED YES ONE SIDED
	31 29 80 80 80	 BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE 	ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM	11 20 11 15 11 20 24 20	GOOD FAIR FAIR GOOD FAIR	FAIR POOR FAIR	YES ONE SIDED, 40% LCR, MARGINAL TRUNK TAPER NO ONE SIDED, 33% LCR, POOR TRUNK TAPER NO ONE SIDED, 33% LCR, POOR TRUNK TAPER YES 35% LCR, MARGINAL TRUNK TAPER NO ONE SIDED, 33% LCR, POOR TRUNK TAPER NO ONE SIDED, 33% LCR, MARGINAL TRUNK TAPER		×	318DOUGLAS-FIRPSEUDOTSUGA MENZIESII8319RED ALDERALNUS RUBRA15320WESTERN REDCEDARTHUJA PLICATA26321WESTERN REDCEDARTHUJA PLICATA15322WESTERN REDCEDARTHUJA PLICATA13	5 FAIR 10 FAIR 15 GOOD 10 FAIR 8 GOOD	FAIR POOR FAIR FAIR FAIR	NO ONE SIDED, MODERATELY SUPPRESSED NO POOR TRUNK TAPER, 33% LCR YES ONE SIDED NO ONE SIDED, PRESSED AGAINST TREE 320, CODOMINANT AT 3' WITH INCLUDED BARK, OVERTOR YES ONE SIDED, OVERSED AGAINST TREE 320, CODOMINANT AT 3' WITH INCLUDED BARK, OVERTOR
	8 8 8 8 8 8	BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE BIGLEAF MAPLE	ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM	16 20 11 20 15 11 14 10	FAIR GOOD POOR POOR	POOR POOR FAIR POOR POOR	NO 33% LCR, MARGINAL TRUNK TAPER YES ONE SIDED, 40% LCR, MARGINAL TRUNK TAPER NO TOP DIEBACK AND DECAY NO POOR TRUNK TAPER, 15% LCR		× × × ×	322WESTERN REDCEDARTHUJA PLICATA9323WESTERN REDCEDARTHUJA PLICATA16324WESTERN REDCEDARTHUJA PLICATA16325WESTERN REDCEDARTHUJA PLICATA16326WESTERN REDCEDARTHUJA PLICATA18	5 FAIR 10 GOOD 10 GOOD 15 GOOD	FAIR FAIR FAIR FAIR FAIR	NO MODERATELY SUPPRESSED YES ONE SIDED YES ONE SIDED YES ONE SIDED YES ONE SIDED
	88		THUJA PLICATA	18,16 18 19 20 48 23 40 20	FAIR FAIR GOOD GOOD	POOR POOR GOOD FAIR	NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER, 33% LCR NO EXTENSIVE IVY, 33% LCR, POOR TRUNK TAPER YES DECAY POCKET AT LOWER TRUNK YES DECAY FOCKET AT LOWER TRUNK		×	321RED ALDERALNUS RUBRA26328RED ALDERALNUS RUBRA24329WEGTERN REDCEDARTHUJA PLICATA36330WEGTERN REDCEDARTHUJA PLICATA10321PED ALDERPUPD A24 / 10	O VERY POOR 25 FAIR 15 GOOD 10 GOOD	VERY POOR FAIR GOOD FAIR	 NO DEAD NO ONE SIDED, DECAY AT BRANCH FAILURES YES NO ONE SIDED NO ONE SIDED NO CODOMINANT AT GROUND LEVEL, TOP DIEBACK, SIGNIFICANT DECAY
	× 91		ACER MACROPHYLLUM ACER MACROPHYLLUM THUJA PLICATA THUJA PLICATA ACER MACROPHYLLUM	18 15 11 5 11 10 9 9 11 20	POOR POOR GOOD FAIR FAIR	POOR POOR GOOD POOR FAIR	NO TOP DIEBACK, EPICORMIC GROWTH AT LOWER TRUNK NO POOR TRUNK TAPER, SUPPRESSED YES NO OVERTOPPED BY ADJACENT TREES, SUPPRESSED NO ONE SIDED, MODERATELY SUPPRESSED, MULTIPLE LEADERS		×	331RED ALDERALNUS RUBRA24,18332RED ALDERALNUS RUBRA20333RED ALDERALNUS RUBRA22334RED ALDERALNUS RUBRA14335RED ALDERALNUS RUBRA22	30 POOR 15 POOR 20 POOR 20 GOOD 20 POOR	POOR POOR GOOD POOR	NO SIGNIFICANT BRANCH DIEBACK AND DECAY NO MULTIPLE LEADERS, SIGNIFICANT DIEBACK AND DECAY YES
	× 99	RED ALDERBIGLEAF MAPLEWESTERN HEMLOCK	ACER MACROPHYLLUM ALNUS RUBRA ACER MACROPHYLLUM TSUGA HETEROPHYLLA	I3,I2,II I5 8 8 I3 I5 31 25	POOR FAIR FAIR GOOD	POOR POOR POOR FAIR	NO MULTIPLE LEADERS AT GROUND LEVEL, LEADERS WITH POOR TAPER NO POOR TRUNK TAPER NO POOR TRUNK TAPER, 33% LCR YES MODERATELY ONE SIDED			336RED ALDERALNUS RUBRA13331RED ALDERALNUS RUBRA16338RED ALDERALNUS RUBRA14339WESTERN REDCEDARTHUJA PLICATA42	20 FAIR 25 POOR 14 FAIR 20 GOOD	POOR POOR POOR FAIR	NO DEAD TOP NO ONE SIDED, BRANCH DIEBACK, POOR TRUNK TAPER NO ONE SIDED, CODOMINANT AT 2' WITH INCLUDED BARK, EPICORMIC GROWTH AT LOWER TRUNK, NO POOR TRUNK TAPER YES ONE SIDED, MULTIPLE LEADERS AT 3'
	X 10	0 WESTERN HEMLOCK 1 RED ALDER 2 WESTERN REDCEDAR 3 WESTERN REDCEDAR 4 WESTERN REDCEDAR	THUJA PLICATA	28 20 1 1 46 20 24 20 18 11	GOOD FAIR FAIR GOOD GOOD	FAIR POOR FAIR FAIR FAIR	YES ONE SIDED NO POOR TRUNK TAPER, 25% LCR NO CODOMINANT AT 6' WITH INCLUDED BARK AND LARGE CRACK YES ONE SIDED, NOT SHOWN ON SURVEY YES ONE SIDED, NOT SHOWN ON SURVEY			340WESTERN REDCEDARTHUJA PLICATA21341WESTERN REDCEDARTHUJA PLICATA28342WESTERN REDCEDARTHUJA PLICATA28343WESTERN REDCEDARTHUJA PLICATA19344WESTERN REDCEDARTHUJA PLICATA19	IO GOOD 20 GOOD 15 GOOD 10 FAIR 10 GOOD	FAIR FAIR FAIR POOR FAIR	YES CROWN EXTENSION SUPPRESSED BY ADJACENT TREES YES CODOMINANT AT 4' WITH INCLUDED BARK, ONE SIDED YES ONE SIDED NO LOST TOP AT 20' YES 40% LCR
	X IC X IC IC	 5 WEGTERN REDCEDAR 6 WEGTERN HEMLOCK 1 BIGLEAF MAPLE 8 BIGLEAF MAPLE 	THUJA PLICATA TSUGA HETEROPHYLLA ACER MACROPHYLLUM ACER MACROPHYLLUM	23 20 21 23 36 45 24 20	GOOD GOOD FAIR POOR	FAIR FAIR FAIR FAIR POOR	YES ONE SIDED YES ONE SIDED NO ONE SIDED, HISTORY OF BRANCH FAILURE, EPICORMIC GROWTH AT LOWER TRUNK NO MODERATELY SUPPRESSED, SIGNIFICANT DIEBACK		×	345WESTERN REDCEDARTHUJA PLICATA39346WESTERN REDCEDARTHUJA PLICATA34341WESTERN REDCEDARTHUJA PLICATA21348WESTERN REDCEDARTHUJA PLICATA21	20 GOOD 15 GOOD 10 FAIR 15 GOOD	FAIR FAIR FAIR FAIR FAIR	YES CODOMINANT AT T' WITH INCLUDED BARK YES ONE SIDED NO ONE SIDED, MULTIPLE LEADERS AT LOWER TRUNK YES ONE SIDED
		9 BIGLEAF MAPLE 0 BIGLEAF MAPLE RED ALDER 9 BIGLEAF MAPLE 0 WESTERN HEMLOCK	ACER MACROPHYLLUM ACER MACROPHYLLUM ALNUS RUBRA ACER MACROPHYLLUM TSUGA HETEROPHYLLA	13 15 28 25 22 15 20 0	POOR POOR FAIR VERY PC	POOR POOR POOR OOR VERY P FAIR	NO MODERATELY SUPPRESSED, POOR TRUNK TAPER NO SIGNIFICANT BRANCH DIEBACK NO EXTENSIVE IVY, 25% LCR OR NO DEAD 40' SNAG YES ONE SIDED			349WESTERN REDCEDARTHUJA PLICATA15350RED ALDERALNUS RUBRA10351RED ALDERALNUS RUBRA9352WESTERN REDCEDARTHUJA PLICATA25354WESTERN REDCEDARTHUJA PLICATA14	15 GOOD 15 FAIR 10 FAIR 20 GOOD 15 GOOD	FAIR POOR POOR FAIR FAIR	YES ONE SIDED NO BOWED TRUNK, POOR TRUNK TAPER NO BOWED TRUNK, POOR TRUNK TAPER, 33%LCR, LABELED 346 IN FIELD YES MODERATELY ONE SIDED YES ONE SIDED
		WESTERN HEITLOCK 4 RED ALDER 5 RED ALDER 5 RED ALDER 1 RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	25 20 24 20 10 15 14 20 9 8	FAIR FAIR	DOR VERY P POOR FAIR POOR			X X	354UESTERN REDCEDARIHUJA PLICATA14355WESTERN REDCEDARTHUJA PLICATA9356RED ALDERALNUS RUBRA19351WESTERN REDCEDARTHUJA PLICATA15358RED ALDERALNUS RUBRA23	15 GOOD 8 FAIR 20 POOR 15 GOOD 0 VERY POOR	FAIR POOR FAIR	NO MODERATELY SUPPRESSED NO CODOMINANT AT I' WITH INCLUDED BARK, POOR TRUNK TAPER, SIGNIFICANT BRANCH DIEBAC YES ONE SIDED R NO DEAD
	118 119 120 120 120	RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	14 10 10 15 9 15 10 10	FAIR FAIR FAIR FAIR	FAIR POOR POOR POOR	NOMARGINAL TRUNK TAPER, 40% LCRNOPOOR TRUNK TAPER, 33% LCRNOPOOR TRUNK TAPERNOPOOR TRUNK TAPER, 25% LCR			359WESTERN REDCEDARTHUJA PLICATA30360WESTERN REDCEDARTHUJA PLICATA32361RED ALDERALNUS RUBRA28362RED ALDERALNUS RUBRA15	20 GOOD 20 GOOD 0 VERY POOR 20 GOOD	FAIR FAIR VERY POOR FAIR	YE3 ONE SIDED YE3 ONE SIDED, MULTIPLE LEADERS AT LOWER TRUNK R NOM DEAD YE3 ONE SIDED
	× 12 12 12 12	2 RED ALDER 3 RED ALDER 4 RED ALDER 5 BIGLEAF MAPLE 6 DED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ACER MACROPHYLLUM	13 20 10 15 11 15 28 33 12 15	GOOD FAIR FAIR GOOD FAIR	FAIR POOR POOR FAIR POOR	YES 50% LCR, MARGINAL TRUNK TAPER NO POOR TRUNK TAPER NO POOR TRUNK TAPER YES CODOMINANT AT 5', LOWER BRANCH DIEBACK			363RED ALDERALNUS RUBRA9364RED ALDERALNUS RUBRA11365RED ALDERALNUS RUBRA9366WESTERN REDCEDARTHUJA PLICATA18367WESTERN REDCEDARTHUJA PLICATA10	IO FAIR IO FAIR IO FAIR ID FAIR ID GOOD IO GOOD	POOR POOR POOR GOOD FAIR	NO POOR TRUNK TAPER NO ONE SIDED, POOR TRUNK TAPER NO ONE SIDED, POOR TRUNK TAPER YES ONE SUPER OTHER STEPS
	× 12 12 12 × 12 × 12	6 RED ALDER 1 BIGLEAF MAPLE 3 RED ALDER 9 WESTERN HEMLOCK 9 WESTERN HEMLOCK	ALNUS RUBRA ACER MACROPHYLLUM ALNUS RUBRA TSUGA HETEROPHYLLA TSUGA HETEROPHYLLA	12 15 24 30 20 0 34 35 35 35	GOOD GOOD GOOD GOOD	FAIR FAIR FAIR FAIR FAIR	NO POOR TAPER YES MODERATELY ONE SIDED VOR NO YES ONE SIDED YES MODERATELY ONE SIDED YES MODERATELY ONE SIDED			361WESTERN REDCEDARTHUJA PLICATAIO368WESTERN REDCEDARTHUJA PLICATA66369DOUGLAS-FIRPSEUDOTSUGA MENZIESII31310DOUGLAS-FIRPSEUDOTSUGA MENZIESII21311DOUGLAS-FIRPSEUDOTSUGA MENZIESII21	IO GOOD 22 GOOD 31 GOOD 31 GOOD 15 GOOD	FAIR FAIR FAIR FAIR FAIR	NO ONE SIDED, NO OTHER STEMS OVER 10" DBH YES DEAD YES MULTIPLE LEADERS AT 6' WITH INCLUDED BARK YES ONE SIDED, CODOMINANT AT 25' YES ONE SIDED, CODOMINANT AT GROUND LEVEL
	3 3 3 3 3	RED ALDERWEGTERN REDCEDARRED ALDERRED ALDERRED ALDER	ALNUS RUBRA THUJA PLICATA ALNUS RUBRA ALNUS RUBRA	20 30 43 16 9 10 13 20	GOOD GOOD FAIR GOOD	FAIR GOOD POOR FAIR	YE3 ONE SIDED YE3 NO POOR TRUNK TAPER YE3 40% LCR			312DOUGLAS-FIRPSEUDOTSUGA MENZIESII18313DOUGLAS-FIRPSEUDOTSUGA MENZIESII26314DOUGLAS-FIRPSEUDOTSUGA MENZIESII22315WESTERN REDCEDARTHUJA PLICATA30	15 FAIR 15 FAIR 26 GOOD 20 GOOD	FAIR FAIR FAIR GOOD	NO MODERATELY SUPPRESSED, ONE SIDED NO MODERATELY SUPPRESSED, ONE SIDED, CODOMINANT AT 25' YES ONE SIDED YES ONE SIDED
	3 3	5 RED ALDER 6 RED ALDER 1 SWEET CHERRY 8 RED ALDER 9 SWEET CHERRY	ALNUS RUBRA ALNUS RUBRA PRUNUS AVIUM ALNUS RUBRA PRUNUS AVIUM	9 10 11,10,9 30 16 15 11 15 12 15	FAIR FAIR FAIR FAIR FAIR FAIR	POOR POOR FAIR POOR POOR	NO POOR TRUNK TAPER NO MULTIPLE LEADERS AT GROUND LEVEL, OVEREXTENDED LEADERS NO MODERATELY SUPPRESSED CROWN EXTENSION, CODOMINANT AT 5' WITH INCLUDED BARK NO ONE SIDED, POOR TRUNK TAPER NO POOR TRUNK TAPER, LOWER BRANCH DIEBACK			316DOUGLAS-FIRPSEUDOTSUGA MENZIESII23311WESTERN REDCEDARTHUJA PLICATA49318WESTERN REDCEDARTHUJA PLICATA48319DOUGLAS-FIRPSEUDOTSUGA MENZIESII32380DOUGLAS-FIRPSEUDOTSUGA MENZIESII52	15 GOOD 26 GOOD 26 GOOD 15 GOOD 34 GOOD	FAIR FAIR FAIR FAIR FAIR	YE3 MARGINAL TRUNK TAPER YE3 MULTIPLE LEADERS AT 3' YE3 CODOMINANT AT 4' YE3 MODERATELY ONE SIDED YE4 MODERATELY ONE SIDED
	4 4 4 4 4	 RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER 	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	10,10,8,1 20 12,11 20 8 15 8,8 15	FAIR FAIR FAIR FAIR	POOR POOR POOR POOR	NO MULTIPLE LEADERS AT GROUND LEVEL, OVEREXTENDED LEADERS WITH POOR TAPER NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER NO OVERTOPPED BY ADJACENT TREES, SIGNIFICANT LEAN, POOR TRUNK TAPER NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER NO CODOMINANT AT GROUND LEVEL, POOR TRUNK TAPER			381BIGLEAF MAPLEACER MACROPHYLLUM20382BIGLEAF MAPLEACER MACROPHYLLUM13383DOUGLAS-FIRPSEUDOTSUGA MENZIESII31384BLUE ATLAS CEDARCEDRUS ATLANTICA8	30 GOOD 25 FAIR 24 GOOD 8 GOOD 15 GOOD	FAIR POOR FAIR FAIR	YE3 ONE SIDED, OFFSITE NO POOR TRUNK TAPER, ONE SIDED, OVERTOPPED BY ADJACENT TREES YE3 ONE SIDED NO MODERATELY SUPPRESSED
	4 14 14	4 DOUGLAS-FIR 5 BIGLEAF MAPLE 6 RED ALDER 1 RED ALDER 8 BIGLEAF MAPLE	PSEUDOTSUGA MENZIESII ACER MACROPHYLLUM ALNUS RUBRA ALNUS RUBRA ACER MACROPHYLLUM	27 18 21,8 20 15 10 20 0	GOOD GOOD VERY PC VERY PC		YES MODERATELY ONE SIDED YES ONE SIDED, CODOMINANT AT GROUND LEVEL OR NO DYING OR NO EXTENSIVE DECAY			385DOUGLAS-FIRPSEUDOTSUGA MENZIESII12386BLUE ATLAS CEDARCEDRUS ATLANTICA8381DOUGLAS-FIRPSEUDOTSUGA MENZIESII12388DOUGLAS-FIRPSEUDOTSUGA MENZIESII12389DOUGLAS-FIRPSEUDOTSUGA MENZIESII12	15 GOOD 8 FAIR 15 GOOD 15 GOOD 15 GOOD 15 GOOD	FAIR FAIR FAIR FAIR FAIR	YES ONE SIDED NO ONE SIDED YES ONE SIDED YES ONE SIDED YES ONE SIDED YES ONE SIDED
	X 14	9 ENGLIGH HOLLY O RED ALDER I RED ALDER 2 RED ALDER	ILEX AQUIFOLIUM ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	20 10 20 20 18 20 18 20	GOOD GOOD GOOD GOOD GOOD	FAIR GOOD FAIR FAIR	YES MULTIPLE LEADERS AT I' YES ONE SIDED YES ONE SIDED, CODOMINANT AT 5' WITH INCLUDED BARK			390DOUGLAS-FIRPSEUDOTSUGA MENZIESII12391DOUGLAS-FIRPSEUDOTSUGA MENZIESII12392DOUGLAS-FIRPSEUDOTSUGA MENZIESII16393BLUE ATLAS CEDARCEDRUS ATLANTICA8	15 GOOD 15 GOOD 15 GOOD 10 GOOD	FAIR FAIR FAIR FAIR	YES ONE SIDED YES ONE SIDED YES ONE SIDED, BOWED LOWER TRUNK NO ONE SIDED
	15	3 RED ALDER 4 RED ALDER 5 RED ALDER 6 RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	14 15 14 18 14 18 42 35	GOOD GOOD GOOD VERY PC	FAIR FAIR FAIR OOR VERY P				394DOUGLAS-FIRPSEUDOTSUGA MENZIESII12395BLUE ATLAS CEDARCEDRUS ATLANTICAIO396DOUGLAS-FIRPSEUDOTSUGA MENZIESIII6391BLUE ATLAS CEDARCEDRUS ATLANTICA12392DOUGLAS FIRDESEUDOTSUGA MENZIESIII6	15 GOOD 10 GOOD 15 GOOD 10 GOOD	FAIR FAIR FAIR FAIR	YES ONE SIDED NO ONE SIDED YES ONE SIDED YES ONE SIDED
	15 15 15 16	1 RED ALDER 8 RED ALDER 9 RED ALDER 0 RED ALDER 1 RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	40 30 10 10 16 20 10 15 12 15	VERY PO POOR FAIR FAIR FAIR	DOR VERY P POOR FAIR POOR FAIR	NO FAILED TOPS, EXTENSIVE DECAY NO ONE SIDED, SIGNIFICANT LEAN, POOR TRUNK TAPER NO MODERATELY ONE SIDED, 50% LCR, MARGINAL TRUNK TAPER, PAST FAILURES AT LOWER TRUNK WITH DECAY NO ONE SIDED, 33% LCR, POOR TRUNK TAPER NO ONE SIDED, 50% LCR, MARGINAL TRUNK TAPER NO ONE SIDED, 50% LCR, MARGINAL TRUNK TAPER			398DOUGLAS-FIRPSEUDOTSUGA MENZIESII14399BLUE ATLAS CEDARCEDRUS ATLANTICA12400BLUE ATLAS CEDARCEDRUS ATLANTICA14401WESTERN HEMLOCKTSUGA HETEROPHYLLA12402BLUE ATLAS CEDARCEDRUS ATLANTICA12	I5 GOOD I0 GOOD I0 GOOD I5 GOOD I0 GOOD	FAIR FAIR GOOD FAIR	YES ONE SIDED YES ONE SIDED YES ONE SIDED, LARGE HEADING CUT AT LOWER TRUNK YES ONE SIDED, LARGE HEADING CUT AT LOWER TRUNK
	16 16	 RED ALDER RED ALDER RED ALDER RED ALDER RED ALDER 	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	12 15 18 20 10,8 10 10 15 12,10 20	GOOD FAIR FAIR GOOD	FAIR POOR FAIR FAIR	YE3 ONE SIDED NO MULTIPLE LEADERS AT GROUND LEVEL, ONE FAILED LEADER, 8" LEADER 50% LCR NO MODERATELY SUPPRESSED, MARGINAL TRUNK TAPER YE3 ONE SIDED, CODOMINANT AT GROUND LEVEL WITH INCLUDED BARK			403DOUGLAS-FIRPSEUDOTSUGA MENZIESII12404BLUE ATLAS CEDARCEDRUS ATLANTICA12405DOUGLAS-FIRPSEUDOTSUGA MENZIESII16406BLUE ATLAS CEDARCEDRUS ATLANTICA12	15 GOOD 10 GOOD 15 GOOD 10 GOOD	FAIR FAIR GOOD FAIR	YES ONE SIDED, LARGE HEADING CUT AT LOWER TRUNK YES ONE SIDED, LARGE HEADING CUTS AT LOWER TRUNK YES ONE SIDED, LARGE HEADING CUTS AT LOWER TRUNK YES ONE SIDED, LARGE HEADING CUTS AT LOWER TRUNK
	16 16	6 RED ALDER 1 RED ALDER 8 RED ALDER 9 RED ALDER 0 RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	16 20 10 15 12 20 14 20 14 20	GOOD GOOD GOOD GOOD GOOD	FAIR FAIR FAIR FAIR GOOD	YES ONE SIDED, BOWED TRUNK NO ONE SIDED, BOWED TRUNK, IS9 ON SURVEY SHEET YES ONE SIDED, MARGINAL TRUNK TAPER			401DOUGLAS-FIRPSEUDOTSUGA MENZIESII14408PORT-ORFORD-CEDAR CHAMAECYPARIS LAWSONIANA10,8,8,8409EUROPEAN BIRCHBETULA PENDULA10410DOUGLAS-FIRPSEUDOTSUGA MENZIESII22411DOUGLAS-FIRPSEUDOTSUGA MENZIESII18	15 GOOD 15 GOOD 15 POOR 20 GOOD 20 GOOD	GOOD FAIR POOR FAIR GOOD	YES MULTIPLE LEADERS AT GROUND LEVEL NO MULTIPLE LEADERS AT 15' WITH DECAY FROM PREVIOUS FAILURE YES CODOMINANT AT 15' YES YES
	רו דרו ורו דרו	SWEET CHERRY BIGLEAF MAPLE SWEET CHERRY BIGLEAF MAPLE	PRUNUS AVIUM ACER MACROPHYLLUM PRUNUS AVIUM ACER MACROPHYLLUM	14 10 12 3 12 5 10 15	FAIR POOR POOR POOR FAIR	POOR POOR POOR POOR POOR	NO ONE SIDED, OVERTOPPED BY ADJACENT TREES, MODERATELY SUPPRESSED NO SUPPRESSED, SMOTHERED BY IVY NO SUPPRESSED NO SUPPRESSED NO OVERTOPPED BY ADJACENT TREES, SIGNIFICANT LEAN, SUPPRESSED			412WESTERN HEMLOCKTSUGA HETEROPHYLLA18413WESTERN HEMLOCKTSUGA HETEROPHYLLA14414WESTERN HEMLOCKTSUGA HETEROPHYLLA12415WESTERN HEMLOCKTSUGA HETEROPHYLLA12	10 10 10 10 10 11 12<	GOOD GOOD GOOD GOOD FOOR	YES YES YES YES
	דו ודו ודו ודו	BIGLEAF MAPLE SWEET CHERRY SWEET CHERRY SWEET CHERRY BIGLEAF MAPLE	ACER MACROPHYLLUM PRUNUS AVIUM PRUNUS AVIUM PRUNUS AVIUM ACER MACROPHYLLUM	11 10 13 8 18 20 11 5 20 25	FAIR FAIR FAIR POOR FAIR	POOR POOR POOR POOR FAIR	NO MODERATELY SUPPRESSED, POOR TRUNK TAPER NO MODERATELY SUPPRESSED, POOR TRUNK TAPER NO ONE SIDED, MODERATELY SUPPRESSED NO SUPPRESSED NO ONE SIDED, MODERATELY SUPPRESSED			416EUROPEAN BIRCHBETULA PENDULA20411WESTERN HEMLOCKTSUGA HETEROPHYLLA12418WESTERN HEMLOCKTSUGA HETEROPHYLLA14419WESTERN HEMLOCKTSUGA HETEROPHYLLA14420WESTERN HEMLOCKTSUGA HETEROPHYLLA16	20 POOR 20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD	POOR GOOD GOOD GOOD GOOD GOOD	NO BRANCH DIEBACK YE3 YE3 YE4
	8 8 8	2 SWEET CHERRY 1 SWEET CHERRY 2 SWEET CHERRY 3 BIGLEAF MAPLE	PRUNUS AVIUM PRUNUS AVIUM PRUNUS AVIUM ACER MACROPHYLLUM	12 8 8 2 12 10 44 30	POOR VERY PO FAIR FAIR	POOR VERY P POOR FAIR	NO SUPPRESSED			421WESTERN HEMLOCKTSUGA HETEROPHYLLA14422WESTERN HEMLOCKTSUGA HETEROPHYLLA12423DOUGLAS-FIRPSEUDOTSUGA MENZIESII14424DOUGLAS-FIRPSEUDOTSUGA MENZIESII16	20 GOOD 20 GOOD 20 GOOD 20 GOOD 20 GOOD	GOOD GOOD FAIR FAIR	YES YES YES MODERATELY ONE SIDED YES MODERATELY ONE SIDED
	× 18 × 18 × 18	 4 SWEET CHERRY 5 DOUGLAS-FIR 6 DOUGLAS-FIR 1 BIGLEAF MAPLE 	PRUNUS AVIUM PSEUDOTSUGA MENZIESII PSEUDOTSUGA MENZIESII ACER MACROPHYLLUM	14 18 41 20 32 24 16 22	FAIR GOOD GOOD FAIR	POOR FAIR FAIR POOR	NO 25% LCR, ONE SIDED YES MODERATELY ONE SIDED YES ONE SIDED NO OVERTOPPED BY ADJACENT TREES, ONE SIDED, MODERATELY SUPPRESSED			425DOUGLAS-FIRPSEUDOTSUGA MENZIESII12426DOUGLAS-FIRPSEUDOTSUGA MENZIESII12421RED OAKQUERCUS RUBRA18428SAWARA CYPRESSCHAMAECYPARIS PISIFERA22	20 GOOD 20 GOOD 20 GOOD 20 GOOD 18 FAIR	FAIR FAIR FAIR POOR	YE3 MODERATELY ONE SIDED, CODOMINANT AT 15' YE3 MODERATELY ONE SIDED YE3 MODERATELY ONE SIDED YE3 MODERATELY ONE SIDED YE3 CODOMINANT AT 2' WITH INTERNAL DECAY
		8 DOUGLAS-FIR 9 BIGLEAF MAPLE 0 BIGLEAF MAPLE 1 ENGLISH HOLLY 2 DOUGLAS-FIR	PSEUDOTSUGA MENZIESII ACER MACROPHYLLUM ACER MACROPHYLLUM ILEX AQUIFOLIUM PSEUDOTSUGA MENZIESII	32 20 29 25 21 29 12 12 13 0	GOOD FAIR GOOD FAIR VERY PC	FAIR POOR FAIR FAIR DOR VERY P				429WESTERN REDCEDARTHUJA PLICATA39430PACIFIC DOGWOODCORNUS NUTTALLII14431AMERICAN CHESTNUTCASTANEA DENTATA43432LINDENTILIA SP.35502DOUGLAS-FIRPSEUDOTSUGA MENZIESII12	28 GOOD 13 FAIR 26 POOR 29 GOOD 12 GOOD	GOOD FAIR POOR FAIR FAIR	YE3 NO ONE SIDED, DECAY POCKET AT LOWER TRUNK NO LARGE WOUND AT LOWER TRUNK FROM PREVIOUS FAILED TRUNK YE3 MULTIPLE LEADERS AT 6' WITH INCLUDED BARK YE3 ONE SIDED
		 3 OREGON WHITE OAK 4 DOUGLAS-FIR 5 SWEET CHERRY 6 BIGLEAF MAPLE 	QUERCUS GARRYANA PSEUDOTSUGA MENZIESII PRUNUS AVIUM ACER MACROPHYLLUM	11 19 29 18 12 12 39 36	FAIR GOOD FAIR FAIR	FAIR FAIR FAIR FAIR FAIR	NO SMOTHERED BY IVY, ONE SIDED, MARGINAL TRUNK TAPER YES CODOMINANT AT 5' WITH INCLUDED BARK, ONE SIDED NO ONE SIDED, EXTENSIVE IVY NO HISTORY OF BRANCH FAILURES			503BLUE ATLAS CEDARCEDRUS ATLANTICA8504DOUGLAS-FIRPSEUDOTSUGA MENZIESII14505BLUE ATLAS CEDARCEDRUS ATLANTICA8506DOUGLAS-FIRPSEUDOTSUGA MENZIESII12	8 FAIR 14 GOOD 8 FAIR 12 GOOD	FAIR FAIR FAIR FAIR	NO MODERATELY SUPPRESSED YES ONE SIDED NO MODERATELY SUPPRESSED YES ONE SIDED, MULTIPLE TOPS
	× 19 20	1 BIGLEAF MAPLE 8 N/A 9 BIGLEAF MAPLE 00 N/A 21 N/A	ACER MACROPHYLLUM N/A ACER MACROPHYLLUM N/A	36,34 29 n/a n/a 16,12,10 25 n/a n/a	FAIR N/A GOOD N/A N/A	FAIR N/A FAIR N/A N/A	NO CODOMINANT AT GROUND LEVEL, HISTORY OF BRANCH FAILURES N/A THIS IS A STEM OF TREE 191 YES MULTIPLE LEADERS AT GROUND LEVEL, MODERATELY ONE SIDED N/A THIS IS A STEM OF TREE 199 N/A THIS IS A STEM OF TREE 199			501BLUE ATLAS CEDARCEDRUS ATLANTICA8508DOUGLAS-FIRPSEUDOTSUGA MENZIESII12509BLUE ATLAS CEDARCEDRUS ATLANTICA8510DOUGLAS-FIRPSEUDOTSUGA MENZIESII14511BLUE ATLAS CEDARCEDRUS ATLANTICA10	8 GOOD 12 GOOD 8 FAIR 14 GOOD 10 GOOD	FAIR FAIR FAIR FAIR FAIR	NO ONE SIDED YES ONE SIDED NO ONE SIDED, MODERATELY SUPPRESSED YES CODOMINANT AT 15' NO ONE SIDED
	20 20 X 20	02 RED ALDER 03 BIGLEAF MAPLE	ALNUS RUBRA ACER MACROPHYLLUM ACER MACROPHYLLUM ACER MACROPHYLLUM	10 8 8 8 28 29 31 20	GOOD GOOD GOOD GOOD	GOOD FAIR FAIR FAIR	NO NO CODOMINANT AT 15' YES MULTIPLE LEADERS WITH INCLUDED BARK YES MULTIPLE LEADERS WITH INCLUDED BARK			512DOUGLAS-FIRPSEUDOTSUGA MENZIESII14513DOUGLAS-FIRPSEUDOTSUGA MENZIESII12514DOUGLAS-FIRPSEUDOTSUGA MENZIESII3515LEYLAND CYPRESSX CUPRESSOCYPARIS LEYLANDII2	Id GOOD 14 GOOD 12 GOOD 5 GOOD 5 GOOD	GOOD FAIR GOOD GOOD	YES YES CODOMINANT AT IO' NO
	20 20 × 20	06 RED ALDER 01 RED ALDER 08 RED ALDER 09 RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	12 20 14 20 13 20 21 25	FAIR FAIR FAIR GOOD	POOR POOR FOOR FAIR	NO 33% LCR, POOR TRUNK TAPER NO 33% LCR, POOR TRUNK TAPER NO 33% LCR, POOR TRUNK TAPER YES CODOMINANT AT 2' WITH INCLUDED BARK NO TUPE FAPERED AT COUNDED BARK		X	516 LEYLAND CYPRESS X CUPRESSOCYPARIS LEYLANDII 2 511 BIGLEAF MAPLE ACER MACROPHYLLUM 10 518 BIGLEAF MAPLE ACER MACROPHYLLUM 12 519 SWEET CHERRY PRUNUS AVIUM 13 520 BIGLEAF MAPLE ACEP MACROPHYLLUM 14	5 GOOD 12 GOOD 12 GOOD 15 GOOD 16 GOOD	GOOD FAIR FAIR FAIR FAIR FAIR	NO - NO ONE SIDED, MULTIPLE LEADERS YES ONE SIDED, MULTIPLE LEADERS YES CODOMINANT AT 2' WITH INCLUDED BARK, TAG 11085 MULTIPLE LEADERS
	× 21 × 21 × 21	0 RED ALDER 1 BIGLEAF MAPLE 2 RED ALDER 3 WESTERN REDCEDAR 4 RED ALDER	ALNUS RUBRA ACER MACROPHYLLUM ALNUS RUBRA THUJA PLICATA ALNUS RUBRA	15,15,12 30 29 30 18 20 20 20 11 20	POOR GOOD GOOD GOOD FAIR	POOR FAIR FAIR FAIR POOR	NO MULTIPLE LEADERS AT GROUND LEVEL, PAST FAILURES WITH DECAY AT LOWER TRUNK YES MULTIPLE LEADERS YES ONE SIDED YES EXTREME LEAN OUT OF HILLSIDE, UPRIGHT LEADERS OFF OF BENT STEM, LEANS AGAINST TREE 211 NO PISTOL BUTT, EXTREME LEAN		*	520BIGLEAF MAPLEACER MACROPHYLLUMI8521BITTER CHERRYPRUNUS EMARGINATA8,8522BITTER CHERRYPRUNUS EMARGINATAIO523SWEET CHERRYPRUNUS AVIUM8524NORWAY MAPLEACER PLATANOIDES21	18 GOOD 10 VERY POOR 8 POOR 14 FAIR 23 GOOD		YE3 Multiple leaders R 00 TOPPED, 9IGNIFICANT DIEBACK, TAG 5524 NO SIGNIFICANT DIEBACK, TAG 5523 NO THIN CROWN, MULTIPLE LEADERS WITH INCLUDED BARK, TAG 5311 YE3 CODOMINANT AT 2' WITH INCLUDED BARK, TAG 5511
	X 21 21 21 X 21	 5 RED ALDER 6 RED ALDER 1 RED ALDER 8 BIGLEAF MAPLE 	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ACER MACROPHYLLUM	13 15 10 12 14 15 18 20	GOOD FAIR FAIR GOOD	FAIR POOR FAIR FAIR	YES ONE SIDED, POOR TRUNK TAPER NO POOR TRUNK TAPER NO BOWED TRUNK, ONE SIDED YES ONE SIDED			525NORWAY MAPLEACER PLATANOIDESIO526SWEET CHERRYPRUNUS AVIUMIO521BIGLEAF MAPLEACER MACROPHYLLUMII528ORCHARD APPLEMALUS DOMESTICA8,8,8,6,6	I1 GOOD I5 GOOD I5 GOOD I2 GOOD	FAIR FAIR FAIR FAIR	NO CODOMINANT AT 6' WITH INCLUDED BARK, TAG 5391 NO CODOMINANT AT 3' WITH INCLUDED BARK, TAG 5213 YES ONE SIDED, TAG 5214 YES NOT MAINTAINED FOR FRUIT PRODUCTION
	× 21	8.1 WESTERN REDCEDAR 9 WESTERN REDCEDAR 9.1 RED ALDER 0 RED ALDER 1 BIGLEAF MAPLE	THUJA PLICATA THUJA PLICATA ALNUS RUBRA ALNUS RUBRA ACER MACROPHYLLUM	32 20 40 20 30,20,16 25 15,10,8 20 13 15	GOOD GOOD VERY PC GOOD FAIR	FAIR FAIR DOR VERY P FAIR FAIR	YES CODOMINANT AT 6', ADDED TO SURVEY SHEET BY ARBORIST IN APPROXIMATE LOCATION YES MULTIPLE LEADERS VOR NO MULTIPLE LEADERS, EXTENSIVE DIEBACK AND DECAY, ADDED TO SURVEY SHEET BY ARBORIST IN APPROXIMATE LOCATION YES ONE SIDED, MULTIPLE LEADERS AT GROUND LEVEL AND 3' NO OVERTOPPED BY ADJACENT TREES, ONE SIDED, PISTOL BUTT			529 SWEET CHERRY PRUNUS AVIUM 6 530 BIGLEAF MAPLE ACER MACROPHYLLUM 10	6 GOOD 10 GOOD	GOOD FAIR	NO NO ONE SIDED
	× 22 × 22	2 CASCARA 3 SWEET CHERRY 4 SWEET CHERRY 5 SWEET CHERRY	RHAMNUS PURSHIANA PRUNUS AVIUM PRUNUS AVIUM PRUNUS AVIUM	13 15 10 20 16 20 12,12,10,10 30 11 15	FAIR GOOD GOOD GOOD	FAIR FAIR FAIR FAIR	NO OVERTOPPED BY ADJACENT TREES, CODOMINANT AT 5', BANANA CRACK AT CODOMINANT STEM YES ONE SIDED YES MULTIPLE LEADERS AT GROUND LEVEL WITH INCLUDED BARK YES ONE SIDED, SIGNIFICANT LEAN, OVERTOPPED BY ADJACENT TREES			GEND TREES THAT ARE LOCATED ON-SITE AND IN TH RESTRICTED DEVELOPMENT AREA			ENTION ANALYSIS REE3 THAT MEET TREE RETENTION REQUIREMENT, SEE NOTE 4,
	× 22 22 22	6 SWEET CHERRY 1 SWEET CHERRY 8 RED ALDER 9 RED ALDER 60 RED ALDER	PRUNUS AVIUM PRUNUS AVIUM ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	IO IO I2 20 I0,9 I5 I3 I5	GOOD GOOD POOR FAIR FAIR	FAIR FAIR POOR POOR POOR	NO CROWN EXTENSION MODERATELY SUPPRESSED BY ADJACENT TREES YES ONE SIDED NO MULTIPLE LEADERS AT GROUND LEVEL, PREVIOUSLY FAILED LEADERS NO POOR TRUNK TAPER NO POOR TRUNK TAPER, ONE SIDED, 33% LCR			TREES THAT ARE LOCATED ON-SITE BUT OUTSI OF THE RESTRICTED DEVELOPMENT AREA)E		REES THAT DON'T MEET TREE RETENTION REQUIREMENT. SEE NOTE 4. OTAL NUMBER OF SURVEYED TREES TO BE SAVED ON-SITE. = <u>212 TEEES</u>
	23 23 X 23 23	IRED ALDER2RED ALDER3RED ALDER4RED ALDER	ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA ALNUS RUBRA	15 20 10 10 22 25 11 15	FAIR FAIR GOOD FAIR	POOR POOR POOR FAIR POOR	NO POOR TRUNK TAPER, ONE SIDED, 33% LCR NO KINKED LOWER TRUNK, 33% LCR NO POOR TRUNK TAPER, MODERATELY SUPPRESSED YES BOWED LOWER TRUNK NO ONE SIDED, POOR TRUNK TAPER			TREES TO BE PROTECTED ON ADJACENT PROPERTY		× Ťi	REES TO BE SAVED THAT MEET TREE RETENTION REQUIREMENT. = <u>99 TREES</u>
	× 23 × 23 × 23	 WE3TERN REDCEDAR RED ALDER WE3TERN REDCEDAR BIGLEAF MAPLE 	THUJA PLICATA ALNUS RUBRA THUJA PLICATA ACER MACROPHYLLUM	34 20 10 10 14 14 14,10 15	GOOD FAIR GOOD GOOD	GOOD FOOR GOOD FAIR	YES NO POOR TRUNK TAPER, 25% LCR YES YES CODOMINANT AT 2', ONE SIDED					P	URVEYED TREES TO BE REMOVED PER CODE SECTION 17.102.50 A-1 "AT LEAST THREE TREES 11 INCHES DBH OR GREA" DWNERSHIP". THERE IS 32.87 ACRES (32.87 X 3 = 98.6). SO A MINIMUM OF <u>99 TREES</u>
	23 EE SURVEY C	9 RED ALDER OMPLETED BY: TERA	ALNUS RUBRA GAN & ASSOCIATES, INC		FAIR	POOR D CERTIFIET	NO POOR TRUNK TAPÉR MASTER ARBORIST, ISA TREE RISK ASSESSMENT QUALIFIED, AICP, AMERICAN PLANNING ASSOCIATION					B	BE RETAINED MEETING THIS CODE REQUIREMENT. IS SHOWN ABOVE THERE ARE <u>212</u> SURVEYED TREES THAT WILL BE RETAINED. ONL
1. E	OBH IS THE TR C-RAD IS THE	RUNK DIAMETER IN IN APPROXIMATE CRO	CHES MEASURED IN AC UN RADIUS IN FEET.	CORDANCE WIT	H INTERNATIO	ONAL SOCIE	Y OF ARBORICULTURE STANDARDS.					IN	REQUIREMENTS TO BE "COUNTED" AS RETAINED TREES. I ADDITION TO THE <u>212</u> SURVEYED TREES THAT WILL BE SAVED, THERE ARE OVER HE OPEN SPACE AREAS AS SHOWN ON SHEET CT. THE ABOVE ANALYSIS PROVES
I -			GS RANGE FROM VERY	I-UUK. MOOR.	I AIK, IU GO	N 11 /			1				

Attachment 3 Additional Tree Protection Recommendations

The following recommendations meet or exceed City of Sandy Code requirements:

Before Construction Begins

- 1. Notify all contractors of tree protection procedures. For successful tree protection on a construction site, all contractors must know and understand the goals of tree protection.
 - a. Hold a tree protection meeting with all contractors to explain the goals of tree protection.
 - c. Have all contractors sign memoranda of understanding regarding the goals of tree protection. The memoranda should include a penalty for violating the tree protection plan. The penalty should equal the resulting fines issued by the local jurisdiction plus the appraised value of the tree(s) within the violated tree protection zone per the current Trunk Formula Method as outline in the current edition of the *Guide for Plant Appraisal* by the Council of Tree & Landscape Appraisers. The penalty should be paid to the owner of the property.
- 2. Fencing
 - a. Trees to remain in the grove should be protected by installation of tree protection fencing as shown in Attachment 1.
 - b. The fencing should be put in place before the ground is cleared in order to protect the trees and the soil around the trees from disturbances.
 - c. Fencing should be established by the project arborist based on the needs of the trees to be protected and to facilitate construction.
 - d. Fencing should consist of 6-foot high steel fencing on concrete blocks or 6foot metal fencing secured to the ground with 8-foot metal posts placed no farther than ten feet apart to prevent it from being moved by contractors, sagging, or falling down.
 - e. Fencing should remain in the position that is established by the project arborist and not be moved without approval from the project arborist until final project approval.
- 3. Signage
 - a. All tree protection fencing should have signage as follows so that all contractors understand the purpose of the fencing:

TREE PROTECTION ZONE

DO NOT REMOVE OR ADJUST THE APPROVED LOCATION OF THIS TREE PROTECTION FENCING.

Please contact the project arborist if alterations to the approved location of the tree protection fencing are necessary.

Todd Prager, Project Arborist - 971-295-4835

b. Signage should be placed every 75-feet or less.

During Construction

- 1. Protection Guidelines Within the Tree Protection Zones:
 - a. No new buildings; grade change or cut and fill, during or after construction; new impervious surfaces; or utility or drainage field placement should be allowed within the tree protection zones.
 - b. No traffic should be allowed within the tree protection zones. This includes but is not limited to vehicle, heavy equipment, or even repeated foot traffic.
 - c. No storage of materials including but not limiting to soil, construction material, or waste from the site should be permitted within the tree protection zones. Waste includes but is not limited to concrete wash out, gasoline, diesel, paint, cleaner, thinners, etc.
 - d. Construction trailers should not to be parked/placed within the tree protection zones.
 - e. No vehicles should be allowed to park within the tree protection zones.
 - f. No other activities should be allowed that will cause soil compaction within the tree protection zones.
- 2. The trees should be protected from any cutting, skinning or breaking of branches, trunks or woody roots.
- 3. The project arborist should be notified prior to the cutting of woody roots from trees that are to be retained to evaluate and oversee the proper cutting of roots with sharp cutting tools. Cut roots should be immediately covered with soil or mulch to prevent them from drying out.
- 4. Trees that have roots cut should be provided supplemental water during the summer months.
- 5. Any necessary passage of utilities through the tree protection zones should be by means of tunneling under woody roots by hand digging or boring with oversight by the project arborist.
- 6. Any deviation from the recommendations in this section should receive prior approval from the project arborist.

After Construction

- 1. Carefully landscape the areas within the tree protection zones. Do not allow trenching for irrigation or other utilities within the tree protection zones.
- 2. Carefully plant new plants within the tree protection zones. Avoid cutting the woody roots of trees that are retained.
- 3. Do not install permanent irrigation within the tree protection zones unless it is drip irrigation to support a specific planting or the irrigation is approved by the project arborist.
- 4. Provide adequate drainage within the tree protection zones and do not alter soil hydrology significantly from existing conditions for the trees to be retained.
- 5. Provide for the ongoing inspection and treatment of insect and disease populations that are capable of damaging the retained trees and plants.
- 6. The retained trees may need to be fertilized if recommended by the project arborist.
- 7. Any deviation from the recommendations in this section should receive prior approval from the project arborist.

June 15, 2020 Page 11 of 11

Attachment 4 Assumptions and Limiting Conditions

- 1. Any legal description provided to the consultant is assumed to be correct. The site plans and other information provided by Even Better Homes and their consultants was the basis of the information provided in this report.
- 2. It is assumed that this property is not in violation of any codes, statutes, ordinances, or other governmental regulations.
- 3. The consultant is not responsible for information gathered from others involved in various activities pertaining to this project. Care has been taken to obtain information from reliable sources.
- 4. Loss or alteration of any part of this delivered report invalidates the entire report.
- 5. Drawings and information contained in this report may not be to scale and are intended to be used as display points of reference only.
- 6. The consultant's role is only to make recommendations. Inaction on the part of those receiving the report is not the responsibility of the consultant.
- 7. The purpose of this report is to:
 - Assess the within and adjacent to the portion of the site to be developed;
 - Identify the trees to be removed and retained; and
 - Provide tree protection recommendations for the trees to be retained.

SCHOTT & ASSOCIATES

Ecologists & Wetlands Specialists

21018 NE Hwy 99E • P.O. Box 589 • Aurora, OR 97002 • (503) 678-6007 • FAX: (503) 678-6011

EXHIBIT H

JURISDICTIONAL WETLAND DELINEATION REPORT FOR

The Views

T2S, R5E, S19, TL 200 Sandy, Oregon

Prepared for

Even Better Homes, Inc Mac Even P.O. Box 2021 Gresham, OR 97030

Prepared by

Kim Biafora of Schott & Associates, Inc.

Date:

February 2020

Project #: 2748

TABLE OF CONTENTS

(A) LANDSCAPE SETTING AND LAND USE
(B) SITE ALTERATIONS
(C) PRECIPITATION DATA AND ANALYSIS
(D) SITE SPECIFIC METHODS
(E) DESCRIPTION OF ALL WETLANDS AND OTHER NON-WETLAND WATERS
(F) DEVIATION FROM LWI OR NWI
(G) MAPPING METHOD
(H) ADDITIONAL INFORMATION
(I) SUMMARY AND CONCLUSIONS
(J) DISCLAIMER

LIST OF TABLES

TABLE 1. PRECIPITATION SUMMARY FOR THE DATE OF FIELDWORK AND PRECEDING	
WATER YEAR (OCTOBER 1, 2019 – JANUARY 23, 2020)	2
TABLE 2. PRECIPITATION SUMMARY FOR THREE MONTHS PRECEDING FIELDWORK AND	
COMPARISON TO WETS AVERAGE AND NORMAL RANGE	2

APPENDICES

APPENDIX A: FIGURES FIGURE 1: LOCATION MAP FIGURE 2: TAX MAP FIGURE 3: WETLAND INVENTORY MAP FIGURE 4: USDA/NRCS SOIL SURVEY MAP FIGURE 5A: RECENT AERIAL IMAGE – SEPTEMBER 3, 2018 FIGURE 5B: HISTORICAL AERIAL IMAGE – JUNE 15, 2003 FIGURE 5C: HISTORICAL AERIAL IMAGE – JUNE 30, 1995 FIGURE 6A: WETLAND DELINEATION MAP – OVERVIEW FIGURE 6B: WETLAND DELINEATION MAP – OVERVIEW FIGURE 6B: WETLAND DELINEATION MAP – DETAIL APPENDIX B: DATA FORMS APPENDIX C: GROUND LEVEL PHOTOGRAPHS APPENDIX D: LOCAL WETLAND INVENTORY MAP FOR SANDY APPENDIX E: LITERATURE CITATIONS

(A) Landscape Setting and Land Use

Schott & Associates (S&A) was contracted to conduct wetland delineation verification on a 23.24-acre study site located at 41717 Highway 26 in Sandy, Clackamas County, Oregon (T2S, R5EW, S19, TL 200). This site was originally delineated by S&A in 2014 and wetland boundaries were concurred with by the Oregon Department of State Lands (DSL) in a letter issued March 10, 2015 (WD2014-0465). WD2014-0465 will expire on March 10, 2020 and the applicant wishes to renew the delineation in anticipation of future development. This report complies with all standards and requirements set forth in Oregon Administrative Rules (OAR) 141-090-0035 (1-17) for wetland delineation reports and jurisdictional determinations for the purpose of regulating fill and removal within waters of the state. This report will be used to fulfill federal and state regulatory requirements for project permitting.

The study site encompassed the entirety of tax lot 200. The site featured rural residential development including home and outbuildings along the western boundary but was otherwise undeveloped. An open stormwater pipe extended from a recreational vehicle (RV) sales lot to the south of the site into the northwestern portion of the site within a storm sewer easement. Site topography was undulating and dissected by several steepsided ravines along the northern portion of the site which sloped to the north and east; two of the ravines contained the upper reaches of first-order streams. The site in this area was vegetated by mixed coniferous-deciduous forest with dense Himalayan blackberry (*Rubus armeniacus*) thickets at the forest margins. Blackberry was recently cleared to facilitate site access and verification of the wetland and stream boundaries. The remainder of the site consisted of a semi-regularly mown field vegetated by mixed pasture grasses and weedy forbs with areas of stockpiled fill material.

The site was surrounded by the RV sales lot and other commercial development to the southwest, woodland to the north and east, and low-density residential development to the south. At the time of delineation, the site was zoned for single-family residential (SFR) and the forested portion of the site featured a Flood and Slope Hazard (FSH) overlay designation according to City of Sandy zoning maps

(B) Site Alterations

Aerial photographs for the time period between 1995 and 2018, available from Google Earth, were reviewed to assess site history. The site is believed to have been in agricultural use for decades, predominantly hay and pasture. In the earliest available aerial photograph (1995; Figure 5c), the site is in much the same condition as it is currently, though the adjacent RV lot is smaller. In 2003 (Figure 5b), the RV lot was expanded, and vehicle tracks are visible throughout the unforested portion of the study site. During a 2004 wetland delineation conducted by S&A, a dirt bike track was observed throughout the site resulting in significant soil and vegetation disturbance, and the storm drain discharging onto the northeastern portion of the property had recently been installed. The RV lot to the south began expanding again in the mid-2000s and the existing footprint was in place by the mid-2010s.

Schott & Associates Ecologists and Wetland Specialists <u>PO Box 589, Aurora, OR. 97002</u> P: (503) 678-6007 Page 1 S&A# 2748

(C) Precipitation Data and Analysis

Precipitation data for the date of fieldwork and the time period preceding it were reviewed to evaluate observed wetland hydrology conditions relative to actual and statistically normal precipitation. Precipitation that deviates from normal ranges can affect site conditions and impact observed wetland hydrology indicators. Precipitation data was acquired from the Natural Resources Conservation Service (NRCS) Agricultural Applied Climate Information System (AgACIS) for the Headworks Portland Wtr B station near Sandy to provide context for observed hydrological conditions of the study area at the time of the site visit (AgACIS 2019-2020). Table 1 provides the precipitation data, comparison to the normal water year average, as well as normal monthly ranges of precipitation representing 70% probability as reported for the Headworks Portland Wtr B NRCS WETS station (NRCS 1981-2010).

Table 1. Precipitation Summary for the Date of Fieldwork and Preceding Water Year (October 1, 2019 – January 23, 2020) Observed Precipitation*

		Ut	served Precipit	lation*	
Date of Field Visit	Date of Visit (in.)	2 weeks to- Date (in.)	Water Year to-Date (in.)	Normal Water Year to-Date (in.)	% of Normal Water Year-to Date
January 23, 2020	1.24	7.85	25.89	36.71	71%

*Data provided by NRCS AgACIS data from the Headworks Portland Wtr B Station, OR, 2018-2019

Table 2. Precipitation Summary for Three Months Preceding Fieldwork and Comparison	1
to WETS Average and Normal Range	

Month	Total Precipitation (inches)*	WETS Average (inches)**	WETS Normal Range (inches)**	% of Normal
December	6.87	11.15	8.38-12.81	17%
November	2.89	11.19	8.25-13.13	25%
October	4.85	6.53	3.97-7.91	60%

*Data provided by NRCS AgACIS data from the Headworks Portland Wtr B Station, OR, 2018-2019 **Data provided by NRCS WETS station for the Headworks Portland Wtr B Station, OR, 1981-2010

Fieldwork took place on January 23, 2020 when 1.24 inches of precipitation was observed. In the two weeks preceding fieldwork, 7.85 inches of precipitation was observed (168% of normal precipitation at 4.67 inches). Precipitation observed in December and November was below the WETS average and normal range. Precipitation observed in the month of October was below the WETS average, but within the normal range. Precipitation for the water year (October 1, 2019-Janaury 23, 2020) was observed at 71% of normal (36.71 inches). Despite a very dry start to the water year, precipitation levels increased considerably during the first few weeks of January. Because of the heavy rain observed on the day of and in the weeks leading to fieldwork, and the open stormwater pipe discharging into the site from the adjacent RV lot, it is assumed that

that surface and groundwater levels observed during fieldwork were likely temporarily higher than normal.

(D) Site Specific Methods

Prior to visiting the site, the following existing data and information was reviewed:

- Clackamas County tax map (<u>https://cmap.clackamas.us/maps/cmap /;</u> Figure 2)
- U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) and Local Wetland Inventory (LWI) for Sandy (Appendix D; SRI/SHAPIRO/AGCD, Inc., 1997)
- U.S. Department of Agriculture (USDA) National Resource Conservation Service (NRCS) gridded Soil Survey Geographic (gSSURGO) database for Clackamas County (Figure 4)
- Recent and historical aerial photographs provided by Google Earth (Figures 5a-5c)
- USGS National Elevation Data (NED), 1/9 arc-second, 2013 (Figure 6)
- Wetland delineation report #WD2014-0465

Two soil series were mapped within the study site boundary according to the USDA NRCS soil survey for Clackamas County: Cazadero silty clay loam at slopes ranging from 0-20% was mapped over all but the northeastern corner of the site and Klickitat stony loam at slopes of 30-69% was mapped in the northeastern corner. The Cazadero series is rated predominantly nonhydric (2% hydric inclusions) at slopes of 0-7% (occurring over the central and northwestern portions of the site) and nonhydric at slopes greater than 7%. Klickitat stony loam is rated nonhydric. Neither soil series are subject to flooding or ponding.

WD2014-0465 identified two wetlands totaling 0.24 acres and two streams located in ravines in the northeastern and northwestern portions of the site, which extended offsite. The wetlands had formed at the heads of the drainages.

Schott & Associates visited the site on January 23, 2019 to verify the boundaries of wetlands and waters delineated in 2014. The 2014 wetland boundaries and sample plots were flagged in the field by the surveying company that had surveyed the 2014 wetland delineation (All County Surveyors and Planners, Inc). New data were collected at previously established sample plot locations according to methods described in the *1987 Manual* and the *Regional Supplement to the Corps of Engineers Delineation Manual: Western Mountains, Valleys and Coast Region (Version 2.0)* and new sample plots were established as needed. For each sample plot, data on vegetation, hydrology, and soils was collected, recorded in the field and later transferred to data forms (Appendix B). Plant indicator status was determined using the 2016 National Wetland Plant List (Lichvar et al. 2016). Onsite streams were delineated via the ordinary high-water mark (OHWM) as indicated by top of bank, wrack or scour lines, change in vegetation communities, or gage elevation where applicable.

Schott & Associates Ecologists and Wetland Specialists PO Box 589, Aurora, OR. 97002 P: (503) 678-6007 Page 3 S&A# 2748 All identified wetlands are classified according to the USFWS *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979) and the *Guidebook for Hydrogeomorphic (HGM)-based Assessment of Oregon Wetland and Riparian Sites* (DSL 2001).

Representative ground level photographs were recorded to document site conditions (Appendix C; Figure 6).

(E) Description of All Wetlands and Other Non-Wetland Waters

The boundaries of the two wetlands and two streams were verified within the site, though the wetland in the northeast was found to be larger in size than it was in 2014. Onsite wetland area totaled 0.47 acre and onsite stream area totaled 0.04 acre. Wetland, stream, and sample plot locations are shown in Figure 6.

Wetland 1: Wetland 1 was located in the northwestern portion of the site at the head of a steep-sided ravine and sloped north-northeast. The wetland received direct discharge from an open storm water pipe associated with the RV lot to the south. During the time of fieldwork, this pipe was observed to be overflowing and flooding areas of upland near the pipe. Surface water flows eventually coalesced into a defined channel (Stream 1) downslope of the wetland, which continued offsite to the north. The wetland was assessed as a slope HGM class with a Cowardin class of seasonally flooded palustrine scrub-shrub (PSSC). The vegetation community consisted predominantly of Himalayan blackberry with patches of soft rush (*Juncus effusus*: FACW), as well as creeping bentgrass (*Agrostis stolonifera*; FAC) and velvetgrass (*Holcus lanatus*; FAC).

Soil samples met the Corps hydric indicator of redox dark surface (F6) indicating that iron in the soil has been removed and translocated under saturated, anoxic conditions within dark-colored soils. Soil layers were generally very dark grayish brown (10 YR 3/2) in matrix color and featured common yellow-red redoximorphic concentrations occurring as soft masses. These dark soils were underlain by depleted matrix color (10 YR 4/1) at about 10 inches of depth in some cases. Soil samples on the south end of the wetland exhibited mixed matrices, presumably due to disturbance from the installation of the stormwater pipe. Soil texture was silt loam to silty clay loam to silty clay. Wetland hydrological indicators observed included surface water (A1), high water table (A2), and soil saturation (A3).

Wetland 1 was bound by the ravine sideslopes. These areas were generally vegetated by Himalayan blackberry along with pasture grasses such as orchardgrass (*Dactylis glomerata*; FACU), tall fescue (*Schedonorus arundinaceus*; FAC), bentgrass, and velvetgrass. Soil samples frequently exhibited mixed matrices of 10 YR 3/2 with dark brown (10 YR 3/3) and brown (7.5 YR 4/3) colors, likely due to past disturbance. No redoximorphic features were present. Hydrology indicators were present in some cases, attributed to recent heavy rains and the presence of an overflowing open stormwater pipe.

Wetland 2: Wetland 2 was located in the northeastern portion of the site, also at the head of a ravine, and sloped east. The wetland was apparently sustained by one or more seeps

Schott & Associates Ecologists and Wetland Specialists PO Box 589, Aurora, OR. 97002 P: (503) 678-6007 Page 4 S&A# 2748 on the face of the ravine. Flows eventually drained into Stream 2 and continued offsite to the east. The wetland was assessed as a slope HGM class with a Cowardin class of seasonally flooded palustrine forested (PFOC). The vegetation community consisted an overstory of western redcedar (*Thuja plicata*; FAC) with an understory of vine maple (*Acer circinatum*; FAC), salmonberry (Rubus spectabilis; FAC), piggyback plant (*Tolmiea menziesii*; FAC), and skunk cabbage (*Symplocarpus foetidus*; OBL).

Soils met the Corps hydric indicator of depleted below dark surface (A11). Dark soil surface layers were very dark grayish brown in matrix color, depleted layers were dark grayish brown (10 YR 4/2) to grayish brown (10 YR 5/2) in matrix color and featured many yellow-red redoximorphic concentrations occurring as soft masses. Soil texture was cobbley, gravelly loamy sand. Wetland hydrological indicators observed included surface water, high water table, and soil saturation.

The wetland was bound by the ravine sideslopes vegetated by mixed forest including bigleaf maple (Acer macrophyllum; FACU), Douglas-fir (Pseudotsuga menziesii; FACU), and western red cedar with an understory of vine maple, hazelnut (Corylus cornuta; FACU), western swordfern (*Polystichum munitum*; FACU), trailing blackberry (*Rubus ursinus*; FACU), and wood sorrel (*Oxalis oregana*; FACU). Soils were brown to dark brown silt loam with no redoximorphic features. No hydrological indicators were present at sample plots.

Stream 1: Stream 1 flowed northeast from Wetland 1. The channel within the study site was approximately 2-3 feet wide and 1-2 feet deep with a silty substrate and featured a few inches of flowing water at the time of fieldwork. Based on the intermittently defined bed and banks and relatively low flow despite wet conditions, it is assumed that this headwater reach of Stream 1 is intermittent in flow period. The feature was assessed as a seasonally flooded intermittent riverine stream bed (R4SBC) Cowardin class. Riparian vegetation consisted of a red alder (*Alnus rubra*; FAC) with an understory dominated by Himalayan blackberry and some English ivy (*Hedera helix*; FACU).

Stream 2: Stream 2 flowed east from Wetland 2. The channel within the study site was approximately 3-4 feet wide and less than 1 foot deep with a sandy-gravelly substrate and featured a few inches of flowing water at the time of fieldwork. The stream had intermittently defined bed and banks and low flow, so is assumed intermittent in flow period. The feature was assessed as a R4SBC Cowardin class. Riparian vegetation consisted of western redcedar forest with an understory of vine maple, western swordfern, and wood sorrel.

(F) Deviation from LWI or NWI

The NWI depicts the upper end of a seasonally flooded intermittent riverine stream bed (R4SBC) aquatic habitat mapped in the general location of Stream 2. This feature is associated with an ODF mapped intermittent stream (Figure 3). The Sandy LWI depicts wetlands in the general locations of Wetland/Stream 1 and Wetland/Stream 2, referred to as CC3 and CC4, respectively (Appendix D). The results of this study confirm and refine the LWI and augments the NWI, identifying PSSC and PFOC wetlands at the heads of two R4SBC streams as shown in Figures 6a and 6b.

Schott & Associates Ecologists and Wetland Specialists PO Box 589, Aurora, OR. 97002 P: (503) 678-6007 Page 5 S&A# 2748

(G) Mapping Method

The mapped wetland areas were based on soils, vegetation, and hydrology data. The wetland and OHWM boundaries and sample plot locations were recorded with a handheld Trimble GPS unit capable of sub-meter accuracy following differential correction with Pathfinder Office desktop software. These data were converted to ESRI shapefile and mapped using ArcMap 10.6 desktop software.

(H) Additional Information

None.

(I) Summary and Conclusions

Based on vegetation, soils, and hydrology data, two wetlands (totaling 0.47 acre) and two streams (totaling 0.04 acre) were identified within the study site. Wetland 1 occurred at the bottom of a ravine at the head of Stream 1 and was classified as a slope HGM class and PSSC Cowardin class. Wetland 2 occurred at the bottom of a ravine at the head of Stream 2 and was classified as a slope HGM class and PFOC Cowardin class. Both streams were assessed as R4SBC Cowardin classes and continue beyond the study site boundaries.

(J) Disclaimer

This report documents the investigation, best professional judgment, and conclusions of the investigators. It is correct and complete to the best of our knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters and used at your own risk unless it has been reviewed and approved in writing by the Oregon Department of State lands in accordance with OAR 141-090-0005 through 141-090-0055.

	Schott & Associates	
	Ecologists and Wetland Specialis	ts
PO Bo	ox 589, Aurora, OR. 97002 P: (503	3) 678-6007
Page 6		S&A# 2748

APPENDIX A: FIGURES

FIGURE 1: LOCATION MAP

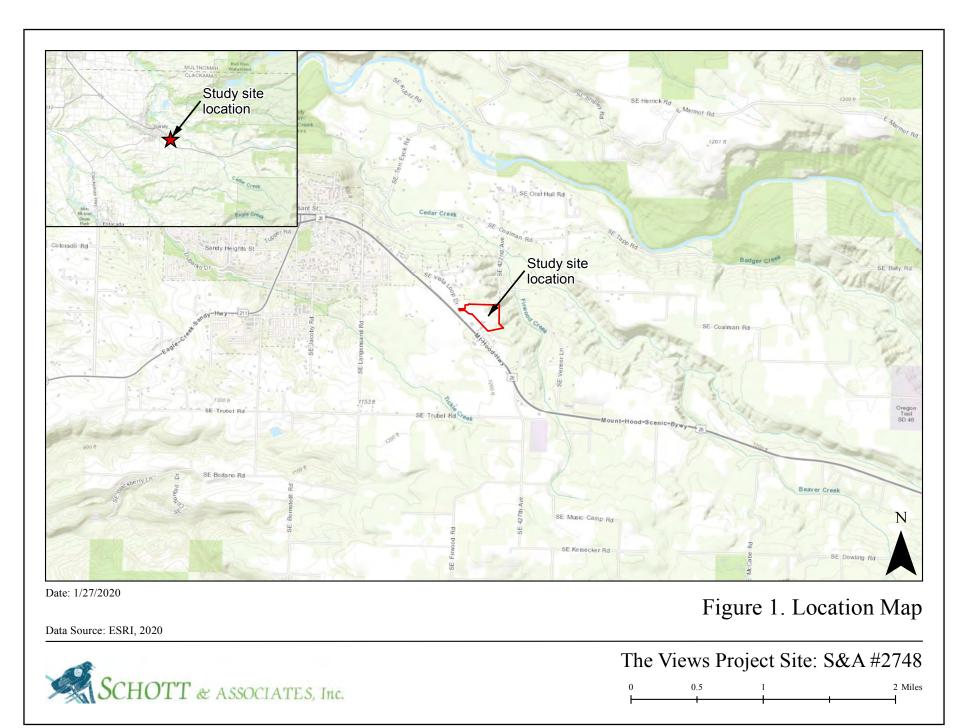
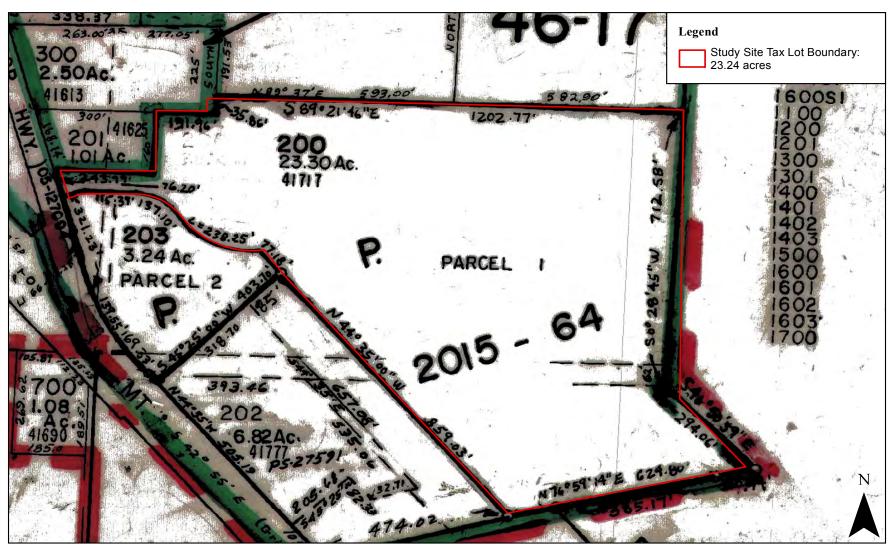



FIGURE 2: TAX MAP

Date: 1/27/2020

Figure 2. Clackamas County Tax Map - 285E19

Data Source: ESRI, 20120; Clackamas County GIS Dept., 2019; USFWS, NWI, 2019; ODF, 2019

The Views Project Site: S&A #2748

75 150 300 Feet

FIGURE 3: WETLAND INVENTORY MAP

Date: 1/31/2020

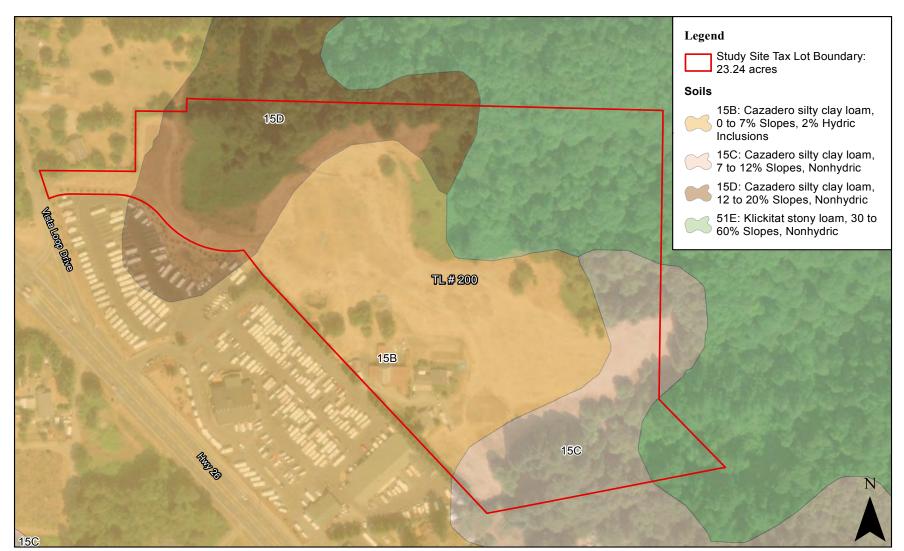

Data Source: ESRI, 20120; Clackamas County GIS Dept., 2019; USFWS, NWI, 2019; ODF, 2019

Figure 3. Wetland Inventory Map

The Views Project Site: S&A #2748

FIGURE 4: USDA/NRCS SOIL SURVEY MAP

Date: 1/27/2020

Data Source: ESRI, 20120; Clackamas County GIS Dept., 2019; Soil Survey Staff, USDA, NRCS, 12/2/2019

Figure 4. USDA/NRCS Soil Survey Map of Clackamas County

The Views Project Site: S&A #2748

150

300 Feet

Page 388 of 916

FIGURE 5A: RECENT AERIAL IMAGE – SEPTEMBER 3, 2018

Date: 1/27/2020

Data Source: ESRI, 20120; Clackamas County GIS Dept., 2019; USFWS, NWI, 2019; ODF, 2019

Figure 5a. Recent Aerial Image -September 3, 2018

The Views Project Site: S&A #2748

300 Feet

FIGURE 5B: HISTORICAL AERIAL IMAGE – JUNE 15, 2003

Date: 1/27/2020

Data Source: ESRI, 20120; Clackamas County GIS Dept., 2019; USFWS, NWI, 2019; ODF, 2019

Figure 5b. Recent Aerial Image -June 15, 2003

The Views Project Site: S&A #2748

300 Feet

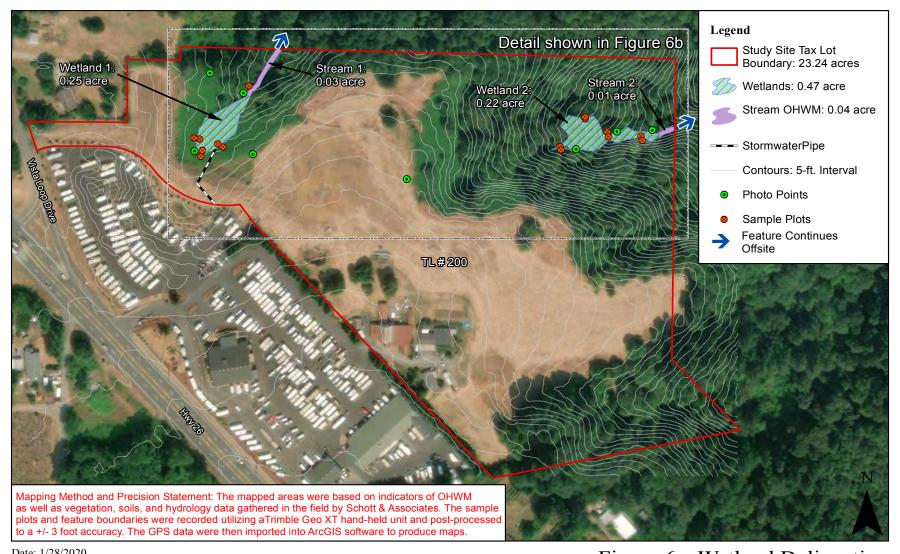
150

Page 392 of 916

FIGURE 5C: HISTORICAL AERIAL IMAGE – JUNE 30, 1995

Date: 1/27/2020

Data Source: ESRI, 20120; Clackamas County GIS Dept., 2019; USFWS, NWI, 2019; ODF, 2019


Figure 5c. Recent Aerial Image -June 30, 1995

The Views Project Site: S&A #2748 300 Feet

150

Page 394 of 916

FIGURE 6A: WETLAND DELINEATION MAP - OVERVIEW

Date: 1/28/2020 1 inch = 208 feet Data Source:ESRI, 2020; Clackamas GIS Dept., 2019 ; USGS, NED, 2011

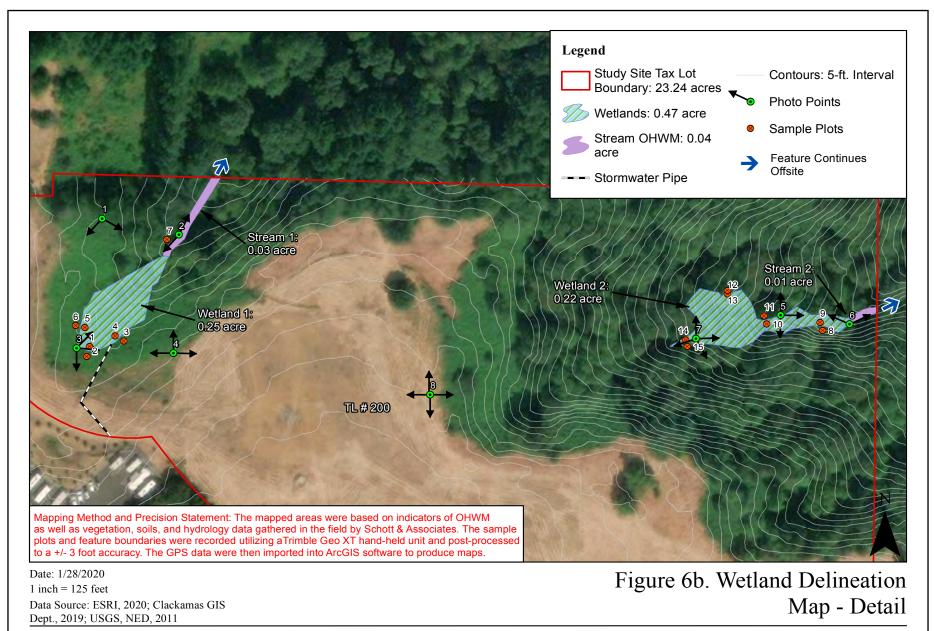

SCHOTT & ASSOCIATES, Inc.

Figure 6a. Wetland Delineation Map - Overview

The Views Project Site: S&A #2748

0 50 100 200 Feet

FIGURE 6B: WETLAND DELINEATION MAP – DETAIL

The Views Project Site: S&A #2748

50 100 200 Feet

APPENDIX B: DATA FORMS

Project/Site:	The Views			City/County	Sandy/Cla	ackamas		Sampli	ng Date:	1/23/2020
Applicant/Owner:	Even Better Homes	8				State:	OR	Sampli	ng Point:	1
Investigator(s):	K. Biafora			Sectio	n, Township	o, Range: <u>S19, ⁻</u>	T2S, R5E			
Landform (hillslope	e, terrace, etc.):	Ravine		Local re	elief (concav	e, convex, none)	: none		Slope (%):	4-7%
Subregion (LRR):	Northwest Forests	and Coast (LRR A	<u>)</u> Lat:		45.3	8688397 Long	:	-122.2330	827 Datum	: WGS 84
Soil Map Unit Nam	ne: Cazadero s	ilty clay loam				NWI C	lassification:	none		
Are climatic / hydro	ologic conditions on t	the site typical for t	his time of	year?	Yes	X No	o	(If no, exp	lain in Remarks	s)
Are Vegetation	, Soil	, or Hydrology		significantly	disturbed?	Are "Normal	Circumstanc	es" Presen	t? Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally pr	oblematic?	(If needed, e	xplain any ar	nswers in R	emarks.)	
SUMMARY OF	FINDINGS – At	tach site map s	showing	sampling	point loca	ations, transe	ects, impo	ortant fea	tures, etc.	
Hydrophytic Veget	ation Present?	Yes <u>X</u> No	D	ls the S	ampled Are	a				
Hydric Soil Presen	it?	Yes <u>X</u> No	<u> </u>		a Wetland?		Χ	No		
Wetland Hydrology	y Present?	Yes <u>X</u> No	<u> </u>							
Remarks: Himalay	an blackberry recent	ly cleared along m	argins of w	etland to fac	iliate access	δ.				
VEGETATION										
			Absolute	Dominant	Indicator	Dominance Te	est workshe	et:		
Free Stratum (U	se scientific names.)		% Cover	Species?	Status?	Number of Dor	ninant Speci	ies		
<u></u> (e.	,					That Are OBL,	FACW, or F	AC:	1	(A)
						Total Number of	of Dominant			_ ` /
3.						Species Across	s All Strata:		1	(B)
ł						Percent of Don	ninant Sneci			_ ` /
		Total Cover:	0			That Are OBL,			100%	(A/B)
										-
Shrub Stratum						Prevalence In	dex Worksh	eet:		
. Rubus armenia	acus		100	Y	FAC	Total % C	over of:		Multiply by:	_
2						OBL species		x1 =	0	_
B						FACW species			0	_
ł						FAC species			0	_
j						FACU species		x4 =	0	_
		Total Cover:	100			UPL species		x5 =		_
lerb Stratum						Column Totals		(A)		(B)
					·	Prevalence In	ndex = B/A =			_
						Hydrophytic V	-			
					·				c Vegetation	
					·		ominance Te		1	
							evalence Inc			a atia a
									1 (Provide supp	onung
)				·	·		n Remarks o etland Non-\			
				·					etation ¹ (Explai	n)
0					·			spriyae veg		,
				·						
		Total Cover:	0							
1	stratum	Total Cover:	0			¹ Indicators of h	vdric soil and	d wetland h	wdrology must	
1. Woody Vine S	Stratum_	Total Cover:	0			¹ Indicators of h be present, unl				
11. Woody Vine S	<u>stratum</u>	Total Cover:	0	. <u></u>		be present, unl				
11. Woody Vine S	<u>Stratum</u>					be present, unl Hydrophytic				
11	<u>stratum</u> ire Ground in Herb S	Total Cover:		iotic Crust		be present, unl			matic.	

US Army Corps of Engineers

Western Mountains, Valleys and Coast - Version 2.0

ofile Do-	parintian. (Decertified	to the daw	h pooded to d	oument t	ha indiac*		firm the sheer-	e of indicatore)
	scription: (Describe	to the depi		edox Feat		or or con	firm the absence	e of indicators.)
epth	Matrix Color (moist)	0/				Loc ²	Toxturo	Pomorko
iches)	10 YR 3/2	<u>%</u> 90	Color (moist) 10 YR 3/6	%	Type ¹		Texture	Remarks
0-16	10 YR 3/2	90	10 YR 3/6	10	 		SCL	
ype: C=0	Concentration, D=Dep	letion, RM=	Reduced Matrix	, CS=Cov	ered or Co	ated Sand	Grains. ² Locati	ion: PL=Pore Lining, M=Matrix.
dric Soi	I Indicators: (Applic	able to all	LRRs, unless o	therwise	noted.)		Indicators for	Problematic Hydric Soils ³ :
Histos	sol (A1)		Sandy	/ Redox (S	5)			2 cm Muck (A10)
Histic	Epipedon (A2)		Stripp	ed Matrix	(S6)			Red Parent Material (TF2)
Black	Histic (A3)		Loam	y Mucky N	lineral (F1)	(except I	MLRA 1)	Other (Explain in Remarks)
Hydro	gen Sulfide (A4)		Loam	y Gleyed N	/latrix (F2)			
Deple	ted Below Dark Surfa	ce (A11)	Deple	ted Matrix	(F3)			
Thick	Dark Surface (A12)		X Redo	d Dark Sur	face (F6)		³ Indicator	rs of hydrophytic vegetation and
Sandy	/ Muck Mineral (S1)		Deple	ted Dark S	Surface (F7	.)	wetlan	d hydrology must be present,
Sandy	gleyed Matrix (S4)		Redox	Depressi	ons (F8)			ss disturbed or problematic.
	Layer (if present):				. ,			
pe:	, , , , ,							
epth (inch	nes):					Hv	dric Soil Presen	nt? Yes X No
arks:								
	ydrology Indicators:		cient)					Secondary Indicators (2 or more required
etland H				-Stained L	.eaves (B9) (except		Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1, 2
etland H imary Ind Surfac	ydrology Indicators: licators (any one indic		Water		eaves (B9			
etland H imary Ind Surfac High V	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2)		Water ML	RA 1, 2, 4	A and 4B)			Water-Stained Leaves (B9) (MLRA 1, 2
etland H imary Ind Surfac High V Satura	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3)		Water ML Salt C	RA 1, 2, 4 rust (B11)	A and 4B)			Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10)
etland H imary Ind Surfac High V Satura Water	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1)		Water ML Salt C	RA 1, 2, 4 rust (B11) ic Inverteb	A and 4B) prates (B13)		Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
etland H imary Ind Surfac High V Satura Water Sedim	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2)		Water ML Salt C Aquat Hydro	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid	A and 4B) prates (B13 e Odor (C1)		Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3
etland H imary Ind Surfac High V Satura Water Sedim Drift D	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3)		Water ML Salt C Aquat Hydro Oxidiz	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid red Rhizos	A and 4B) prates (B13 e Odor (C1 pheres alo) I) ing Living	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2)
etland H imary Ind Surfac High V Satura Water Sedim Drift D Algal I	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)		Water ML Salt C Aquat Hydro Oxidiz Prese	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid red Rhizos nce of Red	A and 4B) prates (B13 e Odor (C spheres alo duced Iron) I) ing Living (C4)	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3)
etland H imary Ind Surfac High V Satura Vater Sedim Drift D Algal I Iron D	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)		Water ML Salt C Aquat Hydro Oxidiz Prese Recer	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid red Rhizos nce of Red nt Iron Red	A and 4B) prates (B13 e Odor (C ² pheres alo duced Iron luction in P) I) ng Living (C4) Plowed So	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
etland H imary Ind Surfac High V Satura Water Sedim Drift D Algal I Iron D Surfac	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Peposits (B5) ce Soil Cracks (B6)	ator is suffic	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid red Rhizos nce of Rea ht Iron Rea ed or Stres	A and 4B) prates (B13 e Odor (C ⁴ pheres alo duced Iron duction in F esed Plants) I) (C4) Plowed So ; (D1) (LR	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
etland H imary Ind Surfac High V Satura Satura Uvater Drift D Algal I Iron D Surfac Inunda	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial	ator is suffic	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte 7) Other	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid red Rhizos nce of Rea ht Iron Rea ed or Stres	A and 4B) prates (B13 e Odor (C ² pheres alo duced Iron luction in P) I) (C4) Plowed So ; (D1) (LR	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
etland H imary Ind Surfac High V Satura Water Sedim Sedim Iron D Surfac Inunda Spars	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial lely Vegetated Concav	ator is suffic	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte 7) Other	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid red Rhizos nce of Rea ht Iron Rea ed or Stres	A and 4B) prates (B13 e Odor (C ⁴ pheres alo duced Iron duction in F esed Plants) I) (C4) Plowed So ; (D1) (LR	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
etland H imary Ind Surfac High V Satura Satura Sedim Drift E Algal I Iron D Surfac Inunda Spars eld Obse	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial	ator is suffic Imagery (B ve Surface (Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte 7) Other B8)	RA 1, 2, 4 crust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Rea th Iron Rea ed or Stres (Explain in	A and 4B) prates (B13 e Odor (C ⁴ spheres alo duced Iron duction in P esed Plants n Remarks) I) (C4) Plowed So ; (D1) (LR	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
etland H imary Ind Surfac High V Satura Water Drift D Algal I Iron D Surfac Spars eld Obse ater table	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) * Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav rvations: ater Present? Yes	Imagery (B ve Surface (<pre>Water ML ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte 7) Other B8) No X Dep Dep Dep</pre>	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Red th Iron Red ed or Stres (Explain in oth (inches	A and 4B) prates (B13 e Odor (C ² pheres alo duced Iron duction in F used Plants n Remarks):) I) (C4) Plowed So ; (D1) (LR	Roots (C3) ills (C6) R A)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
etland H imary Ind Surfac High V Satura Water Water Drift D Algal I Iron D Surfac Spars eld Obse ater table	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) * Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav rvations: ater Present? Yes	Imagery (B ve Surface (<pre>Water ML ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte 7) Other B8) No X Dep Dep Dep</pre>	RA 1, 2, 4 rrust (B11) ic Inverteb gen Sulfid red Rhizos nce of Red th Iron Rec ed or Stres (Explain in th (inches	A and 4B) prates (B13 e Odor (C ² pheres alo duced Iron duction in F used Plants n Remarks):) I) (C4) Plowed So ; (D1) (LR	Roots (C3) ills (C6) R A)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
etland H imary Ind Surfac High V Satura Sedir Orift D Algal I Iron D Surfac Spars eld Obse atter table aturation I icludes ca	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial lely Vegetated Concav servations: ater Present? Yes Present? Yes	Imagery (B ve Surface (s X f	<pre>Water ML</pre>	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Red at Iron Red ed or Stres (Explain in oth (inches oth (inches	A and 4B) arates (B13 e Odor (C ² apheres alo duced Iron duction in F ased Plants n Remarks):) I) (C4) lowed So i (D1) (LR)	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
etland H imary Ind Surfac High V Satura Sedir Orift D Algal I Iron D Surfac Spars eld Obse atter table aturation I icludes ca	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav revations: ater Present? Yes Present? Yes apillary fringe)	Imagery (B ve Surface (s X f	<pre>Water ML</pre>	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Red at Iron Red ed or Stres (Explain in oth (inches oth (inches	A and 4B) arates (B13 e Odor (C ² apheres alo duced Iron duction in F ased Plants n Remarks):) I) (C4) lowed So i (D1) (LR)	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
etland H imary Ind Surfac High V Satura Water Sedim Drift C Algal I Iron D Surfac Satra Spars eld Obse urface Wa ater table aturation I cludes ca cribe Rec	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav revations: ater Present? Yes Present? Yes apillary fringe)	Imagery (B ve Surface (s X f	<pre>Water ML</pre>	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Red at Iron Red ed or Stres (Explain in oth (inches oth (inches	A and 4B) arates (B13 e Odor (C ² apheres alo duced Iron duction in F ased Plants n Remarks):) I) (C4) lowed So i (D1) (LR)	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
etland H imary Ind Surfac High V Satura Water Sedim Drift C Algal I Iron D Surfac Satra Spars eld Obse urface Wa ater table aturation I cludes ca cribe Rec	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav revations: ater Present? Yes Present? Yes apillary fringe)	Imagery (B ve Surface (s X f	<pre>Water ML</pre>	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Red at Iron Red ed or Stres (Explain in oth (inches oth (inches	A and 4B) arates (B13 e Odor (C ² apheres alo duced Iron duction in F ased Plants n Remarks):) I) (C4) lowed So i (D1) (LR)	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
etland H imary Ind Surfac High V Satura Satura Water Drift C Algal I Iron D Surfac Surfac Water Algal I Iron D Surfac Saturation I cludes ca cribe Rec	ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav revations: ater Present? Yes Present? Yes apillary fringe)	Imagery (B ve Surface (s X f	<pre>Water ML</pre>	RA 1, 2, 4 rust (B11) ic Inverteb gen Sulfid zed Rhizos nce of Red at Iron Red ed or Stres (Explain in oth (inches oth (inches	A and 4B) arates (B13 e Odor (C ² apheres alo duced Iron duction in F ased Plants n Remarks):) I) (C4) lowed So i (D1) (LR)	Roots (C3)	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	The Views			City/County:	Sandy/Claci	kamas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Homes						State: OR	Sampling P	oint:	2
Investigator(s):	K. Biafora			Section,	Township,	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local reliv	ef (concave	, convex	, none): <u>none</u>		Slope (%):	4-7%
Subregion (LRR):	Northwest Forests a	Ind Coast (LRR A)	Lat:		45.386	684183	Long:	-122.2330976	Datum:	WGS 84
Soil Map Unit Nam	e: Cazadero silf	ty clay loam					NWI Classification:	none		
Are climatic / hydro	logic conditions on th	ne site typical for this ti	ime of y	/ear?	Yes	Х	No	(If no, explain	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly d	disturbed?	Are "N	ormal Circumstance	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally prob	olematic?	(If nee	eded, explain any an	iswers in Rema	ırks.)	
SUMMARY OF	FINDINGS – Atta	ach site map show	wing s	sampling p	oint locat	tions, t	transects, impo	rtant feature	etc.	
Hydrophytic Vegeta	ation Present?	Yes X No		Is the Sar	npled Area					

Hydric Soil Present?	Yes		No	Х	is the Sampled Area within a Wetland?	Yes	No	х		
Wetland Hydrology Present?	Yes	Х	No_							
Remarks: Himalayan blackberry rece stormwater pipe to overflow and floor				0	tland to faciliate access. Heav	y rains prior to and	I during fieldw	vork causing) open	

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
1.				That Are OBL, FACW, or FAC: 1 (A)
2				Total Number of Dominant Species Across All Strata: <u>1</u> (B)
4Total Cover	: 0			Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
	·	-		
Shrub Stratum				Prevalence Index Worksheet:
1. Rubus armeniacus	100	Y	FAC	Total % Cover of: Multiply by:
2				OBL species x1 =0
3				FACW species x2 =0
4				FAC species x3 = 0
5				FACU species x4 = 0
Total Cover	: 100	-		UPL species x5 =0
Herb Stratum				Column Totals: 0 (A) 0 (B)
1				Prevalence Index = B/A =
2				Hydrophytic Vegetation Indicators:
			·	1 - Rapid Test for Hydrophytic Vegetation
4 5.				X 2 - Dominance Test is >50%
6.			·	3 - Prevalence Index is $\leq 3.0^{1}$
7			·	
			·	4 - Morphological Adaptation1 (Provide supporting
8			·	data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹
9				
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11Total Cover	. 0			
Woody Vine Stratum		-		¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1 2.			·	
Z	. 0			Hydrophytic
% Bare Ground in Herb Stratum 0 %		iotic Crust	0	Vegetation Present? Yes X No
	00101 01 0		0	
Remarks: Blackberry recently cut.				
US Army Corps of Engineers				Western Mountains, Valleys and Coast - Version 2

IL		1.12	a				e		Carlor Arrows		
	scription: (Describe	to the dep				or or con	firm the abse	nce of	indicators.)		
epth	Matrix		Re	edox Feat							
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture			Remarks	
0-8	10 YR 3/2	100					SCL				
8-12	10 YR 3/3	50	7.5 YR 4/3	50			SCL		mixed matrix	x	
12-16	10 YR 3/3	100									
				·	·						
ype: C=0	Concentration, D=Dep	oletion, RM	Reduced Matrix,	CS=Cove	ered or Coa	ated Sand	I Grains. ² Lo	cation:	PL=Pore Lin	iing, M=Matrix	x.
ydric Soi	I Indicators: (Applic	able to all	LRRs, unless ot	herwise ı	noted.)		Indicators	for Pro	blematic Hy	dric Soils ³ :	
Histos	sol (A1)		Sandy	Redox (S	5)		-	2 0	cm Muck (A1	0)	
Histic	Epipedon (A2)			ed Matrix (. ,		-	Re	ed Parent Ma	aterial (TF2)	
Black	Histic (A3)		Loamy	Mucky M	lineral (F1)	(except l	MLRA 1)	Ot	her (Explain	in Remarks)	
Hydro	gen Sulfide (A4)		Loamy	Gleyed M	Aatrix (F2)		-				
Deple	ted Below Dark Surfa	ice (A11)	Deplet	ed Matrix	(F3)						
	Dark Surface (A12)	. ,		Dark Sur			³ Indic	ators of	hydrophytic	vegetation ar	nd
	/ Muck Mineral (S1)				Surface (F7	·)			drology must		
- '	gleyed Matrix (S4)			Depressi		,		-	sturbed or pr	-	
	Layer (if present):					1	u			- 5.6	
	ayer (ii present).										
/pe:											N
epth (inch	ies).							senre		Yes	No
narks: So	il profile appears dist	ırbed, likely	due to installation	n of nearb	y stormwa	-	dric Soil Pre				
ROLOG	I profile appears distu		due to installation	n of nearb	y stormwa	-					
DROLOG	Y ydrology Indicators:			n of nearb	y stormwa	-				ators (2 or m	
DROLOG Vetland H	il profile appears distu Y ydrology Indicators: licators (any one indic		icient)			ter pipe.		Sec	ondary Indic	ators (2 or mi	
PROLOG /etland H imary Inc Surfac	Y ydrology Indicators: licators (any one indic ce Water (A1)		icient) Water-	Stained L	eaves (B9) (except		Sec	ondary Indic	Leaves (B9)	
DROLOG fetland H imary Inc Surfac (High \	Y ydrology Indicators: Iicators (any one indic ce Water (A1) Water Table (A2)		icient) Water- MLF	Stained L RA 1, 2, 4 /	eaves (B9 A and 4B)) (except		W	ondary Indic ater-Stained 4A and 4B)	Leaves (B9)	
DROLOG /etland H Surfac (Surfac (Satura	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3)		icient) Water- MLF Salt Ci	Stained L RA 1, 2, 4/ rust (B11)	eaves (B9 A and 4B)) (except		W	ondary Indic ater-Stained 4A and 4B) ainage Patte	Leaves (B9) erns (B10)	(MLRA 1, 2
PROLOG etland H imary Inc Surfad Unifad Satura Satura Wated	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1)		icient) Water- Salt Ci Salt Ci Aquati	Stained L RA 1, 2, 4 Just (B11) c Inverteb	eaves (B9 A and 4B) rates (B13) (except		W. Dr Dr	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W	Leaves (B9) erns (B10) ater Table (C	(MLRA 1, 2 2)
DROLOG /etland H imary Inc Surfae High V Satura Water Sedin	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2)		icient) Water- MLF Salt Ci Aquati Hydrog	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide	eaves (B9 A and 4B) rates (B13 e Odor (C1) (except		W W Dr Dr Sa	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil	Leaves (B9) erns (B10) ater Table (C ble on Aerial	(MLRA 1, 2 2)
DROLOG /etland H imary Inc Surfac High V Satura Water Sedin Drift [Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3)		icient) Water- MLF Salt Ci Aquati Hydrog	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide	eaves (B9 A and 4B) rates (B13 e Odor (C1) (except		W W Dr Dr Sa	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W	Leaves (B9) erns (B10) ater Table (C ble on Aerial	(MLRA 1, 2 2)
DROLOG /etland H imary Inc Surfac High V Satura Water Sedin Drift [Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2)		icient) Water- MLF Salt Ci Aquati Hydrog Oxidize	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfidi ed Rhizos	eaves (B9 A and 4B) rates (B13 e Odor (C1) (except) ng Living		W W Dr Sa Ge	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil	Leaves (B9) rrns (B10) ater Table (C ble on Aerial position (D2)	(MLRA 1, 2 2)
DROLOG /etland H imary Inc Surfac High V Satura Water Water Sedin Drift [Algal	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3)		icient) Water- MLF Salt Cr Aquati Hydrog Oxidizr Preser	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo) (except) (except))))) (C4)		W Dr Dr Sa Ge St	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil comorphic Po	Leaves (B9) erns (B10) ater Table (C ble on Aerial position (D2) rd (D3)	(MLRA 1, 2 2)
PROLOG fetland H imary Inc Surfac High V Satura Water Water Drift E Algal Iron E	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)		icient) Water- MLF Salt Cr Aquati Hydrog Oxidizr Preser Recen	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron) (except) (except)))))) (C4) ? lowed So		W Dr Dr Sa Ge Sh FA	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil comorphic Po allow Aquita G-Neutral To	Leaves (B9) erns (B10) ater Table (C ble on Aerial position (D2) rd (D3)	(MLRA 1, 2) Imagery (C
PROLOG etland H imary Inc Surfac High V Satura Sedin Drift E Algal Iron D Surfac	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Veposits (B5)	ator is suff	icient) Water- MLF Salt Cr Aquati Hydrog Oxidizr Preser Recen Stunte	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P) (except) (C4) lowed So ; (D1) (LR		<u>Sec</u> W Dr Dr Sa Ge St FA Ra	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Te ised Ant Mo	Leaves (B9) ater Table (C ble on Aerial osition (D2) rd (D3) est (D5)	(MLRA 1, 2 2) Imagery (C RR A)
DROLOG /etland H rimary Inc Surfac Water Vater Drift [Algal Iron D Surfac Inund	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6)	ator is suff	icient) Water- MLF Salt Cr Aquati Hydrog Oxidizr Preser Recen Stunte 37) Other	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P sed Plants) (except) (C4) lowed So ; (D1) (LR		<u>Sec</u> W Dr Dr Sa Ge St FA Ra	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Te ised Ant Mo	Leaves (B9) rms (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1	(MLRA 1, 2 2) Imagery (C RR A)
DROLOG Vetland H rimary Inc Surfar Satura Satura Water Sedin Sedin Drift E Algal Iron D Surfar Inund Spars	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial lely Vegetated Conca	ator is suff	icient) Water- MLF Salt Cr Aquati Hydrog Oxidizr Preser Recen Stunte 37) Other	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P sed Plants) (except) (C4) lowed So ; (D1) (LR		<u>Sec</u> W Dr Dr Sa Ge St FA Ra	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Te ised Ant Mo	Leaves (B9) rms (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1	(MLRA 1, 2 2) Imagery (C RR A)
DROLOG /etland H rimary Inc Surfae High V Satura Water Drift I Algal Iron D Surfae Inund Spars ield Obse	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) peposits (B5) ce Soil Cracks (B6) ation Visible on Aerial	: ator is suff I Imagery (E ve Surface	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other of (B8)	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P used Plants n Remarks) (except) (C4) lowed So ; (D1) (LR		<u>Sec</u> W Dr Dr Sa Ge St FA Ra	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Te ised Ant Mo	Leaves (B9) rms (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1	(MLRA 1, 2 2) Imagery (C RR A)
DROLOG /etland H rimary Inc Surfac High V Satura Watel Drift I Algal Iron D Surfac Spars ield Obse urface Wa	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial lely Vegetated Conca structions: ater Present? Yes	: ator is suff I Imagery (E ve Surface s	icient) — Water- MLF — Salt Ci — Aquati — Hydrog — Oxidiza — Preser — Recen — Stunte 37) — Other (B8) No <u>X</u> Dep No <u>X</u> Dep	Stained L RA 1, 2, 4, rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches	eaves (B9 A and 4B) arates (B13 e Odor (C1 pheres alo duced Iron luction in P used Plants n Remarks n Remarks) (except) (C4) lowed So ; (D1) (LR		<u>Sec</u> W Dr Dr Sa Ge St FA Ra	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Te ised Ant Mo	Leaves (B9) rms (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1	(MLRA 1, 2 2) Imagery (C RR A)
PROLOG /etland H imary Inc Surfac High V Satura Water Water Drift D Algal Iron D Surfac Surface Wa /ater table	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial lely Vegetated Conca structions: ater Present? Yes	: ator is suff I Imagery (E ve Surface s	icient) — Water- MLF — Salt Ci — Aquati — Hydrog — Oxidiza — Preser — Recen — Stunte 37) — Other (B8) No <u>X</u> Dep No <u>X</u> Dep	Stained L RA 1, 2, 4 rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches	eaves (B9 A and 4B) arates (B13 e Odor (C1 pheres alo duced Iron luction in P used Plants n Remarks n Remarks) (except) (C4) lowed So ; (D1) (LR		<u>Sec</u> W Dr Dr Sa St St FA Ra Fr	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil comorphic Po- allow Aquita C-Neutral To- nised Ant Mo ost-Heave H	Leaves (B9) rms (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1	(MLRA 1, 2) Imagery (C RR A) 7)
DROLOG /etland H rimary Inc Surfae Vater Vater Vater Norfae Inon D Inon D Spars ield Obse aurface Wa aturation includes ca	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Ye: apillary fringe)	: isator is suff l Imagery (E ve Surface s s s X s X	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other of (B8) No <u>X</u> Dep No <u>Dep</u>	Stained L RA 1, 2, 4, rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P sed Plants n Remarks n Remarks):) (except) (except)))))))))))))))))))	Roots (C3)	<u>Sec</u> W Dr Dr Sa St St FA Ra Fr	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil comorphic Po- allow Aquita C-Neutral To- nised Ant Mo ost-Heave H	Leaves (B9) rns (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D5)	(MLRA 1, 2) Imagery (C RR A) 7)
DROLOG /etland H rimary Inc Surfae Vater Vater Vater Norfae Inon D Inon D Spars ield Obse aurface Wa /ater table aturation Includes ca	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Yes Present? Yes	: isator is suff l Imagery (E ve Surface s s s X s X	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other of (B8) No <u>X</u> Dep No <u>Dep</u>	Stained L RA 1, 2, 4, rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P sed Plants n Remarks n Remarks):) (except) (except)))))))))))))))))))	Roots (C3)	<u>Sec</u> W Dr Dr Sa St St FA Ra Fr	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W turation Visil comorphic Po- allow Aquita C-Neutral To- nised Ant Mo ost-Heave H	Leaves (B9) rns (B10) ater Table (C ble on Aerial cosition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D5)	(MLRA 1, 2) Imagery (C RR A) 7)
	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Present? Present? Present? Yei apillary fringe) sorded Data (stream generication)	I Imagery (E ve Surface s X jauge, mon	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other ((B8) No <u>X</u> Dep No <u>Dep</u> No <u>Dep</u> Itoring well, aerial	Stained L RA 1, 2, 4, ust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches photos, p	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P ised Plants n Remarks):) (except) (except))))))) (C4)) lowed So ; (D1) (LR)) spections)	Roots (C3) ils (C6) R A) Wetland Hy , if available:	<u>Sec</u> W Dr Dr Sa Ge St FA Ra Ra Fr drolog	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Tr bised Ant Mo post-Heave H	Leaves (B9) erns (B10) ater Table (C ble on Aerial 1 osition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D7) Yes	(MLRA 1, 2) Imagery (C RR A) 7)
	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Ye: apillary fringe)	I Imagery (E ve Surface s X jauge, mon	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other ((B8) No <u>X</u> Dep No <u>Dep</u> No <u>Dep</u> Itoring well, aerial	Stained L RA 1, 2, 4, ust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches photos, p	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P ised Plants n Remarks):) (except) (except))))))) (C4)) lowed So ; (D1) (LR)) spections)	Roots (C3) ils (C6) R A) Wetland Hy , if available:	<u>Sec</u> W Dr Dr Sa Ge St FA Ra Ra Fr drolog	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Tr bised Ant Mo post-Heave H	Leaves (B9) erns (B10) ater Table (C ble on Aerial 1 osition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D7) Yes	(MLRA 1, 2) Imagery (C RR A) 7)
	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Present? Present? Present? Yei apillary fringe) sorded Data (stream generication)	I Imagery (E ve Surface s X jauge, mon	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other ((B8) No <u>X</u> Dep No <u>Dep</u> No <u>Dep</u> Itoring well, aerial	Stained L RA 1, 2, 4, ust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches photos, p	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P esed Plants n Remarks):) (except) (except))))))) (C4)) lowed So ; (D1) (LR)) spections)	Roots (C3) ils (C6) R A) Wetland Hy , if available:	<u>Sec</u> W Dr Dr Sa Ge St FA Ra Ra Fr drolog	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Tr bised Ant Mo post-Heave H	Leaves (B9) erns (B10) ater Table (C ble on Aerial 1 osition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D7) Yes	(MLRA 1, 2) Imagery (C RR A) 7)
	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Present? Present? Present? Yei apillary fringe) sorded Data (stream generication)	I Imagery (E ve Surface s X jauge, mon	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other ((B8) No <u>X</u> Dep No <u>Dep</u> No <u>Dep</u> Itoring well, aerial	Stained L RA 1, 2, 4, ust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches photos, p	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P esed Plants n Remarks):) (except) (except))))))) (C4)) lowed So ; (D1) (LR)) spections)	Roots (C3) ils (C6) R A) Wetland Hy , if available:	<u>Sec</u> W Dr Dr Sa Ge St FA Ra Ra Fr drolog	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Tr bised Ant Mo post-Heave H	Leaves (B9) erns (B10) ater Table (C ble on Aerial 1 osition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D7) Yes	(MLRA 1, 2) Imagery (C RR A) 7)
	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Present? Present? Present? Yei apillary fringe) sorded Data (stream generication)	I Imagery (E ve Surface s X jauge, mon	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other ((B8) No <u>X</u> Dep No <u>Dep</u> No <u>Dep</u> Itoring well, aerial	Stained L RA 1, 2, 4, ust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches photos, p	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P esed Plants n Remarks):) (except) (except))))))) (C4)) lowed So ; (D1) (LR)) spections)	Roots (C3) ils (C6) R A) Wetland Hy , if available:	<u>Sec</u> W Dr Dr Sa Ge St FA Ra Ra Fr drolog	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Tr bised Ant Mo post-Heave H	Leaves (B9) erns (B10) ater Table (C ble on Aerial 1 osition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D7) Yes	(MLRA 1, 2) Imagery (C RR A) 7)
PROLOG etland H imary Inc Surfac Satur: Sedin Sedin Nate Sedin Algal Nate 	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca ervations: ater Present? Present? Present? Present? Yei apillary fringe) sorded Data (stream generication)	I Imagery (E ve Surface s X jauge, mon	icient) — Water- MLF — Salt Cr — Aquati — Hydrog — Oxidize — Preser — Recen — Stunte 37) — Other ((B8) No <u>X</u> Dep No <u>Dep</u> No <u>Dep</u> Itoring well, aerial	Stained L RA 1, 2, 4, ust (B11) c Inverteb gen Sulfide ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches photos, p	eaves (B9 A and 4B) rates (B13 e Odor (C1 pheres alo duced Iron luction in P esed Plants n Remarks):) (except) (except))))))) (C4)) lowed So ; (D1) (LR)) spections)	Roots (C3) ils (C6) R A) Wetland Hy , if available: r and flood sur	W. Dr Dr Sa Sf FA Fr drology	ondary Indic ater-Stained 4A and 4B) ainage Patte y-Season W. turation Visil comorphic Pe allow Aquita C-Neutral Tr ised Ant Mo post-Heave H y Present? g upland are	Leaves (B9) erns (B10) ater Table (C ble on Aerial 1 osition (D2) rd (D3) est (D5) unds (D6) (L1 ummocks (D7) Yes	(MLRA 1, 2) Imagery (C RR A) 7)

Project/Site:	The Views		(City/County: Sandy/Clack	amas		Sampling D	Date:	1/23/2020
Applicant/Owner:	Even Better Homes					State: OR	Sampling P	oint:	3
Investigator(s):	K. Biafora			Section, Township, F	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relief (concave,	convex	:, none): <u>none</u>		Slope (%):	4-7%
Subregion (LRR):	Northwest Forests a	nd Coast (LRR A)	Lat:	45.386	690985	Long:	-122.2328834	Datum:	WGS 84
Soil Map Unit Name	e: Cazadero silt	y clay loam				NWI Classification:	none		
Are climatic / hydro	ologic conditions on th	e site typical for this	time of y	year? Yes	Х	No	(If no, explain	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly disturbed?	Are "N	ormal Circumstance	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally problematic?	(If nee	eded, explain any an	swers in Rema	arks.)	
SUMMARY OF		ach site map sho	wing s	sampling point locat	ions, t	transects, impo	rtant feature	es, etc.	
Hydric Soil Present	?	Yes No	Х	Is the Sampled Area within a Wetland?		Yes	No X		

Hydric Soil Present?	Yes		No	Х	within a Wetland?	res		<u>×</u>	
Wetland Hydrology Present?	Yes	Х	_No_						
Remarks: Himalayan blackberry recent stormwater pipe to overflow and flood s				,	tland to faciliate access. Hea	vy rains prior to an	d during fieldv	vork causing c	pen

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
1.			·	That Are OBL, FACW, or FAC: 1 (A)
2				Total Number of Dominant Species Across All Strata: <u>1</u> (B)
4Total Cover:	0		·	Percent of Dominant Species That Are OBL, FACW, or FAC:(A/B)
Shrub Stratum	100	V	FAC	Prevalence Index Worksheet:
1. <u>Rubus armeniacus</u> 2.			140	Total % Cover of: Multiply by: OBL species x1 = 0
3			· <u> </u>	FACW species x1 - 0 x2 = 0 0
		·		FAC species X2 = 0
4 5.				FACU speciesX3 =U
Total Cover:		·	·	UPL species $x5 = 0$
Herb Stratum				Column Totals: 0 (A) 0 (B)
1.				Prevalence Index = B/A =(3)
2.				
3.				Hydrophytic Vegetation Indicators:
4.				1 - Rapid Test for Hydrophytic Vegetation
5.				X 2 - Dominance Test is >50%
6.				3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptation1 (Provide supporting
8.				data in Remarks or on a separate sheet)
9.				5 - Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				
Total Cover:	0			
<u>Woody Vine Stratum</u> 1				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
2Total Cover:				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 0 %		iotic Crust	0	Present? Yes X No
Remarks: Blackberry recently cut				<u> </u>
US Army Corps of Engineers				Western Mountains, Valleys and Coast - Version 2.0

ofile Do	scription: (Describe	to the dem	th needed to do	cument +	he indicat	or or con	firm the abee	nce of ind	icators)		
		to the dep							icators.)		
epth	Matrix Color (moist)	%		edox Featu %	Type ¹	Loc ²	_ Texture			Domarka	
iches) 0-6	10 YR 3/2	100	Color (moist)	70	Туре	LUC	SCL			Remarks	
6-16	10 YR 3/3	60	7.5 YR 3/3	30	·		SCL		ed matrix		
0 10	10 11(0/0		10 YR 4/1	10			002		ed matrix		
		·	10 11(4/1	10	·		<u></u>				
		·									
					·		·				
/pe: C=(Concentration, D=Dep	letion, RM=	Reduced Matrix,	CS=Cove	ered or Co	ated Sano	d Grains. ² Loo	cation: PL:	Pore Lining	, M=Matrix.	
India Cal	Indiastara, (Applia			housiaa			Indicators		en eti e Lludri	a Calla ³	
	I Indicators: (Applic	able to all					Indicators		•	C 50115 :	
_	sol (A1) Epipedon (A2)			Redox (Sed Matrix (-		_		Muck (A10) arent Mater	ial (TE2)	
_	Histic (A3)				(56) ineral (F1)	(excent			arent Mater (Explain in I	. ,	
_	nstic (A3) ogen Sulfide (A4)				fatrix (F2)	• •				Kemarks)	
-	ted Below Dark Surfa	ce (Δ11)		ed Matrix							
	Dark Surface (A12)			Dark Surf			³ Indiac	ators of hur	ronhytic yer	getation and	
-	y Muck Mineral (S1)				Surface (F6)	~)		-	ogy must be		
_	y gleyed Matrix (S4)			Depression		,			bed or probl	•	
_				Debiessi			ur	กรอง นเอเนเ		cinatic.	
	e Layer (if present):										
pe:									Yes		No
	nes):					Hy	dric Soil Pres	Sentr			
	il profile appears distu	rbed, likely	due to installation	n of nearb	y stormwa		yaric Soli Pres				<u> </u>
arks: So	il profile appears distu Y	rbed, likely	due to installation	n of nearb	y stormwa		yaric Soli Pres				
ROLOG etland H	il profile appears distu Y ydrology Indicators:			n of nearb	y stormwa						
ROLOG etland H	il profile appears distu Y ydrology Indicators: licators (any one indic		cient)			ter pipe.		Second	ary Indicato	ors (2 or mor	e require
ROLOG etland H imary Inc Surfa	il profile appears distu Y ydrology Indicators: licators (any one indic ce Water (A1)		cient) Water	-Stained L	eaves (B9) (except		Second Water	lary Indicato -Stained Le	ors (2 or mor aves (B9) (N	e require
ROLOG etland H imary Inc Surfa High 1	il profile appears distu Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2)		cient) Water- MLE	-Stained L RA 1, 2, 4/	eaves (B9 A and 4B)) (except		Second Water 4A	lary Indicato -Stained Lea and 4B)	aves (B9) (N	e require
ROLOG etland H imary Inc Surfa Saturi	il profile appears distu Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3)		cient) Water- MLF Salt C	-Stained L RA 1, 2, 44 rust (B11)	eaves (B9 A and 4B)) (except		Second Water 4A Draina	lary Indicato -Stained Le and 4B) age Patterns	aves (B9) (N s (B10)	e require
ROLOG etland H imary Inc Surfa High \ Satur- Wate	Il profile appears distu Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1)		cient) Water MLF Salt Ci Aquati	-Stained Li RA 1, 2, 44 rust (B11) c Inverteb	eaves (B9 A and 4B) rates (B13) (except		Second Water 	lary Indicato -Stained Le and 4B) age Patterns eason Wate	aves (B9) (N s (B10) r Table (C2)	e require ILRA 1, 2
ROLOG etland H imary Inc Surfa Gatur Satur Wate Sedin	Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2)		cient) Water Salt Ci Salt Ci Aquati Hydrog	Stained Li RA 1, 2, 4 rust (B11) c Invertebi gen Sulfide	eaves (B9 A and 4B) rates (B13 e Odor (C ²) (except		Secono Water 4A Draina Dry-S Satura	lary Indicato -Stained Le and 4B) age Patterns eason Wate attion Visible	aves (B9) (N s (B10) rr Table (C2) on Aerial Im	e require ILRA 1, 2
ROLOG etland H imary Inc Surfa Gatur Satur Wate Sedin Sedin Drift [Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3)		cient) Water MLF Salt Ci Aquati Hydrog Oxidiz	Stained Li RA 1, 2, 4 rust (B11) c Invertebi gen Sulfide ed Rhizos	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo) (except)) (except))))))))))		Secono Water Draina Dry-S Satura Geom	lary Indicato -Stained Le. and 4B) age Patterns eason Wate ation Visible orphic Posit	aves (B9) (N s (B10) or Table (C2) on Aerial In cion (D2)	e require ILRA 1, 2
ROLOG etland H imary Inc Surfa Satur Satur Satur Satur Satur Drift [Algal	Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)		cient) Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser	Stained L RA 1, 2, 4/ rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Red	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron) (except)) (except))))))))))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shallo	lary Indicato -Stained Le- and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (aves (B9) (N s (B10) rr Table (C2) on Aerial Im tion (D2) (D3)	e require ILRA 1, 2
ROLOG etland H imary Inc Surfa Satur	Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)		cient) Water- MLF Salt Cl Aquati Hydrog Oxidiz Preser Recen	-Stained L RA 1, 2, 4/ rust (B11) c Inverteb gen Sulfide ed Rhizos nce of Red t Iron Red	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron lucction in F) (except)) (except))))))))))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shallo FAC-t	lary Indicato -Stained Le- and 4B) age Patterns eason Wate ason Wate tition Visible orphic Posit w Aquitard f Neutral Test	s (B10) r Table (C2) on Aerial In ion (D2) (D3) (D5)	e require ILRA 1, 2 hagery (C
ROLOG etland H imary Inc Surfa Satur- Wate Vate Sedin Drift [Algal Iron [Surfa	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6)	ator is suffi	cient) Water- MLI Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte	Stained Li RA 1, 2, 44 rust (B11) c Invertebrigen Sulfide ed Rhizos nce of Red t Iron Red d or Stress	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants) (except) (except)) (ct)))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shalld FAC-N Raise	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI	e require ILRA 1, 2 hagery (C
ROLOG etland H imary Inc Surfa Satur- Satur- Sedin Drift [Algal Incn E Surfa Incn E	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial	ator is suffi	cient) Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte 37) Other	Stained Li RA 1, 2, 44 rust (B11) c Invertebrigen Sulfide ed Rhizos nce of Red t Iron Red d or Stress	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron lucction in F) (except) (except)) (ct)))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shalld FAC-N Raise	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound	s (B10) r Table (C2) on Aerial In ion (D2) (D3) (D5)	e require ILRA 1, 2 hagery (C
PROLOG etland H imary Inc Surfa Satur- Satur- Satur- Satur- Satur- Satur- Satur- Satur- Satur- Satur- Satur- Surfa Inund Spars	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ation Visible on Aerial	ator is suffi	cient) Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte 37) Other	Stained Li RA 1, 2, 44 rust (B11) c Invertebrigen Sulfide ed Rhizos nce of Red t Iron Red d or Stress	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants) (except) (except)) (ct)))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shalld FAC-N Raise	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI	e require ILRA 1, 2 hagery (C
PROLOG etland H imary Inc Surfa Vate Vate Vate Vate Nute Surfa Inund Spars eld Obse	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial kely Vegetated Concav prvations:	ator is suffi Imagery (B ve Surface (cient) Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte (B8)	Stained Li RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos nce of Red t Iron Red d or Stress (Explain in	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks) (except) (except)) (ct)))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shalld FAC-N Raise	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI	e require ILRA 1, 2 hagery (C
ROLOG etland H imary Inc Surfa Surfa Satur Sedin Drift [Algal Iron D Surfa Surfa Surfa Surfa Surfa Surfa Surfa	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ation Visible on Aerial	ator is suffi Imagery (B re Surface (cient) Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunter (B8) NoX Dep	Stained Li RA 1, 2, 44 rust (B11) c Invertebrigen Sulfide ed Rhizos nce of Red t Iron Red d or Stress	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants n Remarks) (except) (except)) (ct)))))))))))))))))))		Second Water 4A Draina Dry-S Satura Geom Shalld FAC-N Raise	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI	e require ILRA 1, 2 hagery (C
ROLOG etland H imary Inc Surfa Surfa Satur	Y ydrology Indicators: iii profile appears distu ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial sely Vegetated Concav prvations: ater Present? Yes	Imagery (B re Surface (cient) Water- MLF Salt Cl Aquati Hydrog Oxidiz Preser Recen Stunte (B8) No Dep No Dep	Stained L RA 1, 2, 4/ Prust (B11) c Invertebring en Sulfide ed Rhizos noce of Red t Iron Red d or Stress (Explain in th (inches)	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks):6) (except) (except)) (ct)))))))))))))))))))		Second Water Draina Dry-S Satura Geom Shallo FAC-t Raise Frost-	lary Indicato -Stained Le and 4B) age Patterns eason Wate tition Visible orphic Posit w Aquitard Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI	e require MLRA 1, 2 hagery (C R A)
ROLOG etland H imary Inc Surfa Satura	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial iely Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	Imagery (B re Surface (<u>X</u>	cient) — Water- MLF — Salt C — Aquati — Hydrog — Oxidiz — Preser — Recen — Recen — Stunte (B8) No <u>X</u> Dep No <u>Dep</u>	-Stained Li RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos den Red t Iron Red d or Stress (Explain in th (inches) th (inches)	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants n Remarks):) (except) (except) (ct)) (ct)) (ct) (ct)) (ct) (ct) (ct) (ct) (ct) (ct	Roots (C3)	Second Water Draina Dry-S Satura Geom Shallo FAC-t Raise Frost-	lary Indicato -Stained Le and 4B) age Patterns eason Wate tition Visible orphic Posit w Aquitard Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI mocks (D7)	e require MLRA 1, 2 hagery (C R A)
ROLOG etland H imary Inc Surfa Satura	Y ydrology Indicators: ticators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial sely Vegetated Concav proteines: ater Present? Yes Present? Yes	Imagery (B re Surface (<u>X</u>	cient) — Water- MLF — Salt C — Aquati — Hydrog — Oxidiz — Preser — Recen — Recen — Stunte (B8) No <u>X</u> Dep No <u>Dep</u>	-Stained Li RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos den Red t Iron Red d or Stress (Explain in th (inches) th (inches)	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants n Remarks):) (except) (except) (ct)) (ct)) (ct) (ct)) (ct) (ct) (ct) (ct) (ct) (ct	Roots (C3)	Second Water Draina Dry-S Satura Geom Shallo FAC-t Raise Frost-	lary Indicato -Stained Le and 4B) age Patterns eason Wate tition Visible orphic Posit w Aquitard Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial In tion (D2) (D3) (D5) ds (D6) (LRI mocks (D7)	e require MLRA 1, 2 hagery (C R A)
PROLOG etland H imary Inc Surfa Surfa Wate Vate Vate Nurfa Inund Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa _	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial iely Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	Imagery (B re Surface (X 1 auge, moni	cient) Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte Stunte (B8) No <u>X</u> Dep No <u>Dep</u> Dep toring well, aerial	Stained Li RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos nce of Red t Iron Red d or Stress (Explain in th (inches) th (inches) photos, pr	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks n Remarks):) (except) (except) (ct)) (ct)))))))))))))))))))	Roots (C3) pils (C6) R A) Wetland Hy), if available:	Second Water 4A Draina Dry-S Satura Geom Shalld FAC-h Raise Frost-	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial Im cion (D2) (D3) (D5) ds (D6) (LRI mocks (D7) Yes X	e require MLRA 1, 2 hagery (C R A)
PROLOG etland H imary Inc Surfa Surfa Wate Vate Vate Nurfa Inund Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa _	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial kely Vegetated Concav protections: ater Present? Present? Present? Yes apillary fringe) corded Data (stream g	Imagery (B re Surface (X I auge, moni	cient) Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte Stunte (B8) No <u>X</u> Dep No <u>Dep</u> Dep toring well, aerial	Stained Li RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos nce of Red t Iron Red d or Stress (Explain in th (inches) th (inches) photos, pr	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks n Remarks):) (except) (except) (ct)) (ct)))))))))))))))))))	Roots (C3) pils (C6) R A) Wetland Hy), if available:	Second Water 4A Draina Dry-S Satura Geom Shalld FAC-h Raise Frost-	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial Im cion (D2) (D3) (D5) ds (D6) (LRI mocks (D7) Yes X	e require MLRA 1, 2 hagery (C R A)
PROLOG etland H imary Inc Surfa Surfa Wate Vate Vate Nurfa Inund Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa _	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial kely Vegetated Concav protections: ater Present? Present? Present? Yes apillary fringe) corded Data (stream g	Imagery (B re Surface (X I auge, moni	cient) Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte Stunte (B8) No <u>X</u> Dep No <u>Dep</u> Dep toring well, aerial	Stained L RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos nce of Red t Iron Red d or Stress (Explain in th (inches) th (inches) photos, pr	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks n Remarks): 6): 6) (except) (except) (ct)) (ct)))))))))))))))))))	Roots (C3) pils (C6) R A) Wetland Hy), if available:	Second Water 4A Draina Dry-S Satura Geom Shalld FAC-h Raise Frost-	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial Im cion (D2) (D3) (D5) ds (D6) (LRI mocks (D7) Yes X	e require MLRA 1, 2 hagery (C R A)
PROLOG etland H imary Inc Surfa Surfa Wate Vate Vate Nurfa Inund Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Surfa Inund Surfa Inund Surfa 	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial kely Vegetated Concav protections: ater Present? Present? Present? Yes apillary fringe) corded Data (stream g	Imagery (B re Surface (X I auge, moni	cient) Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte Stunte (B8) No <u>X</u> Dep No <u>Dep</u> Dep toring well, aerial	Stained L RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos nce of Red t Iron Red d or Stress (Explain in th (inches) th (inches) photos, pr	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks n Remarks): 6): 6) (except) (except) (ct)) (ct)))))))))))))))))))	Roots (C3) pils (C6) R A) Wetland Hy), if available:	Second Water 4A Draina Dry-S Satura Geom Shalld FAC-h Raise Frost-	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial Im cion (D2) (D3) (D5) ds (D6) (LRI mocks (D7) Yes X	e require MLRA 1, 2 hagery (C R A)
PROLOG etland H imary Inc Surfa Surfa Wate Vate Vate Nurfa Inund Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Inund Surfa Surfa Inund Surfa Inund Surfa 	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial kely Vegetated Concav protections: ater Present? Present? Present? Yes apillary fringe) corded Data (stream g	Imagery (B re Surface (X I auge, moni	cient) Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte Stunte (B8) No <u>X</u> Dep No <u>Dep</u> Dep toring well, aerial	Stained L RA 1, 2, 44 rust (B11) c Invertebi gen Sulfide ed Rhizos nce of Red t Iron Red d or Stress (Explain in th (inches) th (inches) photos, pr	eaves (B9 A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks n Remarks): 6): 6) (except) (except) (ct)) (ct)))))))))))))))))))	Roots (C3) pils (C6) R A) Wetland Hy), if available:	Second Water 4A Draina Dry-S Satura Geom Shalld FAC-h Raise Frost-	lary Indicato -Stained Lea and 4B) age Patterns eason Wate ation Visible orphic Posit w Aquitard (Veutral Test d Ant Mound Heave Hum	aves (B9) (N s (B10) r Table (C2) on Aerial Im cion (D2) (D3) (D5) ds (D6) (LRI mocks (D7) Yes X	e require MLRA 1, 2 hagery (C R A)

Project/Site:	The Views			City/County:	Sandy/Cla	ckamas			Sampling	g Date:	1/23/2020
Applicant/Owner:	Even Better Homes	8					State: C	DR		g Point:	
Investigator(s):	K. Biafora			Section	n, Township	, Range:	S19, T28	S, R5E			
Landform (hillslope	e, terrace, etc.):	Ravine		Local re	elief (concav	e, convex,	none): <u>n</u>	ione		Slope (%):	4-7%
Subregion (LRR):	Northwest Forests	and Coast (LRR A) Lat:		45.3	8693192	Long:	-1	22.23293	54 Datum	: WGS 84
Soil Map Unit Nam		ilty clay loam				N	WI Clas	sification: n	ione		
Are climatic / hydro	ologic conditions on t	the site typical for t	his time of	year?	Yes	Х	No	(lf no, expla	ain in Remark	s)
Are Vegetation	, Soil					Are "No	ormal Cir	cumstances	" Present?	Yes X	No
Are Vegetation	, Soil						led, expla	ain any ans	wers in Re	marks.)	
SUMMARY OF	FINDINGS – At	tach site map	showing	sampling	point loca	ations, tr	ansect	s, import	ant feati	ures, etc.	
Hydrophytic Veget		Yes <u>X</u> No	D	Is the Sa	ampled Are	а					
Hydric Soil Presen	t?	Yes X No	<u> </u>		a Wetland?		Yes _	Х	No		
Wetland Hydrology	y Present?	Yes X No	<u> </u>								
VEGETATION											
			Absolute	Dominant	Indicator	Dominar	nce Test	worksheet			
Tree Stratum (U	se scientific names.)		% Cover	Species?	Status?	Number of	of Domin	ant Species			
1.	,					That Are	OBL, FA	CW, or FAC	D:	1	(A)
2.						Total Nur	mber of E	Dominant			. ,
3.						Species /	Across A	II Strata:		1	(B)
4.						Percent	of Domina	ant Species			. ,
		Total Cover:	0					CW, or FAC		100%	(A/B)
Shrub Stratum						Prevalen	ce Index	« Workshee	et:		
1. Rubus armenia	acus		100	Y	FAC	Tota	al % Cove	er of:	N	lultiply by:	_
2						OBL spe	cies _	x	1 =	0	_
3						FACW sp	pecies	x	2 =	0	_
4						FAC spec	cies	x		0	_
5						FACU sp	ecies	x	4 =	0	_
		Total Cover:	100			UPL spee	_		5 =	0	_
Herb Stratum						Column 7	_		A)	0	(B)
1						Prevale	ence Inde	ex = B/A =			_
3.						• •		etation Ind			
4.					·			d Test for Hy		Vegetation	
5								nance Test			
6.								alence Index			
7								-		(Provide supp	porting
8			·					Remarks or o			
			·					and Non-Va			
10			·				Problem	atic Hydropl	nytic Vege	tation ¹ (Expla	n)
11		Tatal Cause			· <u> </u>						
Manatur Vita O		Total Cover:	0			1					
Woody Vine S	<u>otratum</u>							ric soil and v s disturbed o		drology must	
1.					· <u> </u>	De hiesei	n, unicst			uilo.	
						Hydroph	vtic				
2.		Total Cause	0								
2.	re Ground in Herb St	Total Cover: tratum 0 %	0 Cover of Bi	otio Cruct	0	Vegetatio	on		′es X	No	

US Army Corps of Engineers

Western Mountains, Valleys and Coast - Version 2.0

rofile Des	scription: (Describe	to the dep	oth needed to do	cument tl	he indicate	or or con	firm the abs	ence of indica	tors.)		
epth	Matrix		Re	edox Feat	ures						
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	e	R	lemarks	
0-5	10 YR 3/2	90	10 YR 3/6	10	С	М	SCL				
5-10	10 YR 3/2	60	10 YR 3/4	20	С	М					
			10 YR 4/1	20	D	М	SCL				
10-16	10 YR 4/1	70	10 YR 3/2	25	С	М	SCL				
			10 YR 3/4	2	С	М					
							. <u> </u>				
ype: C=0	Concentration, D=Dep	bletion, RM	=Reduced Matrix,	CS=Cove	ered or Co	ated Sand	d Grains. ² Lo	ocation: PL=Pc	ore Lining, N	//=Matrix.	
vdric Soi	il Indicators: (Applic	able to all	LRRs, unless of	herwise	noted.)		Indicators	for Problema	tic Hydric S	Soils ³ :	
	sol (A1)			Redox (S				2 cm Mu	-		
_	Epipedon (A2)			ed Matrix (ent Material	(TE2)	
	Histic (A3)				lineral (F1)	(excent			kplain in Re	. ,	
				-	/latrix (F2)					markoj	
	ogen Sulfide (A4)	00 (111)			. ,						
	eted Below Dark Surfa	ice (ATT)		ed Matrix			31	otoro of hundred		ation 1	
	Dark Surface (A12)			Dark Sur				cators of hydrop			
_	y Muck Mineral (S1)				Surface (F7)		tland hydrology			
	y gleyed Matrix (S4)		Redox	Depressi	ons (F8)		ι	Inless disturbed	d or problem	natic.	
estrictive	e Layer (if present):										
vpe:											
epth (inch	nes):					Hy	dric Soil Pre	esent?	Yes	Х	No
ROLOG	Y					ter pipe					
etland H	ydrology Indicators										
etland H imary Inc	ydrology Indicators								/ Indicators		
etland H imary Inc Surfa	ydrology Indicators dicators (any one indic ce Water (A1)		Water-		.eaves (B9) (except		Water-St	ained Leave		
etland H imary Inc Surfa High	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2)		Water- MLF	RA 1, 2, 4	eaves (B9 A and 4B)) (except		Water-St 4A an	ained Leave d 4B)	es (B9) (M	
etland H imary Inc Surfa High	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3)		Water- MLF Salt Ci	RA 1, 2, 4 rust (B11)	eaves (B9 A and 4B)) (except		Water-St 4A an Drainage	ained Leave I d 4B) Patterns (E	es (B9) (M 310)	ILRA 1,
etland H imary Inc Surfa High Satur Wate	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1)		Water- MLF Salt Ci	RA 1, 2, 4 rust (B11)	eaves (B9 A and 4B)) (except		Water-St 4A an Drainage Dry-Seas	ained Leave I d 4B) Patterns (E son Water T	es (B9) (M 310) ⁻able (C2)	ILRA 1,
etland H imary Inc Surfa High Satur Wate	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3)		Water- MLF Salt Cu Aquati Hydrog	RA 1, 2, 4 , rust (B11) c Inverteb gen Sulfid	eaves (B9 A and 4B) prates (B13 e Odor (C ²) (except)		Water-St 4A an Drainage Dry-Seas	ained Leave I d 4B) Patterns (E	es (B9) (M 310) ⁻able (C2)	ILRA 1,
etland H imary Inc Surfa High Satura Water Sedin	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1)		Water- MLF Salt Cu Aquati Hydrog	RA 1, 2, 4 , rust (B11) c Inverteb gen Sulfid	eaves (B9 A and 4B) prates (B13 e Odor (C ²) (except)	Roots (C3)	Water-St 4A an Drainage Dry-Seas Saturatio	ained Leave I d 4B) Patterns (E son Water T	es (B9) (M 310) ⁻ able (C2) n Aerial Im	ILRA 1,
etland H imary Inc Surfa High Satur Satur Satur Dirift [ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2)		Water- MLF Salt Cr Aquati Hydrog Oxidize	RA 1, 2, 4 rust (B11) c Inverteb gen Sulfid ed Rhizos	eaves (B9 A and 4B) prates (B13 e Odor (C ²) (except)) I) ng Living		Water-St 4A an Drainage Dry-Seas Saturatio Geomorp	ained Leave I d 4B) Patterns (E son Water T n Visible on	B10) able (C2) Aerial Im (D2)	ILRA 1, :
etland H imary Inc Surfa High Satur Satur Sedin Drift [Algal	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3)		Water- MLF Salt Cr Aquati Hydrog Oxidizr Preser	RA 1, 2, 4, rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec	eaves (B9 A and 4B) orates (B13 e Odor (C ² pheres alo) (except) I) ng Living (C4)	Roots (C3)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow	ained Leave a d 4B) Patterns (E son Water T n Visible on ohic Positior	able (C2) Aerial Im (D2) 3)	ILRA 1, :
etland H imary Inc Surfa High Satur Vate Sedin Drift [Algal Iron [ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)		Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen	RA 1, 2, 4, rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red	eaves (B9 A and 4B) orates (B13 e Odor (C ² opheres alo duced Iron) (except) I) ng Living (C4) lowed Sc	Roots (C3) vils (C6)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D3	Balles (B9) (M Bable (C2) A Aerial Im A (D2) B) B) B)	iLRA 1, i
etland H imary Inc Surfa High \ Satur- Wate Sedin Drift [Algal Iron E Surfa	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)	cator is suff	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte	RA 1, 2, 4, rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in F) (except) I) ing Living (C4) Plowed Sc ; (D1) (LF	Roots (C3) vils (C6)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A	ained Leave d 4B) Patterns (E son Water T n Visible on whic Positior Aquitard (D3 utral Test (D	Balles (B9) (M Bable (C2) A Aerial Im A (D2) B B S (D6) (LRF	iLRA 1, i
etland H imary Inc Surfa High \ Satur. Wate Sedin Drift [Algal Iron C Surfa Inund	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6)	<u>ator is suff</u>	Water- MLF Salt Co Aquati Hydrog Oxidize Preser Recen Stunte B7) Other	RA 1, 2, 4, rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) orates (B13 e Odor (C ² opheres alo duced Iron duction in F issed Plants) (except) I) ing Living (C4) Plowed Sc ; (D1) (LF	Roots (C3) vils (C6)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A	ained Leave d 4B) Patterns (E son Water T n Visible on bhic Positior Aquitard (D3 utral Test (D nt Mounds	Balles (B9) (M Bable (C2) A Aerial Im A (D2) B B S (D6) (LRF	iLRA 1, agery (C
etland H imary Inc Surfa High V Satur: Wate: Vate: Algal Iron E Surfa Inund Spars	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aeria	<u>ator is suff</u>	Water- MLF Salt Co Aquati Hydrog Oxidize Preser Recen Stunte B7) Other	RA 1, 2, 4, rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres	eaves (B9 A and 4B) orates (B13 e Odor (C ² opheres alo duced Iron duction in F issed Plants) (except) I) ing Living (C4) Plowed Sc ; (D1) (LF	Roots (C3) vils (C6)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A	ained Leave d 4B) Patterns (E son Water T n Visible on bhic Positior Aquitard (D3 utral Test (D nt Mounds	Balles (B9) (M Bable (C2) A Aerial Im A (D2) B B S (D6) (LRF	iLRA 1, i
etland H rimary Inc Surfa High V Satur. Wate Sedin Drift I Algal Iron I Surfa Surfa Surfa eld Obse urface Wa	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye	ator is suff	Water- MLF Salt Cr Aquati — Aquati — Hydrog — Oxidiz — Preser — Recen — Stunte B7) _ Other • (B8)	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in F issed Plants n Remarks) (except) I) ing Living (C4) Plowed Sc ; (D1) (LF	Roots (C3) vils (C6)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A	ained Leave d 4B) Patterns (E son Water T n Visible on bhic Positior Aquitard (D3 utral Test (D nt Mounds	Balles (B9) (M Bable (C2) A Aerial Im A (D2) B B S (D6) (LRF	iLRA 1, i
etland H imary Inc Surfa High Satur- Wate Sedin Drift [Algal Iron E Surfa Surfa Surfa Inund Spars eld Obse	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye	I Imagery (l ve Surface s	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No X	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in F ssed Plants n Remarks):0) (except) I) ing Living (C4) Plowed Sc ; (D1) (LF	Roots (C3) vils (C6) IR A)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, ; agery (C R A)
etland H imary Inc Surfa High Satur Vate Sedin Drift [Algal Iron D Surfa Surfa Surfa Surfa charte Wa ater table	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye	I Imagery (l ve Surface s	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No X	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in F ssed Plants n Remarks):0) (except) I) ing Living (C4) Plowed Sc ; (D1) (LF	Roots (C3) vils (C6) IR A)	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	Balles (B9) (M Bable (C2) A Aerial Im A (D2) B B S (D6) (LRF	ILRA 1, ; agery (C R A)
etland H imary Inc Surfac High Satur Satur Sedin Drift I Algal Iron I Surfac Surfac Bid Obse aturation Icludes c	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, ; agery (C R A)
etland H imary Inc Surfac High Satur Satur Sedin Drift I Algal Iron I Surfac Surfac Bid Obse aturation Icludes c	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, : agery (C R A)
etland H imary Inc Surfa High V Satur: Vate: Vate: Orific I Algal Iron D Surfa Uron D Surfa Inund Spars eld Obse aturation Includes c cribe Rec	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, : agery (C R A)
etland H rimary Inc Surfa High V Satur: Satur: Vate Sedin Drift [Algal Iron D Surfa Surfa Surfa Urface Wi (ater table aturation ncludes c cribe Rec	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, : agery (C R A)
rimary Inc Surfa High V Satur: Wate Sedin Drift [Algal Iron [Surfa Surfa Vater table aturation ncludes c	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, ; agery (C R A)
etland H rimary Inc Surfa High V Satur: Satur: Vate Sedin Drift [Algal Iron D Surfa Surfa Surfa Urface Wi (ater table aturation ncludes c cribe Rec	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, : agery (C R A)
etland H rimary Inc Surfa High V Satur: Satur: Vate Sedin Drift [Algal Iron D Surfa Surfa Surfa Urface Wi (ater table aturation ncludes c cribe Rec	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) vils (C6) R A) Wetland H	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on ohic Positior Aquitard (D: tral Test (D nt Mounds ave Hummo	es (B9) (M 310) Table (C2) A Aerial Im (D2) 3) 55) (D6) (LRF pocks (D7)	ILRA 1, : agery (C R A)
Vetland H rimary Inc Surfa High V Satur: Wate Sedin Drift I Algal Iron D Surfa Surfa Surfa Unrace Wa face Wa face Wa face Wa face Wa caturation ncludes c cribe Rec	ydrology Indicators dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) lation Visible on Aeria sely Vegetated Conca ervations: ater Present? Ye Present? Ye apillary fringe)	I Imagery (ve Surface	Water- MLF Salt Cr Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other (B8) No X Dep No Dep	RA 1, 2, 4. rust (B11) c Inverteb gen Sulfid ed Rhizos nce of Rec t Iron Red d or Stres (Explain ir th (inches th (inches th (inches	eaves (B9 A and 4B) orates (B13 e Odor (C ² spheres alo duced Iron duction in P sed Plants n Remarks):) (except) I) ing Living (C4) Plowed Sc (D1) (LF)	Roots (C3) oils (C6) (R A) Wetland H), if available:	Water-St 4A an Drainage Dry-Seas Saturatio Geomorp Shallow / FAC-Neu Raised A Frost-He	ained Leave d 4B) Patterns (E son Water T n Visible on whic Positior Aquitard (D3 utral Test (D nt Mounds ave Hummo	es (B9) (M 310) a Aerial Im n (D2) 3) (D6) (LRF pocks (D7) /es X	ILRA 1, : agery (C R A)

Project/Site: The Views		City/County	Sandv/Cla	ackamas	Sampling Date:	1/23/2020
Applicant/Owner: Even Better Homes			<u></u>	State: OR		
Investigator(s): K. Biafora		Sectio	n. Township	, Range: S19, T2S, R5E		
Landform (hillslope, terrace, etc.): Ravine		_		ve, convex, none): none	Slope (%):	4-7%
Subregion (LRR): Northwest Forests and Coast (LRR A) Lat:			8696354 Long:		WGS 84
Soil Map Unit Name: Cazadero silty clay loam	2			NWI Classification:		
Are climatic / hydrologic conditions on the site typical for t	this time of	vear?			(If no, explain in Remarks	;)
Are Vegetation, Soil, or Hydrology						
Are Vegetation , Soil , or Hydrology						
		-				
SUMMARY OF FINDINGS – Attach site map	snowing	sampling	point loc	ations, transects, impo	rtant features, etc.	
Hydrophytic Vegetation Present? Yes X No	o	ls the S	ampled Are	19		
Hydric Soil Present? Yes X No	o		a Wetland?		No	
Wetland Hydrology Present? Yes X No	0	_				
Remarks: Himalayan blackberry recently cleared along m	argins of w	etland to fac	iliate access	ŝ.		
, , , , ,	0					
VEGETATION						
	Absolute	Dominant	Indicator	Dominance Test workshee	et:	
Tree Stratum (Use scientific names.)		Species?	Status?	Number of Dominant Specie		
1.		· · · · · · · · · · · · · · · · · · ·	·	That Are OBL, FACW, or FA		(A)
2.		·		Total Number of Dominant	I	_(A)
3.		· · · · · · · · · · · · · · · · · · ·	·	Species Across All Strata:	1	(B)
٥						_(D)
Total Cover:	: 0	·		Percent of Dominant Specie		
Total Cover.	0	-		That Are OBL, FACW, or FA	AC. 100%	_(A/B)
Shrub Stratum				Prevalence Index Worksho	eet:	
1. Rubus armeniacus	100	Y	FAC	Total % Cover of:		
2.		·		OBL species		-
3.				FACW species		-
4.					x3 = 0	-
5.					x4 = 0	-
Total Cover:	: 100		·	· · · · · · · · · · · · · · · · · · ·	x5 = 0	-
Herb Stratum		-			(A) 0	(B)
1.				Prevalence Index = B/A =		_(=)
2.			·			-
3.				Hydrophytic Vegetation In	dicators:	
4.					Hydrophytic Vegetation	
5.			·	X 2 - Dominance Tes		
6.			·	3 - Prevalence Ind		
7.			·		ex is ≤s.0 Adaptation1 (Provide supp	orting
8.					r on a separate sheet)	orung
9.			·	5 - Wetland Non-V	•	
9 10.					phytic Vegetation ¹ (Explai	n)
					privite vegetation (Explai	11)
11Total Cover	: 0					
Total Cover:	. U					

Woody Vine Stratum

Remarks: Blackberry recently cut

US Army Corps of Engineers

Total Cover: 0

% Bare Ground in Herb Stratum ____ % Cover of Biotic Crust

1. 2.

Western Mountains, Valleys and Coast - Version 2.0

Yes X

No

¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Hydrophytic

Vegetation 0 Present?

rofile Dec	crintion: (Deceribe				ne municato				
	scription: (Describe						firm the absen		
epth	Matrix	0/		lox Featu	Type ¹	Loc ²	Taxtura	Demarka	
nches) 0-4	Color (moist) 10 YR 3/2	<u>%</u> 100	Color (moist)	%	Туре	LOC	Texture SCL	Remarks	
4-8	10 YR 3/2	80	7.5 YR 3/4	15	С	М	301		
4-0	10 11 3/2		10 YR 4/1	5	 D	M	SCL		
9.16		75			 C				
8-16	10 YR 4/1	75	10 YR 3/2	<u>15</u> 10	 	<u>M</u>	SCL		
		· ·	7.5 YR 3/4	10					
		letion RM	=Reduced Matrix	S=Cove	ared or Co	ated San	d Grains ² Loca	ation: PL=Pore Lining, M=Matrix.	
	•							or Problematic Hydric Soils ³ :	
-	I Indicators: (Applic sol (A1)			Redox (St			mulcators in	2 cm Muck (A10)	
	. ,			Matrix (Red Parent Material (TF2)	
	Epipedon (A2)			,	,	(oxcont l			
	Histic (A3)			-	ineral (F1) latrix (F2)			Other (Explain in Remarks)	
	gen Sulfide (A4) ted Below Dark Surfa	$(\Lambda 11)$		-	latrix (F2)				
	ted Below Dark Surface	Le (ATT)		d Matrix (Dark Surf	. ,		3 India-4	ors of hydrophytic vegetation and	
	Dark Surface (A12)				. ,	·)			
	Muck Mineral (S1)				urface (F7)		ind hydrology must be present,	
	y gleyed Matrix (S4)		Redox L	Depressio	JIIS (FØ)	1	uni	ess disturbed or problematic.	
	Layer (if present):								
ype:									
epth (inch							1.1. O 1. D		
marks:						Ну	rdric Soil Prese	ent? Yes <u>X</u> No	°
DROLOG	Y ydrology Indicators:					Ну	rdric Soil Prese		
DROLOG Vetland H	Y ydrology Indicators: icators (any one indic	ator is suff						Secondary Indicators (2 or more rec	quire
DROLOG Vetland H Primary Ind	Y ydrology Indicators: licators (any one indic ce Water (A1)	ator is suff	Water-S		eaves (B9) (except		Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/	quire
DROLOG Vetland H Primary Ind Surfac X High \	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2)	ator is suffi	Water-S	A 1, 2, 44	eaves (B9 A and 4B)) (except		Secondary Indicators (2 or more red Water-Stained Leaves (B9) (MLR/ 4A and 4B)	quire
DROLOG Vetland H Primary Ind Surfac X High \ Satura	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3)	ator is suff	Water-S MLR/ Salt Cru	A 1, 2, 4 st (B11)	A and 4B)) (except		Secondary Indicators (2 or more red Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10)	quire
DROLOG Vetland H rimary Ind Surfac X High \ Satura Water	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1)	ator is suff	Water-S MLRA Salt Cru Aquatic	A 1, 2, 4 st (B11) Invertebr	A and 4B) rates (B13) (except		Secondary Indicators (2 or more red Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)	quirea A 1, 2
DROLOG Vetland H Primary Ind Surfac X High \ Satura Water Sedim	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) nent Deposits (B2)	ator is suff	Water-S MLRA Salt Cru Aquatic Hydroge	A 1, 2, 4 st (B11) Invertebr en Sulfide	A and 4B) rates (B13 e Odor (C1) (except)		Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image	quirea A 1, 2
DROLOG Vetland H Primary Ind Surfac X High \ Satura Vater Sedim Drift D	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3)	ator is suff	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized	A 1, 2, 44 st (B11) Invertebr en Sulfide d Rhizosp	A and 4B) rates (B13 e Odor (C1 pheres alo) (except) I) ng Living		Secondary Indicators (2 or more red Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2)	quirea A 1, 2
DROLOG Vetland H Primary Ind Surfac X High \ Satura Vater Sedim Drift E Algal	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4)	ator is suff	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presence	A 1, 2, 44 st (B11) Invertebr en Sulfide d Rhizosp ee of Red	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron) (except) I) ng Living (C4)		Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3)	quirea A 1, 2
DROLOG Vetland H Surfac X High \ Satura Vater Sedim Drift E Algal Iron D	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) • Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5)	ator is suff	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent	A 1, 2, 44 st (B11) Invertebr en Sulfide d Rhizosp ee of Red	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P) (except) I) ng Living (C4) lowed So	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)	quire A 1, 2 ery (C
DROLOG Vetland H Surfac X High V Satura Vater Sedim Drift E Algal Iron D Surfac	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6)		Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted	A 1, 2, 44 st (B11) Invertebren Sulfide d Rhizosp ce of Red Iron Redu or Stress	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)	quire A 1, 2 ery (C
DROLOG Vetland H Surfac X High V Satura Vater Sedim Drift E Algal Iron D Surfac Inunda	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) Marks (B1) Mat or Crust (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial	Imagery (E	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted 37) Other (E	A 1, 2, 44 st (B11) Invertebren Sulfide d Rhizosp ce of Red Iron Redu or Stress	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)	quire A 1, 2 ery (C
DROLOG Vetland H Primary Ind Surfac X High V Satura Satura Sedim Sedim Drift D Iron D Surfac Inund Spars	Y ydrology Indicators: icators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav	Imagery (E	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted 37) Other (E	A 1, 2, 44 st (B11) Invertebren Sulfide d Rhizosp ce of Red Iron Redu or Stress	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)	quire A 1, 2 ery (C
DROLOG Vetland H Primary Ind Surfac X High V Satura Vater Sedim Drift E Algal Iron D Surfac Inunda Spars Field Obse	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) Marks (B1) Marks (B3) Mat or Crust (B4) leposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav structions:	Imagery (E ve Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted 37) Other (E (B8)	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp te of Red Iron Red or Stress Explain in	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)	quire A 1, 2 ery (C
DROLOG Vetland H Surfac X High \ Satura Sedim Drift E Algal Iron D Surfac Surfac Surface Wa	Y ydrology Indicators: iicators (any one indic ce Water (A1) Nater Table (A2) ation (A3) Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav irvations: ater Present? Yes	Imagery (E /e Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent Stunted 37) Other (E (B8) No X Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp te of Red Iron Red or Stress Explain in (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)	quire A 1, 2
DROLOG Vetland H Primary Ind Surfac X High \ Satura Vater Sedim Drift I Algal Iron D Surfac Surface Wa Vater table	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav rvations: ater Present? Yes	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants in Remarks):) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)	quire A 1, :
DROLOG Vetland H Surfac X High \ Satura Vater Sedim Drift D Algal Iron D Surfac Surface Wa Vater table Saturation	Y ydrology Indicators: iicators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav rvations: ater Present? Yes	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp te of Red Iron Red or Stress Explain in (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants in Remarks):) (except) I) ing Living (C4) lowed So ; (D1) (LR	Roots (C3)	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quire A 1, :
DROLOG Vetland H Primary Ind Surfac X High V Satura Water Sedim Drift D Inon D Surfac Inund Spars Field Obse Surface Wa Vater table Saturation I includes ca	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) heposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav protations: ater Present? Yes Present? Yes	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants n Remarks):) (except) I) Ing Living (C4) Plowed So 5 (D1) (LR	Roots (C3) iils (C6) R A) Wetland Hyd	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quire A 1, :
Primary Ind Surfac X High V Satura Vater Drift D Iron D Surfac Inund Spars Field Obse Saturation Saturation includes ca scribe Rec	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav structions: ater Present? Yes Present? Yes apillary fringe)	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants n Remarks):) (except) I) Ing Living (C4) Plowed So 5 (D1) (LR	Roots (C3) iils (C6) R A) Wetland Hyd	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quire A 1, :
DROLOG Vetland H Primary Ind Surfac Satura Water Sedim Drift E Algal Iron D Surfac Inund. Spars Field Obse Surface Wa Water table Saturation includes ca	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav structions: ater Present? Yes Present? Yes apillary fringe)	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants n Remarks):) (except) I) Ing Living (C4) Plowed So 5 (D1) (LR	Roots (C3) iils (C6) R A) Wetland Hyd	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quire A 1, 2 ery (C
	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav structions: ater Present? Yes Present? Yes apillary fringe)	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants n Remarks):) (except) I) Ing Living (C4) Plowed So 5 (D1) (LR	Roots (C3) iils (C6) R A) Wetland Hyd	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quire A 1, 2 ery (C
	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav structions: ater Present? Yes Present? Yes apillary fringe)	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants n Remarks):) (except) I) Ing Living (C4) Plowed So 5 (D1) (LR	Roots (C3) iils (C6) R A) Wetland Hyd	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quirec A 1, 2 ery (C:
DROLOG Vetland H Primary Ind Surfac X High V Satura Water Sedim Drift E Algal Iron D Surfac Surface Wa Surface Wa Saturation I includes ca scribe Rec	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concav structions: ater Present? Yes Present? Yes apillary fringe)	Imagery (E re Surface	Water-S MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted 37) Other (E (B8) No X Depth No Depth	A 1, 2, 4A st (B11) Invertebr en Sulfide d Rhizosp e of Red Iron Redu or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants n Remarks):) (except) I) Ing Living (C4) Plowed So 5 (D1) (LR	Roots (C3) iils (C6) R A) Wetland Hyd	Secondary Indicators (2 or more rec Water-Stained Leaves (B9) (MLR/ 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	quired A 1, 2 ery (C

Project/Site:	The Views			City/County: Sandy/Clacka	amas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Home	s				State: OR	Sampling P	oint:	6
Investigator(s):	K. Biafora			Section, Township, R	ange:	S19, T2S, R5E			
Landform (hillslope	e, terrace, etc.):	Ravine		Local relief (concave,	convex	, none): none		Slope (%):	4-7%
Subregion (LRR):	Northwest Forests	and Coast (LRR A)	Lat:	45.3869	97034	Long:	-122.2331664	Datum:	WGS 84
Soil Map Unit Nam	e: Cazadero	silty clay loam				NWI Classificatio	on: none		
Are climatic / hydro	ologic conditions on	the site typical for this	time of ye	ear? Yes	Х	No	(If no, explain	in Remarks	;)
Are Vegetation	, Soil	, or Hydrology	:	significantly disturbed?	Are "N	lormal Circumsta	ances" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally problematic?	(If nee	ded, explain any	answers in Rema	arks.)	
SUMMARY OF	FINDINGS – A	ttach site map sho	owing s	ampling point locati	ons, t	ransects, im	portant feature	es, etc.	
Hydrophytic Vegeta	ation Present?	Yes X No							
Hydric Soil Present	t?	Yes No	Х	Is the Sampled Area within a Wetland?		Yes	No X		
Wetland Hydrology	Present?	Yes No	Х	within a wedana.					
Remarks: Himalay	an blackberry recer	tly cleared along marg	ins of we	tland to faciliate access.					

ree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?		Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: 1
·				Total Number of Dominant Species Across All Strata: 1 (B)
Total Cover	. 0			Percent of Dominant Species That Are OBL, FACW, or FAC:(A/B)
Shrub Stratum . <u>Rubus armeniacus</u>		. <u> </u>		Prevalence Index Worksheet:
 Total Cover				FACW species x2 = 0 FAC species x3 = 0 FACU species x4 = 0 UPL species x5 = 0
<u>lerb Stratum</u>				Column Totals: 0 (A) 0 (B) Prevalence Index = B/A =
				Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation X 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptation1 (Provide supporting data in Remarks or on a separate sheet) 5 - Wetland Non-Vascular Plants ¹ Problematic Hydrophytic Vegetation ¹ (Explain)
1 Total Cover Woody Vine Stratum		-		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
		iotic Crust	0	Hydrophytic Vegetation Present? Yes X

IL											
ofile De	scription: (Describe	to the dep	th needed	to documen	nt the indicat	or or con	firm the abs	ence of ir	dicators.)		
epth	Matrix			Redox Fe	eatures						
ches)	Color (moist)	%	Color (m	oist) %	Type ¹	Loc ²	Texture	<u> </u>		Remarks	
0-16	10 YR 3/2	100					SCL				
						·					
	·					·					
	·			<u> </u>		·					
						·					
ype: C=	Concentration, D=Dep	letion, RM=	Reduced I	Matrix, CS=C	overed or Co	ated Sand	I Grains. ² Lo	ocation: P	L=Pore Lining	g, M=Matrix.	
/dric So	il Indicators: (Applic	able to all	LRRs, unl	ess otherwis	se noted.)		Indicators	for Prob	lematic Hydr	ic Soils ³ :	
	sol (A1)			Sandy Redox				2 cn	n Muck (A10)		
 Histic	Epipedon (A2)			Stripped Matr				Red	Parent Mate	rial (TF2)	
	Histic (A3)			Loamy Mucky	. ,) (except	MLRA 1)		er (Explain in	. ,	
-	ogen Sulfide (A4)			Loamy Gleye			,		- · · ·	,	
_	eted Below Dark Surfa	ce (A11)		Depleted Mat	. ,	,					
-	Dark Surface (A12)			Redox Dark S	. ,		³ Indi	nators of h	ydrophytic ve	aptation and	
-	y Muck Mineral (S1)				· · /	7)				-	
				Depleted Darl		()		-	ology must b	-	
	y gleyed Matrix (S4)		'	Redox Depres	SSIONS (F8)		l	uniess dist	urbed or prob	lematic.	
strictive	e Layer (if present):										
pe:											
pth (incl	hes):					Hv	dric Soil Pre	esent?	Ye	s	No
PROLOG etland H	iY lydrology Indicators:										
ROLOG			cient)					Seco	ndary Indicato	ors (2 or mo	re require
ROLOG etland H imary Inc	lydrology Indicators:			Water-Staine	d Leaves (BS				ndary Indicate		
ROLOG etland H imary Ind Surfa	lydrology Indicators: dicators (any one indic ice Water (A1)) (except		Wat			
etland H imary Ind Surfa High	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2)			MLRA 1, 2	, 4A and 4B)) (except		Wat	er-Stained Le	eaves (B9) (I	
PROLOG etland H imary Inc Surfa Satur	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3)		\	MLRA 1, 2 Salt Crust (B1	4A and 4B) 11)	e) (except		Wat	er-Stained Le A and 4B) nage Pattern	eaves (B9) (I s (B10)	MLRA 1,
ROLOG etland H imary Inc Surfa High Satur Wate	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1)		\$	MLRA 1, 2 Salt Crust (B1 Aquatic Invert	4A and 4B) 11) tebrates (B13	9) (except) 3)		Wat 4 Drai Dry-	er-Stained Le A and 4B) nage Pattern Season Wate	eaves (B9) (I s (B10) er Table (C2	MLRA 1,
ROLOG etland H imary Ind Surfa High Satur Satur Wate Sedir	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2)			MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul	te, 4A and 4B) (11) (tebrates (B13) (fide Odor (C	 2) (except 3) 1) 		Wat	er-Stained Le A and 4B) nage Pattern Season Wate uration Visible	eaves (B9) (I s (B10) er Table (C2 e on Aerial In	MLRA 1,
PROLOG etland H imary Ind Surfa High Satur Satur Wate Sedir Sedir Drift I	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) nent Deposits (B2) Deposits (B3)			MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz	e, 4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres ald	 2) (except 3) 1) 2) Living 		Wat	er-Stained Le A and 4B) nage Patterna Season Wate uration Visible morphic Posi	eaves (B9) (I s (B10) er Table (C2 e on Aerial In ition (D2)	MLRA 1,
ROLOG etland H imary Inc Surfa High Satur Wate Sedir Drift I Algal	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4)			MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F	4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres ald Reduced Iron	 a) (except b) b) c) c	Roots (C3)	Wat	er-Stained Le A and 4B) nage Pattern Season Wate uration Visible morphic Posi Ilow Aquitard	s (B10) er Table (C2 on Aerial In (D2) (D3)	MLRA 1,
ROLOG etland H Surfa Satur Wate Vate Drift [Algal Iron [lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)			MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R	4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres ald Reduced Iron Reduction in F	 a) (except b) b) c) c	Roots (C3)	Wat Wat Wat Wat Urai Drai Dry- Satu Geo Sha FAC	er-Stained Le A and 4B) nage Pattern Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test	s (B10) er Table (C2 e on Aerial In tion (D2) (D3) t (D5)	MLRA 1,) nagery (C
ROLOG etland H imary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6)	<u>ator is suffi</u>		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str	e, 4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants	e) (except) 3) 1) ong Living (C4) Plowed So s (D1) (LR	Roots (C3)	Wat Drai Dry- Satu Geo Sha FAC Rais	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi Ilow Aquitard C-Neutral Tesi sed Ant Moun	eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR	MLRA 1,) nagery (C R A)
ROLOG etland H Surfa High High Wate Vate Nate Nate Nate Nate Nate Nate Nate 	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) lation Visible on Aerial	<u>ator is suffi</u> Imagery (B		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R	e, 4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants	e) (except) 3) 1) ong Living (C4) Plowed So s (D1) (LR	Roots (C3)	Wat Drai Dry- Satu Geo Sha FAC Rais	er-Stained Le A and 4B) nage Pattern Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test	eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR	MLRA 1,) nagery (C R A)
ROLOG etland H Surfa Satur Satur Sedir Sedir Nate Surfa Inund Spars	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar	<u>ator is suffi</u> Imagery (B		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str	e, 4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants	e) (except) 3) 1) ong Living (C4) Plowed So s (D1) (LR	Roots (C3)	Wat Drai Dry- Satu Geo Sha FAC Rais	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi Ilow Aquitard C-Neutral Tesi sed Ant Moun	eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR	MLRA 1,) nagery (C R A)
ROLOG etland H Surfa High Satur Wate Vate Vate Nate Nate Nate Nate Nate Nate Nate Nate Nate 	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations:	ator is suffi Imagery (B ve Surface (; _ ;	MLRA 1, 2, Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain	a, 4A and 4B) 11) tebrates (B13 lfide Odor (C zospheres alo Reduced Iron Reduction in F ressed Plants n in Remarks	e) (except) 3) 1) ong Living (C4) Plowed So s (D1) (LR	Roots (C3)	Wat Drai Dry- Satu Geo Sha FAC Rais	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi Ilow Aquitard C-Neutral Tesi sed Ant Moun	eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR	MLRA 1,) nagery (C R A)
ROLOG etland H Surfa Natur Wate Vate Natur Natur Natur Natur Natur Natur Natur Natur eld Obse urface W	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) lation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes	Imagery (B ve Surface		MLRA 1, 2, Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch	a, 4A and 4B) 11) tebrates (B13) lfide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks	e) (except) 3) 1) ong Living (C4) Plowed So s (D1) (LR	Roots (C3)	Wat Drai Dry- Satu Geo Sha FAC Rais	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi Ilow Aquitard C-Neutral Tesi sed Ant Moun	eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR	MLRA 1,) nagery (C R A)
ROLOG etland H Surfa Satur Wate Vate Note Note Note Inund Spars eld Obse urface W ater table	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Conca- ervations: ater Present? Yes	Imagery (B ve Surface	37) (B8) (B8) (A A A A A A A A A A A A A A A A	MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch	at the second se	 a) (except b) b) (except c) c)<td>Roots (C3) ils (C6) R A)</td><td>Wat</td><td>er-Stained Lee A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test sed Ant Moun st-Heave Hur</td><td>eaves (B9) (I s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)</td><td>MLRA 1,) nagery (C R A)</td>	Roots (C3) ils (C6) R A)	Wat	er-Stained Lee A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test sed Ant Moun st-Heave Hur	eaves (B9) (I s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)	MLRA 1,) nagery (C R A)
PROLOG etland H imary Ind Surfa High Satur Wate Sedin Drift I Algal Iron I Surfa Inund Spars eld Obse aturation	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Conca- ervations: ater Present? Yes	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch	at the second se	 a) (except b) b) (except c) c)<td>Roots (C3)</td><td>Wat</td><td>er-Stained Lee A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test sed Ant Moun st-Heave Hur</td><td>eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR</td><td>MLRA 1,) nagery (C R A)</td>	Roots (C3)	Wat	er-Stained Lee A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test sed Ant Moun st-Heave Hur	eaves (B9) (1 s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR	MLRA 1,) nagery (C R A)
PROLOG etland H imary Ind Surfa High Satur Wate Sedin Orift I Algal Iron I Surfa Spars eld Obse inface W ater table aturation cludes c	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes	Imagery (B ve Surface (s I s I		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch	2, 4A and 4B) 11) tebrates (B13 Ifide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks nes): nes):14	 a) (except b) b) c) 	Roots (C3) ils (C6) R A) Wetland H	Wat Wat Drai Dry- Satu Sha FAC Rais FAC	er-Stained Lee A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard S-Neutral Test sed Ant Moun st-Heave Hur	eaves (B9) (I s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)	MLRA 1,) nagery (C R A)
ROLOG etland H imary Inc Surfa High Satur Vate Sedir Iron I Iron I Iron I Inund Spars eld Obse urface W ater table aturation cludes c cribe Rec	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes apillary fringe) corded Data (stream g	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch Depth (inch aerial photos	a, 4A and 4B) 11) tebrates (B13 Iffide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks hes):	e) (except) 1) 2) (c4) 2) owed So s (D1) (LR s) spections)	Roots (C3) ils (C6) R A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard C-Neutral Tesi sed Ant Moun st-Heave Hurn Present?	eaves (B9) (I s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7) Yes	MLRA 1,) nagery (C R A)
ROLOG etland H imary Inc Surfa High Satur Vate Sedir Iron I Iron I Iron I Inund Spars eld Obse urface W ater table aturation cludes c cribe Rec	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes rapillary fringe)	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch Depth (inch aerial photos	a, 4A and 4B) 11) tebrates (B13 Iffide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks hes):	e) (except) 1) 2) (c4) 2) owed So s (D1) (LR s) spections)	Roots (C3) ils (C6) R A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard C-Neutral Tesi sed Ant Moun st-Heave Hurn Present?	s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)	MLRA 1,) nagery (C R A)
ROLOG etland H imary Inc Surfa High Satur Vate Sedir Iron I Iron I Iron I Inund Spars eld Obse urface W ater table aturation cludes c cribe Rec	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes apillary fringe) corded Data (stream g	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch Depth (inch aerial photos	a, 4A and 4B) 11) tebrates (B13 Iffide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks hes):	e) (except) 1) 2) (c4) 2) owed So s (D1) (LR s) spections)	Roots (C3) ils (C6) R A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard C-Neutral Tesi sed Ant Moun st-Heave Hurn Present?	s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)	MLRA 1,) nagery (C R A)
ROLOG etland H imary Inc Surfa High Satur Vate Sedir Iron I Iron I Iron I Inund Spars eld Obse urface W ater table aturation cludes c cribe Rec	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes apillary fringe) corded Data (stream g	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch Depth (inch aerial photos	a, 4A and 4B) 11) tebrates (B13 Iffide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks hes):	e) (except) 1) 2) (c4) 2) owed So s (D1) (LR s) spections)	Roots (C3) ils (C6) R A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard C-Neutral Tesi sed Ant Moun st-Heave Hurn Present?	s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)	MLRA 1,) nagery (C R A)
ROLOG etland H imary Inc Surfa High Satur Vate Sedir Iron I Iron I Iron I Inund Spars eld Obse urface W ater table aturation cludes c cribe Rec	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes apillary fringe) corded Data (stream g	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch Depth (inch aerial photos	a, 4A and 4B) 11) tebrates (B13 Iffide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks hes):	e) (except) 1) 2) (c4) 2) owed So s (D1) (LR s) spections)	Roots (C3) ils (C6) R A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard C-Neutral Tesi sed Ant Moun st-Heave Hurn Present?	s (B10) er Table (C2 e on Aerial In tition (D2) (D3) t (D5) ds (D6) (LR nmocks (D7)	MLRA 1,) nagery (C R A)
ROLOG etland H imary Inc Surfa High Satur Vate Sedir Iron I Iron I Inund Spars eld Obse urface W ater table aturation cludes c cribe Rec marks: He	lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes apillary fringe) corded Data (stream g	Imagery (B ve Surface		MLRA 1, 2 Salt Crust (B1 Aquatic Invert Hydrogen Sul Oxidized Rhiz Presence of F Recent Iron R Stunted or Str Other (Explain Depth (inch Depth (inch Depth (inch aerial photos	a, 4A and 4B) 11) tebrates (B13 Iffide Odor (C zospheres ald Reduced Iron Reduction in F ressed Plants n in Remarks hes):	e) (except) 1) 2) (c4) 2) owed So s (D1) (LR s) spections)	Roots (C3) ils (C6) R A) Wetland H , if available:	Wat Wat Drai Dry- Satu Satu Geo Sha FAC Rais Fros	er-Stained Le A and 4B) nage Pattern: Season Wate uration Visible morphic Posi llow Aquitard C-Neutral Tesi sed Ant Moun st-Heave Hurn Present?	Yes	MLRA 1,) nagery (C R A) No

Project/Site:	The Views C			City/County: S	ity/County: Sandy/Clackamas			Sampling D		1/23/2020
Applicant/Owner:	Even Better Home	S					State: OR	Sampling Po	oint:	7
Investigator(s):	K. Biafora			Section, 7	Township, I	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relie	f (concave,	convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forests	and Coast (LRR A)	Lat:		45.387	733918	Long:	-122.2326447	Datum:	WGS 84
Soil Map Unit Nam	e: Cazadero s	silty clay loam					NWI Classification:	none		
Are climatic / hydro	logic conditions on	the site typical for thi	s time of y	/ear?	Yes	Х	No	(If no, explain i	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly di	sturbed?	Are "N	ormal Circumstanc	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally probl	ematic?	(If nee	eded, explain any ar	nswers in Rema	rks.)	

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes Yes	No No No	x x	Is the Sampled Area within a Wetland?	Yes	No	_x
Remarks: Plot located near Stream 1.							

Tree Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
1. Alnus rubra	25		FAC	That Are OBL, FACW, or FAC: 2 (A)
2				Total Number of Dominant Species Across All Strata: 2 (B)
Total Cover:	25			Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
hrub Stratum Rubus armeniacus	100	Y	FAC	Prevalence Index Worksheet: Total % Cover of: Multiply by:
				$\begin{array}{c} \hline \\ \hline $
				FACW species x2 = 0
				FAC species x3 = 0
				FACU species x4 =0
Total Cover:	100	-		UPL species x5 =0
erb Stratum				Column Totals: 0 (A) 0 (B)
· · · · · · · · · · · · · · · · · · ·				Prevalence Index = B/A =
				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
				X 2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
				4 - Morphological Adaptation1 (Provide supporting
				data in Remarks or on a separate sheet)
				5 - Wetland Non-Vascular Plants ¹
0				Problematic Hydrophytic Vegetation ¹ (Explain)
1				
Total Cover:	0	-		
Woody Vine Stratum				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
·				
 Total Cover:	0			
% Bare Ground in Herb Stratum 0 %	Cover of B	iotic Crust	0	
2	0		0	Hydrophytic Vegetation Present? Yes X No

IL											t:		
rofile Des	cription: (Describe	to the dep	th neede	d to doci	ument th	he indicat	or or cor	nfirm the abs	ence of in	dicators.)			-
epth	Matrix			Rec	lox Featu			_					
nches)	Color (moist)	%	Color (r	noist)	%	Type ¹	Loc ²	Texture	е		Remarks		
0-16	10 YR 3/3	100						SCL					
ype: C=C	oncentration, D=Dep	letion, RM=	=Reduced	I Matrix, C	CS=Cove	ered or Co	ated San	d Grains. ² L	ocation: P	L=Pore Linin	ıg, M=Matrix		
	Indicators: (Applic	able to all	LRRs, ur					Indicators		ematic Hyd			
Histos	ol (A1)			Sandy R						n Muck (A10)			
	Epipedon (A2)				I Matrix (. ,				Parent Mate	. ,		
Black I	Histic (A3)			Loamy N	Aucky M	ineral (F1)) (except	MLRA 1)	Othe	er (Explain in	Remarks)		
	gen Sulfide (A4)			Loamy C	Gleyed M	latrix (F2))						
Deplet	ed Below Dark Surfa	ce (A11)		Depleted	d Matrix	(F3)							
Thick I	Dark Surface (A12)			Redox D	Dark Surf	face (F6)		³ Indi	cators of h	ydrophytic ve	egetation and	b	
Sandy	Muck Mineral (S1)			Depletee	d Dark S	Surface (F7	7)	We	etland hydr	ology must b	e present,		
Sandy	gleyed Matrix (S4)			Redox D	Depressio	ons (F8)		ı	unless dist	urbed or prol	blematic.		
estrictive	Layer (if present):												
/pe:													
epth (inche	es):						Н	ydric Soil Pro	esent?	Ye	es	No	
ans.													
ROLOGY													
OROLOGY	drology Indicators		cient)						Seco	ndary Indicat	ors (2 or mo	re requir	
DROLOGY etland Hy	drology Indicators		cient)	Water-S	tained L	eaves (B0			-	ndary Indicat			red
PROLOGY etland Hy imary Indi Surfac	rdrology Indicators icators (any one indic e Water (A1)		cient)			eaves (B9	· · ·		Wat	er-Stained L			red
DROLOGY Tetland Hy Timary Indi Surfac High V	rdrology Indicators icators (any one indic e Water (A1) Vater Table (A2)		cient)	MLRA	A 1, 2, 4 <i>4</i>	A and 4B)	· · ·		Wat	er-Stained Lo A and 4B)	eaves (B9) (red
DROLOGY /etland Hy /imary Indi Surfac High V Satura	rdrology Indicators cators (any one indic e Water (A1) Vater Table (A2) tion (A3)		cient)	MLRA Salt Cru	A 1, 2, 4 st (B11)	A and 4B)			Wat 4 Drai	er-Stained Lo A and 4B) nage Patterr	eaves (B9) (ns (B10)	MLRA 1,	red
DROLOGY /etland Hy imary Indi Surfac High W Satura Water	vdrology Indicators cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1)		cient)	MLRA Salt Cru Aquatic	A 1, 2, 4 st (B11) Inverteb	A and 4B) rates (B13	3)		Wat 4 Drai Dry-	er-Stained Lo A and 4B) nage Patterr Season Wat	eaves (B9) (ns (B10) er Table (C2	MLRA 1,	red
PROLOGY (etland Hy imary Indi Surfac High V Satura Water Sedim	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2)		cient)	MLRA Salt Cru Aquatic Hydroge	A 1, 2, 4 st (B11) Inverteb en Sulfide	A and 4B) rates (B13 e Odor (C	3) 1)		Wat 4 Drai Dry- Satu	er-Stained Lo A and 4B) nage Patterr Season Wat uration Visible	eaves (B9) (ns (B10) er Table (C2 e on Aerial In	MLRA 1,	red
PROLOGY (etland Hy imary Indi Surfac High V Satura Water Sedim Sedim Drift D	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		cient)	MLRA Salt Cru Aquatic Hydroge Oxidized	A 1, 2, 44 st (B11) Inverteb en Sulfide d Rhizosj	A and 4B) rates (B13 e Odor (C pheres alc	3) 1) ong Living	t B Roots (C3)	Wat 4 Drai 0ry- 5atu Geo	er-Stained Lo A and 4B) nage Patterr Season Wat iration Visible morphic Pos	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2)	MLRA 1,	red
PROLOGY etland Hy imary Indi Surfac High V Satura Water Water Sedim Drift D Algal M	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4)		cient)	MLRA Salt Cru Aquatic Hydroge Oxidized Presenc	A 1, 2, 44 st (B11) Inverteb en Sulfide d Rhizos e of Red	A and 4B) rates (B13 e Odor (C pheres alc duced Iron	3) 1) ong Living (C4)	g Roots (C3)	Wat	er-Stained Lo A and 4B) nage Patterr Season Wat Iration Visible morphic Pos Ilow Aquitard	eaves (B9) (ns (B10) er Table (C2 e on Aerial II ition (D2) I (D3)	MLRA 1,	red
DROLOGY /etland Hy Surfac High W Satura Sedim Sedim Sedim Drift D Algal M Iron Do	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5)		cient)	MLRA Salt Cru Aquatic Hydroge Oxidized Presenc Recent I	A 1, 2, 44 st (B11) Invertebi en Sulfide d Rhizos e of Red Iron Red	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F	3) 1) ong Living (C4) Plowed So) Roots (C3) pils (C6)	Wat 4 Drai Dry- Satu Geo Sha FAC	er-Stained Li A and 4B) nage Patterr Season Wat iration Visible morphic Pos ilow Aquitard -Neutral Tes	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5)	MLRA 1, ?) magery (red
PROLOGY etland Hy imary Indi Surfac High V Satura Sedim Drift D Algal N Iron Do Surfac	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6)	ator is suffi		MLRA Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted	A 1, 2, 4 st (B11) Inverteb en Sulfide d Rhizos e of Red fron Red or Stress	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants	3) 1) ong Living (C4) Plowed So s (D1) (LF) Roots (C3) pils (C6)	Wat 4 Drai Dry- Satu Geo Sha FAC Rais	er-Stained Lu A and 4B) nage Pattern Season Wat irration Visible morphic Pos illow Aquitard t-Neutral Tes ned Ant Mour	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR	MLRA 1, 2) magery (4	red
DROLOGY /etland Hy imary Indi Surfac High W Satura Water Sedim Drift D Algal M Iron De Surfac Inunda	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) tition Visible on Aerial	ator is suffi Imagery (E	37)	MLRA Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted	A 1, 2, 4 st (B11) Inverteb en Sulfide d Rhizos e of Red fron Red or Stress	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F	3) 1) ong Living (C4) Plowed So s (D1) (LF) Roots (C3) pils (C6)	Wat 4 Drai Dry- Satu Geo Sha FAC Rais	er-Stained Li A and 4B) nage Patterr Season Wat iration Visible morphic Pos ilow Aquitard -Neutral Tes	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR	MLRA 1, 2) magery (4	red
DROLOGY retland Hy imary Indi Surfac High V Satura Sedim Sedim Drift D Algal M Iron Do Surfac Sparse	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca	ator is suffi Imagery (E	37)	MLRA Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted	A 1, 2, 4 st (B11) Inverteb en Sulfide d Rhizos e of Red fron Red or Stress	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants	3) 1) ong Living (C4) Plowed So s (D1) (LF) Roots (C3) pils (C6)	Wat 4 Drai Dry- Satu Geo Sha FAC Rais	er-Stained Lu A and 4B) nage Pattern Season Wat irration Visible morphic Pos illow Aquitard t-Neutral Tes ned Ant Mour	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR	MLRA 1, 2) magery (4	red
DROLOGY fetland Hy imary Indi Surfac High V Satura Vater Sedim Algal M Iron De Surfac Sparse eld Obse	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aeriai sly Vegetated Conca rvations:	ator is suffi Imagery (E ve Surface		MLRA Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 44 st (B11) Inverteblen Sulfide d Rhizosp te of Red Iron Red or Stress Explain in	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks	3) 1) ong Living (C4) Plowed So s (D1) (LF) Roots (C3) pils (C6)	Wat 4 Drai Dry- Satu Geo Sha FAC Rais	er-Stained Lu A and 4B) nage Pattern Season Wat irration Visible morphic Pos illow Aquitard t-Neutral Tes ned Ant Mour	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR	MLRA 1, 2) magery (4	red
DROLOGY /etland Hy rimary Indi Surfac High W Satura Vater Sedim Drift D Algal M Iron Do Surfac Inunda Sparse eld Obsel urface Wa	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) tition Visible on Aerial ely Vegetated Conca rvations: ter Present? Yest	Imagery (E ve Surface		MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	A 1, 2, 44 st (B11) Invertebien Sulfide d Rhizosj de of Red fron Red or Stress Explain in (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks	3) 1) (C4) Plowed So \$ (D1) (LF) Roots (C3) pils (C6)	Wat 4 Drai Dry- Satu Geo Sha FAC Rais	er-Stained Lu A and 4B) nage Pattern Season Wat irration Visible morphic Pos illow Aquitard t-Neutral Tes ned Ant Mour	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR	MLRA 1, 2) magery (4	red
DROLOGY /etland Hy /etland Hy /etland Hy /etland Hy /etland Water Water Water Drift D Algal M Iron Da Surfac Sparse eld Obset /ater table	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca rvations: ter Present? Yes	Imagery (E ve Surface		MLRA Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosje e of Red fron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks););	3) 1) (C4) Plowed So \$ (D1) (LF	g Roots (C3) bils (C6) RR A)	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	ed, 2
PROLOGY /etland Hy /imary Indi 	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca rvations: ter Present? Yes	Imagery (E ve Surface	37) (B8) No	MLRA Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	A 1, 2, 44 st (B11) Invertebien Sulfide d Rhizosj de of Red fron Red or Stress Explain in (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks););	3) 1) (C4) Plowed So \$ (D1) (LF) Roots (C3) pils (C6)	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR	MLRA 1, 2) magery (4	ed, 2
PROLOGY /etland Hy /etland Hy /etland Hy /etland Hy Surfac 	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Conca rvations: ter Present? Yes Present? Yes	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	ed, 2
rimary Indi Surfac High V Satura Sedim Sedim Drift D Algal N Iron Do Surfac Inunda Sparse ield Obser urface Wa Vater table aturation F nocludes ca cribe Reco	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concar rvations: ter Present? Yes Present? Yes pipillary fringe)	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	red , 2
PROLOGY /etland Hy /imary Indi 	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concar rvations: ter Present? Yes Present? Yes pipillary fringe)	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	red , 2
PROLOGY fetland Hy rimary Indi 	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concar rvations: ter Present? Yes Present? Yes pipillary fringe)	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	red , 2
PROLOGY fetland Hy rimary Indi 	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concar rvations: ter Present? Yes Present? Yes pipillary fringe)	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	, 2 C9
PROLOGY fetland Hy rimary Indi 	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concar rvations: ter Present? Yes Present? Yes pipillary fringe)	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (ns (B10) er Table (C2 e on Aerial In ition (D2) I (D3) I (D3) nds (D6) (LR nmocks (D7	MLRA 1; 2) magery (f R A)	red , 2
PROLOGY retland Hy rimary Indi Surfac High W Satura Sedim Natura	vdrology Indicators: cators (any one indic e Water (A1) Vater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) ation Visible on Aerial ely Vegetated Concar rvations: ter Present? Yes Present? Yes pipillary fringe)	Imagery (E ve Surface	37) (B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	A 1, 2, 4J st (B11) Inverteble en Sulfide d Rhizosj e of Red Iron Red or Stress Explain in (inches) (inches)	A and 4B) rates (B13 e Odor (C pheres alc duced Iron luction in F sed Plants n Remarks):););	3) 1) ong Living (C4) Plowed So 5 (D1) (LF)	g Roots (C3) bils (C6) RR A) Wetland H	Wat Drai Dry- Satu Geo Sha FAC Rais Fros	er-Stained Lu A and 4B) nage Pattern Season Wat iration Visible morphic Pos llow Aquitard -Neutral Tes ied Ant Mour t-Heave Hur	eaves (B9) (as (B10) er Table (C2 e on Aerial In ition (D2) I (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA 1; magery (R A))	ed , 2 CS

Project/Site:	The View	vs			City/County:	Sandy/Clacl	kamas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Homes						State: OR	Sampling Point:		8	
Investigator(s):	K. Biafora	а			Section,	Township,	Range:	S19, T2S, R5E			
Landform (hillslope	e, terrace,	etc.):	Ravine		Local reli	ef (concave	, convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwes	st Forests a	and Coast (LRR A)	Lat:		45.38	701663	Long:	-122.2288159	Datum:	WGS 84
Soil Map Unit Name	e: <u>K</u>	lickitat stor	ny loam					NWI Classification	n: none		
Are climatic / hydro	ologic cond	ditions on t	he site typical for this	time of y	/ear?	Yes	х	No	(If no, explain	in Remarks	;)
Are Vegetation	,	Soil	, or Hydrology		significantly of	disturbed?	Are "N	ormal Circumstar	ices" Present?	Yes X	No
Are Vegetation	,	Soil	, or Hydrology		naturally prol	blematic?	(If nee	ded, explain any a	answers in Rema	rks.)	
SUMMARY OF	FINDIN	GS – Att	tach site map sh	owing	sampling p	oint locat	tions, t	ransects, imp	ortant feature	es, etc.	

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	x x x	Is the Sampled Area within a Wetland?	Yes	No	<u>x</u>	
Remarks:								

Free Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
I. Acer macrophyllum	50	Y	FACU	That Are OBL, FACW, or FAC: 1 (A)
2				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
lTotal Cover:	50	·		Percent of Dominant Species That Are OBL, FACW, or FAC: 33% (A/B)
		-		
Shrub Stratum				Prevalence Index Worksheet:
. Thuja plicata	-		FAC	Total % Cover of: Multiply by:
·	·	· ·	·	OBL species x1 =
·		·	·	FACW species x2 =0
	·	· ·	·	FAC species 20 x3 = 60
		·	·	FACU species 90 x4 = 360
Total Cover:	20	-		UPL speciesx5 =0
lerb Stratum			54.011	Column Totals: <u>110</u> (A) <u>420</u> (B)
Polystichum munitum	40	Y	FACU	Prevalence Index = B/A = <u>3.8</u>
·		·	·	Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
				2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
				4 - Morphological Adaptation1 (Provide supporting
				data in Remarks or on a separate sheet)
				5 - Wetland Non-Vascular Plants ¹
0				Problematic Hydrophytic Vegetation ¹ (Explain)
1				
Total Cover:	40	-		
Woody Vine Stratum				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
				Hydrophytic
		iotic Cruet	0	Vegetation Present? Yes NoX
Total Cover: % Bare Ground in Herb Stratum 60 %	Cover of B			

IL										Sampling Poir		
rofile Desc	ription: (Describe	to the dep	oth neede	ed to doc	ument tl	he indicat	or or con	nfirm the abs	sence of i	ndicators.)		
epth	Matrix			Re	dox Feat	ures						
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	- Textur	e		Remarks	
0-16	10 YR 4/3	100						SiL	<u> </u>			
0 10	10 111 1/0	100					·					
		· ·					·					
		· ·					·					
		· ·					·					
		<u> </u>										
ype: C=Co	oncentration, D=Dep	letion, RM	=Reduce	d Matrix, (CS=Cove	ered or Co	ated San	d Grains. ² L	ocation: I	PL=Pore Lini	ng, M=Matrix	κ.
-	ndicators: (Applic	able to all	LRRs, u					Indicators		plematic Hyd		
Histoso	. ,				Redox (S					m Muck (A10	,	
Histic E	pipedon (A2)			Stripped	d Matrix ((S6)			Re	d Parent Mat	erial (TF2)	
Black H	listic (A3)			Loamy I	Mucky M	lineral (F1) (except	MLRA 1)	Oth	ner (Explain i	n Remarks)	
Hydroge	en Sulfide (A4)			Loamy	Gleyed N	Aatrix (F2)					
Deplete	d Below Dark Surfa	ce (A11)		Deplete	d Matrix	(F3)						
	ark Surface (A12)					face (F6)		³ Indi	cators of l	hydrophytic v	egetation an	d
	Muck Mineral (S1)					Surface (F	7)			lrology must	-	
	gleyed Matrix (S4)					ions (F8)	,		-	sturbed or pro	-	
_	_ayer (if present):			Redex I	Depressi						biematie.	
	ayer (il present).											
/pe:												
epth (inche	s):						Ну	ydric Soil Pr	esent?	Y	es	No
DROLOGY												
DROLOGY	drology Indicators:										tors (2 or m	
DROLOGY /etland Hyd	ators (any one indic		ficient)							ondary Indica		
PROLOGY Setland Hyo imary Indic	ators (any one indic Water (A1)		ficient)			eaves (BS			Wa	ater-Stained L		
PROLOGY Setland Hyo imary Indic	ators (any one indic		ficient)			eaves (B9			Wa	ater-Stained L 4A and 4B)	eaves (B9) (
PROLOGY letland Hyo imary Indic Surface High W	ators (any one indic Water (A1)		ficient)	MLR		A and 4B			Wa	ater-Stained L	eaves (B9) (
PROLOGY /etland Hyd /imary Indic Surface High W. Saturati	ators (any one indic Water (A1) ater Table (A2)		icient)	MLR. Salt Cru	A 1, 2, 4 ist (B11)	A and 4B)		Wa	ater-Stained L 4A and 4B)	eaves (B9) (ns (B10)	(MLRA 1, 2
PROLOGY etland Hyd imary Indic Surface High W. Saturati Water M	ators (any one indic Water (A1) ater Table (A2) ion (A3)		icient)	MLR. Salt Cru Aquatic	A 1, 2, 4 Ist (B11) Inverteb	A and 4B	3)		Wa	ater-Stained L 4A and 4B) ainage Patter	eaves (B9) (ns (B10) ter Table (C2	(MLRA 1, 2 2)
PROLOGY etland Hyd imary Indic Surface High W Saturati Water M Sedime	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1)		icient)	MLRA Salt Cru Aquatic Hydroge	A 1, 2, 4 Ist (B11) Inverteb en Sulfide	A and 4B) prates (B13 le Odor (C	3) 1)	t I Roots (C3)	Wa Dra Dry Sat	ater-Stained L 4A and 4B) ainage Patter /-Season Wa	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I	(MLRA 1, 2 2)
PROLOGY etland Hyd imary Indic Surface High W. Saturati Water M Sedime Drift De	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3)		ricient)	MLRA Salt Cru Aquatic Hydroge Oxidize	A 1, 2, 4 Ist (B11) Inverteb en Sulfide d Rhizos	A and 4B) prates (B13 le Odor (C spheres alo	3) 1) ong Living		Wa Dra Dry Sat Ge	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2)	(MLRA 1, 2 2)
PROLOGY etland Hyd imary Indic Surface High W Saturati Water N Sedime Drift De Algal M	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2)		"icient) 	MLRA Salt Cru Aquatic Hydroge Oxidized Presend	A 1, 2, 4, Inst (B11) Inverteb en Sulfide d Rhizos ce of Rec	A and 4B) prates (B13 le Odor (C	3) 1) ong Living	Roots (C3)	Wa Dra Dra Dry Ge Sat	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3)	(MLRA 1, 2 2)
PROLOGY etland Hyd Surface High W. Saturati Saturati Sedime Drift De Algal M Iron De	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)		icient)	MLRA Salt Cru Aquatic Hydroge Oxidize Present	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red	A and 4B prates (B13 le Odor (C spheres ald duced Iron duction in F	3) 1) ong Living (C4) Plowed Sc	I Roots (C3) bils (C6)	Wa Dra Dra Dry Sat Ge Sha FA	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po allow Aquitan C-Neutral Te	ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5)	(MLRA 1, 2 2) magery (C
PROLOGY etland Hyd imary Indic Surface High W. Saturati Water N Sedime Drift De Algal M Iron De Surface	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6)	<u>ator is suff</u>		MLR Salt Cru Aquatic Hydroge Oxidize Presend Recent Stunted	A 1, 2, 4, ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B prates (B13 e Odor (C spheres ald duced Iron duction in F ssed Plants	3) 1) ong Living I (C4) Plowed Sc s (D1) (LF	I Roots (C3) bils (C6)	Wa Dra Dry Sat Ge Sha FA Ra	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF	(MLRA 1, 2 2) magery (C RR A)
DROLOGY fetland Hyd imary Indic Surface High W Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aerial	<u>ator is suff</u> Imagery (I		MLR Salt Cru Aquatic Hydroge Oxidize Presend Recent Stunted	A 1, 2, 4, ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B prates (B13 le Odor (C spheres ald duced Iron duction in F	3) 1) ong Living I (C4) Plowed Sc s (D1) (LF	I Roots (C3) bils (C6)	Wa Dra Dry Sat Ge Sha FA Ra	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po allow Aquitan C-Neutral Te	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF	(MLRA 1, 2 2) magery (C RR A)
rimary Indic Surface High W Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6) ion Visible on Aerial y Vegetated Concar	<u>ator is suff</u> Imagery (I		MLR Salt Cru Aquatic Hydroge Oxidize Presend Recent Stunted	A 1, 2, 4, ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B prates (B13 e Odor (C spheres ald duced Iron duction in F ssed Plants	3) 1) ong Living I (C4) Plowed Sc s (D1) (LF	I Roots (C3) bils (C6)	Wa Dra Dry Sat Ge Sha FA Ra	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF	(MLRA 1, 2 2) magery (C RR A)
DROLOGY fetland Hyc rimary Indic Surface High W. Saturati Saturati Water M. Sedime Drift De Algal M. Iron De Surface Inundat Sparsel feld Observir	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations:	<u>ator is suff</u> Imagery (I /e Surface	B7)	MLR. Salt Cru Aquatic Hydroge Oxidize Presend Recent Stunted Other (E	A 1, 2, 4, Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir	A and 4B prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living i (C4) Plowed Sc s (D1) (LF s)	I Roots (C3) bils (C6)	Wa Dra Dry Sat Ge Sha FA Ra	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF	(MLRA 1, 2 2) magery (C RR A)
PROLOGY vetland Hyd imary Indic Surface High W Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel eld Obsern urface Wate	ators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes	Imagery (I ve Surface	B7)	MLR. Salt Cru Aquatic Hydroge Oxidize Presene Recent Stunted Other (f	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir	A and 4B prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	I Roots (C3) bils (C6)	Wa Dra Dry Sat Ge Sha FA Ra	ater-Stained L 4A and 4B) ainage Patter /-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF	(MLRA 1, 2 2) magery (C RR A)
DROLOGY /etland Hyo /etland Hyo Surface High W Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel ield Obsern urface Wate /ater table F	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes Present? Yes	Imagery (I ve Surface	B7)	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A)	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY /etland Hyd /etland Hyd Surface High W Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat Sparsel eld Observert Vater table F aturation Pr	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes Present? Yes	Imagery (I ve Surface	B7)	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	I Roots (C3) bils (C6)	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY /etland Hyd /imary Indic Surface High W. Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat Sparsel // viface Water // ater table F aturation Pr ncludes cap	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A) Wetland H	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY fetland Hyc rimary Indic Surface High W Saturati Saturati Sedime Drift De Drift De Algal M Iron De Surface Inundat Sparsel feld Observ urface Watk faturation Pr hcludes cap cribe Reco	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes resent? Yes posits (B5) resent? Yes resent? Yes resent res resent res resent resent resent resent resent	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A) Wetland H	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY /etland Hyd /imary Indic Surface High W. Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat Sparsel // viface Water // ater table F aturation Pr ncludes cap	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes resent? Yes posits (B5) resent? Yes resent? Yes resent res resent res resent resent resent resent resent	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A) Wetland H	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY fetland Hyc rimary Indic Surface High W Saturati Saturati Sedime Drift De Drift De Algal M Iron De Surface Inundat Sparsel feld Observ urface Watk faturation Pr hcludes cap cribe Reco	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes resent? Yes posits (B5) resent? Yes resent? Yes resent res resent res resent resent resent resent resent	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A) Wetland H	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY fetland Hyc rimary Indic Surface High W Saturati Saturati Sedime Drift De Drift De Algal M Iron De Surface Inundat Sparsel feld Observ urface Watk faturation Pr hcludes cap cribe Reco	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes resent? Yes posits (B5) resent? Yes resent? Yes resent res resent res resent resent resent resent resent	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A) Wetland H	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY fetland Hyc rimary Indic Surface High W Saturati Saturati Sedime Drift De Drift De Algal M Iron De Surface Inundat Sparsel feld Observ urface Watk faturation Pr hcludes cap cribe Reco	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes resent? Yes posits (B5) resent? Yes resent? Yes resent res resent res resent resent resent resent resent	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	g Roots (C3) bils (C6) RR A) Wetland H	Wa Dra Dry Sai Ge Sha FA Ra Frc	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7	(MLRA 1, 2 2) magery (C RR A) 7)
PROLOGY fetland Hyc rimary Indic Surface High W. Saturati Sedime Drift De Algal M Iron De Surface Inundat Sparsel feld Observ urface Watk Vater table F aturation Pr aturation Pr acludes cap cribe Recom-	ators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aerial y Vegetated Concav vations: er Present? Yes resent? Yes resent? Yes posits (B5) resent? Yes resent? Yes resent res resent res resent resent resent resent resent	Imagery (I ve Surface	B7) (B8) No No	MLR. Salt Cru Aquatic Hydroge Oxidize Presenc Recent Stunted Other (E	A 1, 2, 4, Ist (B11) Inverteb en Sulfid d Rhizos ce of Rec Iron Red or Stres Explain ir (inches (inches (inches	A and 4B; prates (B13 le Odor (C spheres ald duced Iron duction in F ssed Plants n Remarks	3) 1) ong Living (C4) Plowed Sc s (D1) (LF s)	Roots (C3) bils (C6) R A) Wetland H	Wa	ater-Stained L 4A and 4B) ainage Patter -/-Season Wa turation Visib omorphic Po allow Aquitar C-Neutral Te ised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial I sition (D2) d (D3) st (D5) nds (D6) (LF mmocks (D7 Yes	(MLRA 1, 2 2) magery (C RR A) 7) No

Project/Site:	The Views			City/County: S	andy/Clack	kamas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Home	es					State: OR	Sampling P	oint:	9
Investigator(s):	K. Biafora			Section,	Township, I	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relie	f (concave,	convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forests	s and Coast (LRR A)	Lat:		45.387	704856	Long:	-122.2288304	Datum:	WGS 84
Soil Map Unit Name	e: Klickitat st	ony loam					NWI Classification:	none		
Are climatic / hydro	logic conditions on	the site typical for this	s time of y	/ear?	Yes	Х	No	(If no, explain	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly di	sturbed?	Are "N	ormal Circumstanc	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally probl	ematic?	(If nee	eded, explain any ar	nswers in Rema	rks.)	

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes _	x	No
Remarks:					

Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
30	Y	FAC	That Are OBL, FACW, or FAC: 4 (A)
	·		Total Number of Dominant Species Across All Strata: <u>4</u> (B)
: 30		·	Percent of Dominant Species That Are OBL, FACW, or FAC:(A/B)
			Prevalence Index Worksheet:
			Total % Cover of: Multiply by:
20	Y	FAC	OBL species x1 =0
			FACW species x2 =0
			FAC species x3 =0
		·	FACU species x4 =0
: 30	-		UPL species x5 =
_		54.0	Column Totals: 0 (A) 0 (B)
5	Y	FAC	Prevalence Index = B/A =
		·	Hydrophytic Vegetation Indicators:
			1 - Rapid Test for Hydrophytic Vegetation
			X 2 - Dominance Test is >50%
			3 - Prevalence Index is ≤3.0 ¹
			4 - Morphological Adaptation1 (Provide supporting
		. <u> </u>	data in Remarks or on a separate sheet)
			5 - Wetland Non-Vascular Plants ¹
			Problematic Hydrophytic Vegetation ¹ (Explain)
: 5	_		
			¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
: 0			Hydrophytic Vegetation
-	% Cover 30 30 10 20 30 5	% Cover Species? 30 Y Y Y	% Cover Species? Status? 30 Y FAC 10 Y FAC 110 Y FAC 120 Y FAC 120 Y FAC 120 Y Y 120 Y Y

										int:	
Profile De	escription: (Describe	to the dep	oth needed to doo	ument th	ne indicate	or or con	firm the abs	ence of	indicators.)		
Depth	Matrix		Re	dox Featu							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Textur	e		Remarks	
0-2	10 YR 3/2	100					CoGrLS				
2-10	10 YR 4/2	75	7.5 YR 3/4	15	С	М	CoGrLS				
			7.5 YR 5/6	5	C	М					
							· . <u> </u>				
¹ Type: C=	Concentration, D=Dep	bletion, RM	=Reduced Matrix,	CS=Cove	ered or Coa	ated Sand	d Grains. ² L	ocation:	PL=Pore Lin	ing, M=Matrix.	
Hydric So	oil Indicators: (Applic	able to all	LRRs, unless ot	nerwise r	noted.)		Indicator	s for Pro	blematic Hy	dric Soils ³ :	
Histo	osol (A1)		Sandy	Redox (S	5)			2 0	cm Muck (A1	0)	
Histic	c Epipedon (A2)		Strippe	d Matrix (S6)			Re	ed Parent Ma	iterial (TF2)	
Black	k Histic (A3)		Loamy	Mucky M	ineral (F1)	(except	MLRA 1)	Ot	her (Explain	in Remarks)	
	ogen Sulfide (A4)			-	latrix (F2)	-					
	eted Below Dark Surfa	ce (A11)		ed Matrix							
·	k Dark Surface (A12)	. /		Dark Surf			³ Indi	cators of	hydrophytic	vegetation and	
	y Muck Mineral (S1)				urface (F7	.)			drology must	-	
	ly gleyed Matrix (S4)			Depressio		,		-	sturbed or pr	-	
	e Layer (if present):								p.		
	• • • •										
Type: Depth (inc	shovel refusal -	cobble 0				ц.	dric Soil Pr		,	Yes X	No
• •	andy soils underlain by					,		countr			NO
Wetland H	GY Hydrology Indicators: dicators (any one indic		ïcient)					Sec	condary Indic	ators (2 or mor	e required)
Wetland H Primary In-	Hydrology Indicators: dicators (any one indic			Stained L	eaves (B9) (except					
Wetland H Primary In Surfa	Hydrology Indicators: dicators (any one indic ace Water (A1)		Water-		eaves (B9 A and 4B)) (except			ater-Stained	Leaves (B9) (
Wetland H Primary In Surfa X High	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2)		Water-	A 1, 2, 4	eaves (B9 A and 4B)) (except		W	ater-Stained 4A and 4B)	Leaves (B9) (
Wetland H Primary In Surfa X High Satu	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3)		Water- MLR Salt Cr	A 1, 2, 4 ust (B11)	A and 4B)			W	ater-Stained 4A and 4B) ainage Patte	Leaves (B9) (I rns (B10)	MLRA 1, 2,
Wetland H Primary In Surfa X High Satur Wate	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1)		Water- MLR Salt Cr Aquatio	A 1, 2, 4 ust (B11) : Inverteb	A and 4B) rates (B13)		W. Dr Dr	ater-Stained 4A and 4B) ainage Patte y-Season Wa	Leaves (B9) (I rns (B10) ater Table (C2	MLRA 1, 2,
Wetland F Primary In Surfa X High Satur Wate Sedir	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2)		Water- MLR Salt Cr Aquatic Hydrog	A 1, 2, 4 ust (B11) Invertebr en Sulfide	A and 4B) rates (B13 e Odor (C1)		W Dr Dr Sa	ater-Stained 4A and 4B) ainage Patte y-Season Wa ituration Visit	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In	MLRA 1, 2,
Wetland H Primary In Surfa X High Satur Wate Sedir Drift	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3)		Water- MLR Salt Cr Aquatic Hydrog Oxidize	A 1, 2, 44 ust (B11) Invertebren Sulfide d Rhizos	A and 4B) rates (B13 e Odor (C1 pheres alo)) ng Living	Roots (C3)	W Dr Dr Sa Ge	ater-Stained 4A and 4B) ainage Patte y-Season Wa aturation Visit comorphic Po	Leaves (B9) (rns (B10) ater Table (C2 ble on Aerial In osition (D2)	MLRA 1, 2,
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4)		Water- MLR Salt Cr Aquatic Hydrog Oxidize Presen	A 1, 2, 4 ust (B11) Invertebre en Sulfide d Rhizos ce of Red	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron) I) ng Living (C4)	Roots (C3)		ater-Stained 4A and 4B) ainage Patte y-Season Wa aturation Visit acomorphic Po- pallow Aquita	Leaves (B9) (rns (B10) ater Table (C2 ble on Aerial In bsition (D2) rd (D3)	MLRA 1, 2,
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5)		Water- MLR Salt Cr Aquatic Hydrog Oxidize Presen Recent	A 1, 2, 4 ust (B11) invertebr en Sulfide id Rhizos ce of Red Iron Red	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P) ng Living (C4) 'lowed Sc	Roots (C3) vils (C6)	W. Dr Dr Sa Ge St FA	ater-Stained 4A and 4B) ainage Patte y-Season Wa aturation Visit comorphic Po pallow Aquita AC-Neutral To	Leaves (B9) (rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5)	MLRA 1, 2,) nagery (C9)
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I Surfa	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6)	ator is suff	Water- MLR Salt Cr Aquatio Hydrog Oxidize Presen Recent Stunted	A 1, 2, 4 ust (B11) invertebi en Sulfide ed Rhizos ce of Red Iron Red d or Stress	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6)	W. Dr Sa Sa Sa FA Ra	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (I rns (B10) ater Table (C2 ole on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I Surfa Inunc	Hydrology Indicators: dicators (any one indic acc Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial	ator is suff	Water- MLR Salt Cr Aquatio Hydrog Oxidize Presen Recent Stunter B7) Other (A 1, 2, 4 ust (B11) invertebi en Sulfide ed Rhizos ce of Red Iron Red d or Stress	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6)	W. Dr Sa Sa Sa FA Ra	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Vate Sedir Drift Algal Iron I Surfa Spar:	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar	ator is suff	Water- MLR Salt Cr Aquatio Hydrog Oxidize Presen Recent Stunter B7) Other (A 1, 2, 4 ust (B11) invertebi en Sulfide ed Rhizos ce of Red Iron Red d or Stress	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6)	W. Dr Sa Sa Sa FA Ra	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (I rns (B10) ater Table (C2 ole on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Orift Algal Iron I Surfa Inunc Spara Field Obs	Hydrology Indicators: dicators (any one indic acc Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) acce Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations:	ator is suff Imagery (ve Surface	Water- MLR Salt Cr Aquatio Hydrog Oxidize Presen Recent Stunted B7) Other ((B8)	A 1, 2, 4/ ust (B11) : Invertebi en Sulfide d Rhizosp ce of Red Iron Red d or Stress Explain in	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6)	W. Dr Sa Sa Sa FA Ra	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (I rns (B10) ater Table (C2 ole on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I Surfa Inunc Spars Field Obs	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar rervations: /ater Present? Yes	Imagery (ve Surface	Water- MLR Salt Cr Aquatic Hydrog Oxidize Presen Recent Stunted B7) Other ((B8) No X Dept	A 1, 2, 4J ust (B11) : Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stres: Explain in	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6)	W. Dr Sa Sa Sa FA Ra	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (I rns (B10) ater Table (C2 ole on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I Surfa Inunc Spars Field Obs	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: /ater Present? Yes	Imagery (ve Surface	Water- MLR Salt Cr Aquation Hydrog Oxidize Presen Recent Stunted B7) Other (B8)	A 1, 2, 4/ ust (B11) : Invertebi en Sulfide d Rhizosp ce of Red Iron Red d or Stress Explain in	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks Remarks) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6) R A)	W Dr Sa Ge St FA Ra Fr	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (I rns (B10) ater Table (C2 ole on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR	MLRA 1, 2,) nagery (C9) R A)
Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I Surfa Surfa Surfa Surfa Surfa Surfa Surfa Surface Wate Surface Surface W Water tabl Saturation	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: /ater Present? Yes	Imagery (ve Surface	Water- MLR Salt Cr Aquation Hydrog Oxidize Presen Recent Stunted B7) Other (B8)	A 1, 2, 4J ust (B11) Invertebre en Sulfide d Rhizos ce of Red Iron Red d or Stres: Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks Remarks) ng Living (C4) lowed Sc (D1) (LR	Roots (C3) vils (C6) R A)	W Dr Sa Ge St FA Ra Fr	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita C-Neutral To aised Ant Mo oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Primary In Surfa X High Satur Vate Sedir Drift Algal Iron I Surfa Surfa Surface W Water tabl Saturation (includes of	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar iervations: /ater Present? Yes Present? Yes	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) vils (C6) :R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita C-Neutral To aised Ant Mo oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Drift Algal Iron I Surfa Inunc Spars Field Obs Surface W Water tabl Saturation Gincludes cescribe Re	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: /ater Present? Yes present? Yes capillary fringe)	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) vils (C6) :R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita C-Neutral To aised Ant Mo oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Sedir Drift Algal Iron I Surfa Inunc Spars Field Obs Surface W Water tabl Saturation (includes comparison)	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: /ater Present? Yes present? Yes capillary fringe)	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) vils (C6) :R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita C-Neutral To aised Ant Mo oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Drift Algal Iron I Surfa Inunc Spars Field Obs Surface W Water tabl Saturation Gincludes cescribe Re	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: /ater Present? Yes present? Yes capillary fringe)	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) vils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita KC-Neutral To aised Ant Mo- oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Drift Algal Iron I Surfa Inunc Spars Field Obs Surface W Water tabl Saturation Gincludes cescribe Re	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: /ater Present? Yes present? Yes capillary fringe)	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) vils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita KC-Neutral To aised Ant Mo- oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Wate Drift Algal Iron I Surfa Inunc Spars Field Obs Surface W Water tabl Saturation Gincludes cescribe Re	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: /ater Present? Yes present? Yes capillary fringe)	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) vils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visil comorphic Po- nallow Aquita KC-Neutral To aised Ant Mo- oost-Heave He	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) nagery (C9) R A)
Wetland H Primary In Surfa X High Satur Vate Sedir Drift Algal Iron I Surfa Inunc Spar: Field Obs Surface W Water tabl Saturation (includes c eescribe Re emarks:	Hydrology Indicators: dicators (any one indic ace Water (A1) Water Table (A2) ration (A3) er Marks (B1) ment Deposits (B2) Deposits (B3) I Mat or Crust (B4) Deposits (B5) ace Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: /ater Present? Yes present? Yes capillary fringe)	Imagery (ve Surface	Water- MLR	A 1, 2, 4J ust (B11) Invertebi en Sulfide d Rhizosj ce of Red Iron Red d or Stress Explain in h (inches) h (inches)	A and 4B) rates (B13 e Odor (C1 pheres alo luced Iron uction in P sed Plants Remarks) ng Living (C4) lowed Sc (D1) (LR)	Roots (C3) hils (C6) (R A) Wetland H	W Dr Sa Ge Sh FA Fr ydrology	ater-Stained 4A and 4B) ainage Patte y-Season Wa turation Visit ecomorphic Po- nallow Aquita AC-Neutral To- aised Ant Mo- ost-Heave Hill y Present?	Leaves (B9) (I rns (B10) ater Table (C2 ble on Aerial In osition (D2) rd (D3) est (D5) unds (D6) (LR ummocks (D7)	MLRA 1, 2,) hagery (C9) R A)

Project/Site:	The Views			City/County: Sa	andy/Clack	amas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Hom	ies					State: OR	Sampling P	oint:	10
Investigator(s):	K. Biafora			Section, T	ownship, I	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relief	(concave,	convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forest	ts and Coast (LRR A)	Lat:		45.387	703908	Long:	-122.2291427	Datum:	WGS 84
Soil Map Unit Nam	e: Klickitat s	tony loam					NWI Classification:	none		
Are climatic / hydro	logic conditions of	n the site typical for this	s time of y	/ear?	Yes	х	No	(If no, explain	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly dis	sturbed?	Are "N	ormal Circumstanc	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally proble	ematic?	(If nee	eded, explain any ar	nswers in Rema	rks.)	

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes	x	No
Remarks:					

Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
60	Y	FAC	That Are OBL, FACW, or FAC: 2 (A)
			Total Number of Dominant Species Across All Strata: <u>2</u> (B)
60	- <u></u>		Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
			Prevalence Index Worksheet:
40	Y	FAC	Total % Cover of: Multiply by:
			OBL species x1 =0
			FACW species x2 = 0
		. <u> </u>	FAC species x3 = 0
		<u> </u>	FACU species x4 =0
40	-		UPL species x5 =0
			Column Totals: 0 (A) 0 (B)
		·	Prevalence Index = B/A =
		·	Hydrophytic Vegetation Indicators:
			1 - Rapid Test for Hydrophytic Vegetation
			X 2 - Dominance Test is >50%
	· ·	- <u> </u>	3 - Prevalence Index is ≤3.0 ¹
			4 - Morphological Adaptation1 (Provide supporting
	· ·	- <u> </u>	data in Remarks or on a separate sheet)
			5 - Wetland Non-Vascular Plants ¹
			Problematic Hydrophytic Vegetation ¹ (Explain)
0	-		
			¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	·	·	
0	·	·	Hydrophytic Vegetation
	iotic Crust	0	
	% Cover 60 40 40 40 40 0	% Cover Species? 60 Y 40 Y 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td< td=""><td>% Cover Species? Status? 60 Y FAC 40 Y FAC 40 Y FAC 40 Y FAC 40 Image: Status of the status of</td></td<>	% Cover Species? Status? 60 Y FAC 40 Y FAC 40 Y FAC 40 Y FAC 40 Image: Status of the status of

rofile De	scription: (Describe	to the dep	oth needed to do	ocument th	he indicate	or or cor	nfirm the absence of	of indicators.)	
epth	Matrix		R	edox Feat	ures				
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-6	10 YR 3/2	100					CoGrLS		
6-12	10 YR 5/2	80	7.5 YR 4/6	20	C	М	CoGrLS		
0 12	10 11(0/2		1.0 110 110				000120		
		· ·			·				
		· ·			·				
		· ·							
	·	· ·			·				
	<u></u>	· ·			·				
Type: C=	Concentration D=Der	letion RM	=Reduced Matrix		ared or Co	ated San	d Grains ² Location	n: PL=Pore Lining, M=Matrix.	
ypc. 0-				, 00-0070				i. TE-TOTO Elining, M-Matinx.	
ydric So	il Indicators: (Applic	able to all	LRRs, unless o	therwise r	noted.)		Indicators for P	roblematic Hydric Soils ³ :	
Histo	sol (A1)		Sandy	/ Redox (S	5)			2 cm Muck (A10)	
Histic	: Epipedon (A2)		Stripp	ed Matrix ((S6)			Red Parent Material (TF2)	
	Histic (A3)		Loam	y Mucky M	ineral (F1)	(except	MLRA 1)	Other (Explain in Remarks)	
	ogen Sulfide (A4)			y Gleyed N	. ,	• •	·	,	
	eted Below Dark Surfa	ce (A11)		ted Matrix	. ,				
	Dark Surface (A12)			k Dark Sur			³ Indicators	of hydrophytic vegetation and	
	y Muck Mineral (S1)			ted Dark S	• • •	7)		hydrology must be present,	
_	y gleyed Matrix (S4)		<u> </u>	k Depressi	•	,		disturbed or problematic.	
	e Layer (if present):			C Depressi	0113 (1 0)		uness	disturbed of problematic.	
/pe:	shovel refusal - hes): 1							X X	Na
epth (incl	iles).	2					ydric Soil Present?	Yes X	No
		cobble.							
	Y								
etland H	iY lydrology Indicators:		ïcient)				s	econdary Indicators (2 or more	require
etland H rimary Ind	Y Iydrology Indicators: dicators (any one indic			-Stained I	eaves (B9) (excep)		econdary Indicators (2 or more Water-Stained Leaves (B9) (M	
etland H imary Inc Surfa	Y Iydrology Indicators: dicators (any one indic ice Water (A1)		Water	Stained L	•	· · ·		Water-Stained Leaves (B9) (M	
rimary Ind Surfa (High	iY Iydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2)		Water ML	RA 1, 2, 4	A and 4B)	· · ·	t	Water-Stained Leaves (B9) (MI 4A and 4B)	
rimary Inc Surfa High Satur	y ydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3)		Water ML Salt C	RA 1, 2, 4 crust (B11)	A and 4B)		t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10)	
rimary Ind Surfa (High Satur Wate	y ydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1)		Water ML Salt C	RA 1, 2, 4 crust (B11) ic Inverteb	A and 4B) rates (B13	s)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)	LRA 1, 2
rimary Ind Surfa (Satur Satur Sedir	y ydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2)		Water ML Salt C Aquat	RA 1, 2, 4 Frust (B11) ic Inverteb gen Sulfide	A and 4B) rates (B13 e Odor (C1	;) 1)	t	Water-Stained Leaves (B9) (M 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima	LRA 1, 2
etland H imary Ind Surfa High Satur Wate Sedir Drift I	Y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3)		Water ML Salt C Aquat Hydro Oxidiz	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide zed Rhizos	A and 4B) rates (B13 e Odor (C ² pheres alo	i) 1) ong Living	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2)	LRA 1, 2
etland H imary Ind Surfa High Satur Satur Wate Sedir Drift I Algal	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) irr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4)		Water ML Salt C Aquat Hydro Oxidiz Prese	RA 1, 2, 4, Frust (B11) ic Inverteb gen Sulfide red Rhizos nce of Rec	A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron	i) 1) ong Living (C4)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3)	LRA 1, 2
/etland H Surfa Satur Satur Wate Sedir Drift I Algal Iron [y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)		Water ML Salt C Aquat Hydro Oxidiz Prese Recer	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide red Rhizos nce of Rec nt Iron Red	A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F	i) 1) ong Living (C4) Plowed Se	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)	LRA 1, 2
retland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa	y ydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6)	ator is suff	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide zed Rhizos nce of Rec nt Iron Red ed or Stres	A and 4B) rates (B13 e Odor (C ¹ pheres alo duced Iron luction in F sed Plants	i) 1) (C4) Plowed So 5 (D1) (LF	t g Roots (C3) oils (C6) RR A)	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR	LRA 1, 2
retland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Inunc	y ydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) lation Visible on Aerial	ator is suff	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide red Rhizos nce of Rec nt Iron Red	A and 4B) rates (B13 e Odor (C ¹ pheres alo duced Iron luction in F sed Plants	i) 1) (C4) Plowed So 5 (D1) (LF	t g Roots (C3) oils (C6) RR A)	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)	LRA 1, 2
/etland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Inunc	y ydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6)	ator is suff	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide zed Rhizos nce of Rec nt Iron Red ed or Stres	A and 4B) rates (B13 e Odor (C ¹ pheres alo duced Iron luction in F sed Plants	i) 1) (C4) Plowed So 5 (D1) (LF	t g Roots (C3) oils (C6) RR A)	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR	LRA 1, 2
/etland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Inunc Spars ield Obset	y ydrology Indicators: dicators (any one indic icce Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) icce Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations:	ator is suff Imagery (I /e Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8)	RA 1, 2, 4 <i>J</i> crust (B11) ic Inverteb igen Sulfide zed Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir	A and 4B) rates (B13 e Odor (C ⁴ pheres alo duced Iron luction in P sed Plants n Remarks	i) 1) (C4) Plowed So 5 (D1) (LF	t g Roots (C3) oils (C6) RR A)	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR	LRA 1, 2
Vetland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Surfa Surfa Surfa	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) ir Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) lation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes	ator is suff Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8)	RA 1, 2, 4 <i>J</i> rust (B11) ic Inverteb gen Sulfide zed Rhizos nce of Rec at Iron Red ed or Stres (Explain ir	A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in P sed Plants n Remarks	i) 1) (C4) Plowed So 5 (D1) (LF	t g Roots (C3) oils (C6) RR A)	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR	LRA 1, 2
Vetland H rimary Ind Surfa Surfa High Satur Vate Sedir Drift I Algal Iron I Surfa Inunc Spars ield Obss urface W /ater tabl	Y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) irr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes e Present? Yes	Imagery (I re Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8)	RA 1, 2, 4/ crust (B11) ic Inverteb gen Sulfide zed Rhizos nce of Rec at Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants n Remarks):	i) 1) (C4) Plowed So 5 (D1) (LF	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	A)
/etland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Surfa ield Obss urface W /ater table aturation	Y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) irr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes e Present? Yes	Imagery (I re Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8)	RA 1, 2, 4 <i>J</i> rust (B11) ic Inverteb gen Sulfide zed Rhizos nce of Rec at Iron Red ed or Stres (Explain ir	A and 4B) rates (B13 e Odor (C ² pheres alo duced Iron luction in F sed Plants n Remarks):	i) 1) (C4) Plowed So 5 (D1) (LF	t g Roots (C3) oils (C6) RR A)	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	A)
rimary Ind rimary Ind Surfa High Satur Wate Orift I Drift I Algal Iron I Surfa Inunc Spars ield Obse Vater table aturation ncludes c	Y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) rr Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concar ervations: ater Present? Yes Present? Yes	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	A)
Vetland H rimary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Inunc Spars ield Obse vaturation nccludes c ccribe Rec	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes Present? Yes rational for the formation of the formation present formation of the formation of	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	A)
Primary Ind Surfa High Satur Wate Sedir Drift I Algal Iron I Surfa Spars Sield Obse Surface W Vater table Saturation includes c	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes Present? Yes rational for the formation of the formation present formation of the formation of	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	LRA 1, 2 agery (CS A)
Vetland H rimary Ind Surfa Surfa Satur Satur Sedir Sedir Drift I Algal Iron I Surfa Inunc Spars ield Obse vaturation ncludes c scribe Ree	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes Present? Yes rational for the formation of the formation present formation of the formation of	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	A)
Vetland H Primary Ind Surfa Surfa Satur Satur Sedir Sedir Drift I Algal Iron I Surfa Inunc Spars ield Obse Saturation includes c Scribe Ree	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes Present? Yes rational for the formation of the formation present formation of the formation of	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	LRA 1, 2 agery (CS A)
Vetland H rimary Ind Surfa Surfa Satur Satur Sedir Sedir Drift I Algal Iron I Surfa Inunc Spars ield Obse vaturation ncludes c scribe Ree	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes Present? Yes rational for the formation of th	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	LRA 1, 2 agery (CS A)
Vetland H rimary Ind Surfa Satur Satur Sedir Sedir Sedir Site Algal Iron I Surfa Inunc Spars ield Obse vater table aturation ncludes c scribe Ree marks:	y lydrology Indicators: dicators (any one indic ice Water (A1) Water Table (A2) ration (A3) r Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ice Soil Cracks (B6) dation Visible on Aerial sely Vegetated Concav ervations: ater Present? Yes Present? Yes rational for the formation of th	Imagery (I ve Surface	Water ML Salt C Aquat Hydro Oxidiz Prese Recer Stunte B7) Other (B8) Dep No X Dep No Dep	RA 1, 2, 4, crust (B11) ic Inverteb gen Sulfide ced Rhizos nce of Rec nt Iron Red ed or Stres (Explain ir oth (inches oth (inches	A and 4B) rates (B13 e Odor (C ⁻ pheres alo duced Iron luction in F sed Plants n Remarks):	i) i) ing Living (C4) ilowed So (D1) (LF)	t	Water-Stained Leaves (B9) (Mi 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Ima Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR Frost-Heave Hummocks (D7)	A)

Project/Site: The Views			ony, oounry.	Sandy/Cla	Skamao		_ 00000	oling Dat		1/23/2020
Applicant/Owner: Even Better Homes					Stat	e: OR	Samp	oling Poi	int:	1.
nvestigator(s): K. Biafora			Section	n, Township,	Range: S19	, T2S, R5E	_			
andform (hillslope, terrace, etc.):	vine				e, convex, non				lope (%)	2-4%
Subregion (LRR): Northwest Forests and (Coast (LRR A)	Lat:	-	45.38	3707194 Loi	ng:	-122.229	91584	Datum	: WGS 84
Soil Map Unit Name: Klickitat stony loa	am					Classification:				
Are climatic / hydrologic conditions on the si	te typical for th	is time of y	/ear?	Yes		No		xplain in	Remark	s)
Are Vegetation , Soil , or	Hydrology	-	significantly	disturbed?		al Circumstand				
Are Vegetation , Soil , or Are Vegetation , Soil , or	Hydrology		naturally pro	oblematic?	(If needed,	explain any a				
SUMMARY OF FINDINGS – Attach						sects, impo	ortant fe	atures	s, etc.	
	sNo		la tha Si	ampled Area	_					
lydric Soil Present? Yes	s <u>No</u>	Х		a Wetland?	a Ye	es	No	Х		
Vetland Hydrology Present? Yes	s <u>No</u>	Х								
Remarks:										
/EGETATION										
		Absolute % Cover	Dominant Species?	Indicator Status?		Test workshe				
ree Stratum (Use scientific names.)	-					ominant Spec _, FACW, or F				
. <u>Thuja plicata</u>		70	Y	FAC				1		_(A)
Pseudotsuga menziesii		30	Y	FACU		r of Dominant				
·					Species Acro	iss All Strata.		3		_(B)
·	·					ominant Speci				
	Total Cover:	100			That Are OBI	_, FACW, or F	AC:	33	%	_(A/B)
brub Stratum					Dravalanca	nday Warkak				
Shrub Stratum						ndex Worksh	leet:	Multin	h h	
	<u> </u>			·	OBL species	Cover of:			ly by:	_
					•	es		0		_
	<u> </u>	<u> </u>				75			5	-
·			-		FACU specie			22		_
·	Total Cover:	0		·						_
lerb Stratum		<u> </u>			Column Tota				5	(B)
. Polystichum munitum		20	Y	FACU		Index = B/A =	_ ` ` /	3.4		_(0)
. Oxalis oregana		5	·	FACU	1 Tevalence	maex birt		0.4		
. Blechnum spicant		5		FAC	Hydrophytic	Vegetation I	ndicators	:		
						Rapid Test for			etation	
						Dominance Te		-	otation	
						Prevalence Inc				
						Vorphological			vide sup	orting
·				·		a in Remarks of				9
				·		Netland Non-				
D				·		blematic Hydro			n ¹ (Expla	in)
1.				·	10				(,
	Total Cover:	30		·						
Woody Vine Stratum						hydric soil an nless disturbe				
					Hydrophytic					
	Total Cover:				Vegetation					
% Bare Ground in Herb Stratur	n <u>70</u> %C	Cover of Bi	otic Crust	0	Present?		Yes		No	X
emarks:										

DIL			Sampling Point:
Profile Description: (Describe to the de	pth needed to document the indicator o	r confirm the absence o	f indicators.)
Depth Matrix	Redox Features		
nches) Color (moist) %	Color (moist) % Type ¹ L	.oc ² Texture	Remarks
0-10 10 YR 3/3 100		SiL	
Type: C=Concentration, D=Depletion, R	A=Reduced Matrix, CS=Covered or Coated	Sand Grains. ² Location	: PL=Pore Lining, M=Matrix.
hadnia Onil Indiantana (Annliantanta		la dia stara fan D	
ydric Soil Indicators: (Applicable to a			roblematic Hydric Soils ³ :
Histosol (A1)	Sandy Redox (S5)		2 cm Muck (A10)
Histic Epipedon (A2)	Stripped Matrix (S6)		Red Parent Material (TF2)
Black Histic (A3)	Loamy Mucky Mineral (F1) (ex	CEPT MLRA 1)	Other (Explain in Remarks)
Hydrogen Sulfide (A4)	Loamy Gleyed Matrix (F2)		
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)	<u>^</u>	
Thick Dark Surface (A12)	Redox Dark Surface (F6)		of hydrophytic vegetation and
Sandy Muck Mineral (S1)	Depleted Dark Surface (F7)	wetland h	ydrology must be present,
Sandy gleyed Matrix (S4)	Redox Depressions (F8)	unless	disturbed or problematic.
estrictive Layer (if present):			
ype: shovel refusal- tree roots			
epth (inches): 10		Hydric Soil Present?	Yes No
laiks.			
nurks.			
нинку.			
DROLOGY			
DROLOGY Vetland Hydrology Indicators:	fficient)	Si	econdary Indicators (2 or more required
DROLOGY Vetland Hydrology Indicators: rimary Indicators (any one indicator is su	fficient) Water-Stained Leaves (B9) (e)		
DROLOGY /etland Hydrology Indicators: rimary Indicators (any one indicator is su Surface Water (A1)	Water-Stained Leaves (B9) (ex		Water-Stained Leaves (B9) (MLRA 1, 2
DROLOGY /etland Hydrology Indicators: rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B9) (example 1, 2, 4A and 4B)	ccept V	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B)
DROLOGY /etland Hydrology Indicators: rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11)	ccept \	Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10)
DROLOGY /etland Hydrology Indicators: rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B)	ccept \ [[Water-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)	ccept \	Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I	.iving Roots (C3)	Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2)
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3)
DROLOGY Vetland Hydrology Indicators: Trimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	Water-Stained Leaves (B9) (example MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
DROLOGY Vetland Hydrology Indicators: rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D'		Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
DROLOGY Vetland Hydrology Indicators: Irimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks)		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks)		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
DROLOGY Vetland Hydrology Indicators: Primary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks)		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
DROLOGY Vetland Hydrology Indicators: 'rimary Indicators (any one indicator is sure indicator is sure indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Sparsely Vegetated Concave Surface 'ield Observations: Surface Water Present?	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
DROLOGY Vetland Hydrology Indicators: 'rimary Indicators (any one indicator is su	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D7) Other (Explain in Remarks) e (B8) No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: 'rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Sparsely Vegetated Concave Surface 'ield Observations: Vater table Present? Yes 'aturation Present? Yes	Water-Stained Leaves (B9) (ex MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: 'rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Sparsely Vegetated Concave Surface Sield Observations: Surface Water Present? Yes Saturation Present? Yes mincludes capillary fringe)	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches): No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: 'rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Sparsely Vegetated Concave Surface Sield Observations: Surface Water Present? Yes Saturation Present? Yes mincludes capillary fringe)	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D7) Other (Explain in Remarks) e (B8) No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: 'rimary Indicators (any one indicator is su Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Sparsely Vegetated Concave Surface Sield Observations: Surface Water Present? Yes Saturation Present? Yes mincludes capillary fringe)	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches): No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches): No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches): No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches): No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
DROLOGY Vetland Hydrology Indicators: rrimary Indicators (any one indicator is su	Water-Stained Leaves (B9) (ex. MLRA 1, 2, 4A and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along I Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Stunted or Stressed Plants (D' (B7) Other (Explain in Remarks) e (B8) No X Depth (inches): No X Depth (inches):		Vater-Stained Leaves (B9) (MLRA 1, 2 4A and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (CS Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	The Views			City/County: Sandy/	Clackamas		Sampling D	Date:	1/23/2020
Applicant/Owner:	Even Better Homes	6				State: OR	Sampling F	oint:	12
Investigator(s):	K. Biafora			Section, Towns	hip, Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relief (con	cave, convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forests	and Coast (LRR A)	Lat:	4	5.38716036	Long:	-122.2293741	Datum:	WGS 84
Soil Map Unit Nam	e: Klickitat stor	ny loam				NWI Classificatio	on: none		
Are climatic / hydro	logic conditions on t	the site typical for thi	is time of y	ear? Y	es <u>X</u>	No	(If no, explain	in Remarks)
Are Vegetation Are Vegetation	, Soil , Soil	, or Hydrology , or Hydrology		significantly disturbe naturally problemati		lormal Circumsta eded, explain any	nces" Present? answers in Rema		No

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	x x x	Is the Sampled Area within a Wetland?	Yes	No	<u>x</u>
Remarks:							

Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
30	·	FAC	That Are OBL, FACW, or FAC: 2 (A)
			Total Number of Dominant
			Species Across All Strata: 4 (B)
			Percent of Dominant Species
30			That Are OBL, FACW, or FAC: 50% (A/B)
			Prevalence Index Worksheet:
20	Y	FAC	Total % Cover of: Multiply by:
			OBL species x1 =0
			FACW species x2 =0
			FAC species 50 x3 = 150
			FACU species <u>66</u> x4 = <u>264</u>
20			UPL species x5 =0
			Column Totals: 116 (A) 414 (B)
50	Y	FACU	Prevalence Index = B/A = 3.6
1		FACU	
15	Y	FACU	Hydrophytic Vegetation Indicators:
			1 - Rapid Test for Hydrophytic Vegetation
			2 - Dominance Test is >50%
			3 - Prevalence Index is ≤3.0 ¹
			4 - Morphological Adaptation1 (Provide supporting
			data in Remarks or on a separate sheet)
			5 - Wetland Non-Vascular Plants ¹
			Problematic Hydrophytic Vegetation ¹ (Explain)
66	•		
			¹ Indicators of hydric soil and wetland hydrology must
			be present, unless disturbed or problematic.
0		·	Hydrophytic Vegetation
	-	•	-
Cover of B	iotic Crust	0	Present? Yes No X
	% Cover 30 30 20 50 1 15 66	% Cover Species? 30 Y 30 Y	% Cover Species? Status? 30 Y FAC 30 Y FACU 15 Y FACU 30 Y FACU 30 Y FACU 30 Y FACU 15 Y FACU 30 Y

L								Sampling P			
ofile Description: (Describe to	the depth nee	ded to docur	ment the	indicato	or or con	firm the abs	sence of	indicators	.)		
epth Matrix		Redo	x Featur	res							
ches) Color (moist)	% Color	r (moist)	%	Type ¹	Loc ²	Textur	e		Rema	arks	
0-16 10 YR 3/3	100	<u> </u>				SiL					
	100	·				OIL					
ype: C=Concentration, D=Deplet	ion, RM=Reduc	ed Matrix, CS	S=Cover	ed or Coa	ted Sanc	d Grains. ² L	ocation:	PL=Pore L	ining, M=M	atrix.	
dric Soil Indicators: (Applicab	le to all LRRs,	unless other	rwise no	oted.)		Indicator	s for Pro	blematic H	ydric Soils	s ³ :	
Histosol (A1)		Sandy Re		-				cm Muck (A	-		
Histic Epipedon (A2)		Stripped N						ed Parent M	,	2)	
		Loamy Mi		'	(ovcont l			ther (Explain		,	
Black Histic (A3)				• • •	(evcehr I	m = (N + 1)	0	alei (Exhigii			
_ Hydrogen Sulfide (A4)	<u> </u>	Loamy GI	-								
_ Depleted Below Dark Surface	(A11)	Depleted									
Thick Dark Surface (A12)		Redox Da	ark Surfa	ice (F6)				f hydrophytic	-		
Sandy Muck Mineral (S1)		Depleted	Dark Su	rface (F7)	W	etland hy	/drology mu:	st be prese	nt,	
Sandy gleyed Matrix (S4)		Redox De	pressior	ns (F8)			unless d	isturbed or p	problematic		
estrictive Layer (if present):											
pe:											
epth (inches):					ни	dric Soil Pr	acont?		Yes		lo
arks:											
ROLOGY											
ROLOGY etland Hydrology Indicators:											
	or is sufficient)						Se	condary Indi	cators (2 o	r more r	equire
etland Hydrology Indicators: imary Indicators (any one indicato	or is sufficient)	Water-Sta	ained Lea	aves (B9)	(except						
etland Hydrology Indicators: imary Indicators (any one indicato Surface Water (A1)	or is sufficient)	Water-Sta			(except			ater-Staine	d Leaves (E		
etland Hydrology Indicators: imary Indicators (any one indicato _ Surface Water (A1) _ High Water Table (A2)	or is sufficient)	MLRA	1, 2, 4A	aves (B9) and 4B)	(except		W	ater-Staine 4A and 4E	d Leaves (E B)	39) (MLF	
etland Hydrology Indicators: imary Indicators (any one indicato Surface Water (A1) High Water Table (A2) Saturation (A3)	or is sufficient)	MLRA Salt Crust	1, 2, 4A t (B11)	and 4B)			W	ater-Stained 4A and 4E rainage Patt	d Leaves (E 3) erns (B10)	39) (MLF	
etland Hydrology Indicators: imary Indicators (any one indicato Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	or is sufficient) 	MLRA Salt Crust Aquatic In	1, 2, 4A t (B11) ivertebra	and 4B) ates (B13))		W	ater-Stained 4A and 4E rainage Patt ry-Season V	d Leaves (E 3) erns (B10) Vater Table	39) (MLF e (C2)	RA 1, 2
etland Hydrology Indicators: imary Indicators (any one indicato Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	or is sufficient) 	MLRA Salt Crust Aquatic In Hydrogen	1, 2, 4A t (B11) ivertebra Sulfide	and 4B) ates (B13) Odor (C1)		W D S	/ater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis	d Leaves (E 3) erns (B10) Vater Table sible on Aer	39) (MLF e (C2) rial Imag	RA 1, 2
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	or is sufficient) 	MLRA Salt Crust Aquatic In Hydrogen Oxidized	1, 2, 4A t (B11) nvertebra Sulfide Rhizospl	and 4B) ates (B13) Odor (C1 heres alo)) ng Living	Roots (C3)	W D D S G	Vater-Stainer 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F	d Leaves (E B) verns (B10) Vater Table sible on Aer Position (D2	39) (MLF e (C2) rial Imag	RA 1, 2
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	or is sufficient) 	MLRA Salt Crust Aquatic In Hydrogen	1, 2, 4A t (B11) nvertebra Sulfide Rhizospl	and 4B) ates (B13) Odor (C1 heres alo)) ng Living		W D D S G	/ater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis	d Leaves (E B) verns (B10) Vater Table sible on Aer Position (D2	39) (MLF e (C2) rial Imag	RA 1, 2
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	or is sufficient) 	MLRA Salt Crust Aquatic In Hydrogen Oxidized	1, 2, 4A t (B11) overtebra Sulfide Rhizospl of Redu	and 4B) ates (B13) Odor (C1 heres alon iced Iron)) ng Living (C4)	Roots (C3)	W D D S S	Vater-Stainer 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F	d Leaves (E B) vater Table sible on Aer Position (D2 ard (D3)	39) (MLF e (C2) rial Imag	RA 1, 2
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	or is sufficient) 	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence	1, 2, 4A t (B11) overtebra Sulfide Rhizospl of Redu	and 4B) ates (B13 Odor (C1 heres alon iced Iron ction in P) ng Living (C4) lowed So	Roots (C3) ils (C6)	W D D S G S F	Vater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit	d Leaves (E s) Vater Table sible on Aer Position (D2 ard (D3) Test (D5)	39) (MLF e (C2) rial Imag 2)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)		MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent In Stunted o	1, 2, 4A t (B11) overtebra Sulfide Rhizospl of Redu on Reduc r Stresse	and 4B) ates (B13) Odor (C1 heres alo iced Iron ction in P ed Plants))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6)	W D D S G S F, R	Atter-Stained A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M	d Leaves (E B) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6)	39) (MLF e (C2) rial Imag 2)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im-		MLRA Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Iro	1, 2, 4A t (B11) overtebra Sulfide Rhizospl of Redu on Reduc r Stresse	and 4B) ates (B13) Odor (C1 heres alo iced Iron ction in P ed Plants))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6)	W D D S G S F, R	Ater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral	d Leaves (E B) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6)	39) (MLF e (C2) rial Imag 2)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicato Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave S		MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent In Stunted o	1, 2, 4A t (B11) overtebra Sulfide Rhizospl of Redu on Reduc r Stresse	and 4B) ates (B13) Odor (C1 heres alo iced Iron ction in P ed Plants))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6)	W D D S G S F, R	Atter-Stained A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M	d Leaves (E B) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6)	39) (MLF e (C2) rial Imag 2)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave S Edd Observations:	nagery (B7)	MLRA Salt Crust Aquatic Irr Hydrogen Oxidized I Presence Recent Irr Stunted o Other (Ex	1, 2, 4A t (B11) svertebra Sulfide Rhizospl of Redu on Redu r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres alou iced Iron ction in P ed Plants Remarks)))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6)	W D D S G S F, R	Atter-Stained A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M	d Leaves (E B) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6)	39) (MLF e (C2) rial Imag 2)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave so Eld Observations: Irface Water Present? Yes	nagery (B7) Surface (B8)	MLRA Salt Crust Aquatic Ir Oxidized I Presence Recent Irc Stunted o Other (Ex	1, 2, 4A t (B11) svertebra Sulfide Rhizospl of Redu on Redu r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo iced Iron ction in P ed Plants Remarks)))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6)	W D D S G S F, R	Atter-Stained A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M	d Leaves (E B) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6)	39) (MLF e (C2) rial Imag 2)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave S Edd Observations:	nagery (B7) Surface (B8) 	MLRA Salt Crust Aquatic Ir Oxidized I Presence Recent Ird Stunted o Other (Ex Depth (X Depth (1, 2, 4A t (B11) svertebra Sulfide Rhizospl of Redu on Redu r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo iced Iron iced Iron ction in P ed Plants Remarks)))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A)	W D D S G S S F F F F	Atter-Stained A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, :
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Seld Observations: Inface Water Present? Yes ater table Present? Yes	nagery (B7) Surface (B8) No No	MLRA Salt Crust Aquatic Ir Oxidized I Presence Recent Ird Stunted o Other (Ex Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduo n Reduo r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo iced Iron iced Iron ction in P ed Plants Remarks)))ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A)	W D D S G S S F F F F	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selection Sparsely Vegetated Concave Selection Mathematical Selection Sparsely Vegetated Concave Selection Sparsely Vegetated Concave Selection Sparsely Vegetated Concave Selection Sparsely Vegetated Concave Selection Selection Selection Sparsely Vegetated Concave Select	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selet Observations: Inface Water Present? Yes ater table Present? Yes ater table Present? Yes cludes capillary fringe) Cribe Recorded Data (stream gauget	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Sector S	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selet Observations: Inface Water Present? Yes ater table Present? Yes ater table Present? Yes cludes capillary fringe) Cribe Recorded Data (stream gauget	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selet Observations: Inface Water Present? Yes ater table Present? Yes ater table Present? Yes cludes capillary fringe) Cribe Recorded Data (stream gauget	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selet Observations: Inface Water Present? Yes ater table Present? Yes ater table Present? Yes cludes capillary fringe) Cribe Recorded Data (stream gauget	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selet Observations: Inface Water Present? Yes ater table Present? Yes ater table Present? Yes cludes capillary fringe) Cribe Recorded Data (stream gauget	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D D S G S F F F V V V V V V V V V V V V V	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) verns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks	39) (MLF e (C2) rial Imag 2)) (LRR A (D7)	RA 1, : ery (C
etland Hydrology Indicators: imary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Im Sparsely Vegetated Concave Selet Observations: Inface Water Present? Yes ater table Present? Yes ater table Present? Yes cludes capillary fringe) Cribe Recorded Data (stream gauget	nagery (B7) Surface (B8) No No No	MLRA Salt Crust Aquatic Ir Hydrogen Oxidized I Presence Recent Ird Stunted o Other (Ex X Depth (X Depth (1, 2, 4A t (B11) wertebra Sulfide Rhizospl of Reduon Reduon Reduon r Stresse plain in F	and 4B) ates (B13) Odor (C1 heres aloo aced Iron action in P ed Plants Remarks)) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland F	W D G G SI FI R FI Iydrolog	dater-Stained 4A and 4E rainage Patt ry-Season V aturation Vis eomorphic F hallow Aquit AC-Neutral aised Ant M rost-Heave F	d Leaves (E 3) erns (B10) Vater Table sible on Aer Position (D2 ard (D3) Test (D5) ounds (D6) Hummocks Yes	39) (MLF (C2) ial Imag () (LRR A (D7)	RA 1, : ery (C .)

Project/Site:	The Views			City/County: Sa	andy/Clack	amas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Homes						State: OR	Sampling P	oint:	13
Investigator(s):	K. Biafora			Section, T	ownship, I	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relief	(concave,	convex	(, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forests a	nd Coast (LRR A)	Lat:		45.38	371747	Long:	-122.2293743	Datum:	WGS 84
Soil Map Unit Name	e: Klickitat stony	y loam					NWI Classification:	none		
Are climatic / hydro	logic conditions on th	e site typical for this	time of y	/ear?	Yes	Х	No	(If no, explain	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly dis	sturbed?	Are "N	Normal Circumstanc	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally proble	ematic?	(If nee	eded, explain any ar	nswers in Rema	rks.)	

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes _	x	No
Remarks:						

Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
25	Y	FAC	That Are OBL, FACW, or FAC: 2 (A)
			Total Number of Dominant Species Across All Strata: <u>2</u> (B)
: 25			Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
	-		
			Prevalence Index Worksheet:
15	Y	FAC	Total % Cover of: Multiply by:
			OBL species x1 =0
			FACW species x2 = 0
			FAC speciesx3 =0
			FACU species x4 =0
: 15			UPL species x5 =0
			Column Totals: 0 (A) 0 (B)
2	- ·	OBL	Prevalence Index = B/A =
			Hydrophytic Vegetation Indicators:
			1 - Rapid Test for Hydrophytic Vegetation
			X 2 - Dominance Test is >50%
			3 - Prevalence Index is ≤3.0 ¹
			4 - Morphological Adaptation1 (Provide supporting
			data in Remarks or on a separate sheet)
			5 - Wetland Non-Vascular Plants ¹
			Problematic Hydrophytic Vegetation ¹ (Explain)
-			
: 2	-		
			¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
			Hydrophytic Vegetation
: 0			
	% Cover 25 15 2 15 2 15 2	% Cover Species? 25 Y 25 Y 25 Y 25 Y 15 Y 2	% Cover Species? Status? 25 Y FAC 25 Y FAC 25 Y FAC 15 Y FAC 15 Y FAC 2 OBL OBL 2 OBL

		1. 11. 1	di secolo 1 de 1				C		1	
	scription: (Describe	to the dep				r or con	tirm the abse	ence of indica	itors.)	
epth	Matrix		Re	dox Featu						
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-4	10 YR 3/2	100					CoGrLS			
4-10	10 YR 4/2	85	7.5 YR 3/4	15	С	М	CoGrLS			
		<u> </u>					. <u></u>			
		· ·								
ype: C=0	Concentration, D=Dep	letion, RM=	=Reduced Matrix,	CS=Cove	red or Coa	ted Sanc	Grains. ² Lo	cation: PL=Po	ore Lining, M=Matrix	
ydric Soi	I Indicators: (Applic	able to all	LRRs, unless oth	nerwise n	oted.)		Indicators	for Problema	tic Hydric Soils ³ :	
-	sol (A1)			Redox (St				2 cm Mu	-	
	Epipedon (A2)			d Matrix (S			-		ent Material (TF2)	
	Histic (A3)		· · ·	,	neral (F1)	except l	MLRA 1)		xplain in Remarks)	
	gen Sulfide (A4)			-	atrix (F2)			Unor (E		
	ted Below Dark Surfa	ce (A11)		ed Matrix (
_ '	Dark Surface (A12)	(117)		Dark Surf			³ India	ators of hydro	phytic vegetation and	4
	Muck Mineral (S1)				urface (F6)					
- '	y gleyed Matrix (S1)		<u> </u>		. ,				y must be present,	
_ '			Redux I	Depressio	ns (Fo)	-	ur	niess disturbe	d or problematic.	
estrictive	e Layer (if present):									
/pe:	shovel refusal -									
epth (inch	nes): 1	0				HV	dric Soil Pres	sent?	Yes X	No
narks: sar	ndy soils underlain by	cobble								
DROLOG	Y									
DROLOG /etland H	Y ydrology Indicators:		(cient)					Secondan	v Indicators (2 or mo	
DROLOG Vetland H	Y ydrology Indicators: licators (any one indic			Stained L					y Indicators (2 or mo	
PROLOG etland H imary Inc Surfa	Y ydrology Indicators: licators (any one indic ce Water (A1)		Water-S		eaves (B9)			Water-St	tained Leaves (B9) (
DROLOG letland H imary Inc Surfac (High \	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2)		Water-S	A 1, 2, 4A	eaves (B9) A and 4B)			Water-St 4A ar	tained Leaves (B9) (nd 4B)	
DROLOG /etland H rimary Inco Surfac (High \ Satura	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3)		Water-S MLR Salt Cru	A 1, 2, 4A ust (B11)	A and 4B)	(except		Water-St 4A ar Drainage	tained Leaves (B9) (n d 4B) e Patterns (B10)	MLRA 1, 2
DROLOG /etland H rimary Inc Surfar (Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1)		Water-S MLR Salt Cru Aquatic	A 1, 2, 4A ust (B11) Invertebr	A and 4B) rates (B13)	(except		Water-Si 4A ar Drainage Dry-Seas	tained Leaves (B9) (nd 4B) e Patterns (B10) son Water Table (C2	MLRA 1, 2
DROLOG /etland H imary Inc Surfac High V Satura Water Sedin	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2)		Water-S MLR Salt Cru Aquatic Hydrog	A 1, 2, 4A ust (B11) Invertebr en Sulfide	and 4B) rates (B13) Odor (C1)	(except	- - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir	MLRA 1, 2
DROLOG /etland H imary Inc Surfae High V Satura Water Sedin Drift [Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3)		Water-S MLR Salt Cru Aquatic Hydrog Oxidize	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp	and 4B) rates (B13) Odor (C1)	(except) ng Living		Water-Si 4A ar Drainage Dry-Seas Saturatio Geomorp	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2)	MLRA 1, 2
PROLOG fetland H imary Inc Surfac High V Satura Water Water Drift [Algal	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)		Water-S MLR Salt Cru Aquatic Hydrog Oxidize Presend	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red	and 4B) rates (B13) Odor (C1) oheres alor uced Iron ((except) ng Living C4)	- - - Roots (C3)	Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow	tained Leaves (B9) (nd 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3)	MLRA 1, 2
DROLOG /etland H rimary Inc Surfac High \ Satura Watel Watel Drift [Algal Iron D	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5)		Water-S MLR Salt Cru Aquatic Hydrog Oxidize Presenu Recent	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu	A and 4B) rates (B13) Odor (C1) oheres alor uced Iron (uction in PI	(except) ng Living C4) owed So	- - - - - - - - - - - - - - - - - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net	tained Leaves (B9) (nd 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5)	MLRA 1, 2
DROLOG /etland H imary Inc Surfac High V Satura Water Water Drift D Algal Iron D Surfac	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6)	ator is suffi	Water-S MLR Salt Cru Aquatic Hydrog Oxidize Presenu Recent Stunted	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress	A and 4B) attes (B13) Odor (C1) oheres alor uced Iron (uced Iron (sed Plants	(except) ng Living C4) owed So	- - - - - - - - - - - - - - - - - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir obic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR	MLRA 1, 2) nagery (CS R A)
PROLOG etland H imary Inc Surfac High V Satura Satura Sedin Drift I Algal Iron D Surfac Surfac Inund	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial	ator is suffi Imagery (E	Water-S MLR Salt Cru Aquatic Hydrog Oxidize Presenu Recent Stunted 37) Other (I	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress	A and 4B) rates (B13) Odor (C1) oheres alor uced Iron (uction in PI	(except) ng Living C4) owed So	- - - - - - - - - - - - - - - - - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A	tained Leaves (B9) (nd 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5)	MLRA 1, 2)) magery (CS R A)
DROLOG Vetland H rimary Inc Surfar High N Satura Water Water Drift E Algal Iron D Surfar Inund Spars	Y ydrology Indicators: dicators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ately Vegetated Concav	ator is suffi Imagery (E	Water-S MLR Salt Cru Aquatic Hydrog Oxidize Presenu Recent Stunted 37) Other (I	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress	A and 4B) attes (B13) Odor (C1) oheres alor uced Iron (uced Iron (sed Plants	(except) ng Living C4) owed So	- - - - - - - - - - - - - - - - - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir obic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR	MLRA 1, 2)) magery (CS R A)
PROLOG etland H imary Inc Surfae High V Satura Water Sedin Drift I Algal Iron D Surfae Inund Spars eld Obse	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial sely Vegetated Concav prvations:	ator is suffi Imagery (E /e Surface	Water-{ MLR	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in	A and 4B) rates (B13) oberes alor uced Iron (uction in PI sed Plants Remarks)	(except) ng Living C4) owed So	- - - - - - - - - - - - - - - - - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir obic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR	MLRA 1, 2)) magery (CS R A)
PROLOG fetland H imary Inc Surfac High V Satura Watel Drift E Algal Iron D Surfac Spars eld Obse urface Wa	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial sely Vegetated Concav revations: ater Present? Yes	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Presen Recent Stunted 87) Other (I (B8)	A 1, 2, 4A ust (B11) : Invertebr en Sulfide d Rhizosp ce of Red Iron Redu d or Stress Explain in	A and 4B) ates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks)	(except) ng Living C4) owed So	- - - - - - - - - - - - - - - - - - -	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir obic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR	MLRA 1, 2)) magery (CS R A)
PROLOG /etland H imary Inc Surfac High V Satura Water Water Drift D Algal Iron D Surfac Surface Wa /ater table	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial rely Vegetated Concav revations: ater Present? Yes	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Presen Recent Stunted 37) Other (I (B8)	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in	A and 4B) ates (B13) odor (C1) oberes alor uced Iron (uction in Pl sed Plants Remarks) :	(except) ng Living C4) owed So	- Roots (C3) _ ills (C6) _ R A) _	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A	tained Leaves (B9) (ad 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR vave Hummocks (D7)	MLRA 1, 2 nagery (CS R A)
DROLOG /etland H imary Inc Surfac High V Satura Water Drift I Algal Iron I Surfac Spars eld Obse aturation	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial rely Vegetated Concav revations: ater Present? Yes	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Presen Recent Stunted 37) Other (I (B8)	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu d or Stress Explain in n (inches) n (inches)	A and 4B) ates (B13) odor (C1) oberes alor uced Iron (uction in Pl sed Plants Remarks) :	(except) ng Living C4) owed So	- Roots (C3) _ ills (C6) _ R A) _	Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR vave Hummocks (D7)	MLRA 1, 2 nagery (CS R A)
DROLOG /etland H imary Inc Surfae High V Satura Water Vater Drift I Algal Iron D Surfae Spars eld Obse aurface Wa aturation Includes ca	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial sely Vegetated Concar protections: ater Present? Yes Present? Yes	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR	- Roots (C3) _ ils (C6) _ R A) _ - Wetland Hy	Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR vave Hummocks (D7)	MLRA 1, 2 nagery (CS R A)
	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ley Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR	- Roots (C3) _ ils (C6) _ R A) _ - Wetland Hy	Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR vave Hummocks (D7)	MLRA 1, 2 nagery (CS R A)
DROLOG /etland H rimary Inc 	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ley Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR	- Roots (C3) _ ils (C6) _ R A) _ - Wetland Hy	Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR vave Hummocks (D7)	MLRA 1, 2 magery (CS R A)
DROLOG /etland H rimary Inc 	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ley Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR	- Roots (C3) _ ils (C6) _ R A) _ - Wetland Hy	Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR eave Hummocks (D7)	MLRA 1, 2 magery (CS R A)
DROLOG /etland H rimary Inc Surfae Vater Vater Vater Drift [Algal Iron [2 Spars ield Obse aturation nclasses // atter table aturation	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ley Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR		Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR eave Hummocks (D7)	MLRA 1, 2 magery (CS R A)
	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ley Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR		Water-St 4A ar Drainage Dry-Seas Saturatio Geomorp Shallow FAC-Neu Raised A Frost-He	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR eave Hummocks (D7)	MLRA 1, 2 nagery (CS R A)
PROLOG Vetland H rimary Inc Surfac High N Satura Sedin Algal Iron D Surfac Urface Wa /ater table aturation ncludes cr cribe Rec marks:	Y ydrology Indicators: licators (any one indic ce Water (A1) Water Table (A2) ation (A3) r Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) Deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ley Vegetated Concav ervations: ater Present? Yes Present? Yes apillary fringe)	ator is suffi Imagery (E ve Surface	Water-5 MLR Salt Cru Aquatic Hydrog Oxidize Present Recent Stunted 37) Other (I (B8) No X Deptt No Deptt No Deptt	A 1, 2, 4A ust (B11) Invertebr en Sulfide d Rhizosp ce of Red Iron Redu I or Stress Explain in n (inches) n (inches)	A and 4B) rates (B13) odor (C1) oheres alor uced Iron (uction in Pl sed Plants Remarks) : 0 : 0	(except) ng Living C4) owed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland Hy i, if available:	Water-Si 4A ar Drainage Dry-Seas Saturatio Geomor Shallow FAC-Net Raised A Frost-He	tained Leaves (B9) (ad 4B) e Patterns (B10) son Water Table (C2 on Visible on Aerial Ir ohic Position (D2) Aquitard (D3) utral Test (D5) Ant Mounds (D6) (LR eave Hummocks (D7)	MLRA 1, 2 magery (CS R A))

Project/Site:	The Views		(City/County: S	andy/Clack	amas		Sampling D	ate:	1/23/2020
Applicant/Owner:	Even Better Homes						State: OR	Sampling P	oint:	14
Investigator(s):	K. Biafora			Section,	Township, I	Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relie	f (concave,	convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forests a	nd Coast (LRR A)	Lat:		45.386	696484	Long:	-122.2296122	Datum:	WGS 84
Soil Map Unit Nam	e: Klickitat stony	/ loam					NWI Classification:	none		
Are climatic / hydro	logic conditions on th	e site typical for this t	ime of y	ear?	Yes	Х	No	(If no, explain	in Remarks)
Are Vegetation	, Soil	, or Hydrology		significantly di	sturbed?	Are "N	Iormal Circumstanc	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally probl	lematic?	(If nee	eded, explain any ar	nswers in Rema	arks.)	

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes _	x	No
Remarks:						

ee Stratum (Use scientific names.)	Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
Thuja plicata	30	Y	FAC	That Are OBL, FACW, or FAC: 4 (A)
			·	Total Number of Dominant Species Across All Strata: <u>4</u> (B)
Total Cover	: 30			Percent of Dominant Species That Are OBL, FACW, or FAC:(A/B)
nrub Stratum				Prevalence Index Worksheet:
Rubus spectabilis	30	Y	FAC	Total % Cover of: Multiply by:
Acer circinatum	30	Y	FAC	OBL species x1 = 0
				FACW species x2 = 0
				FAC species x3 =0
				FACU species x4 = 0
Total Cover	: 60	-		UPL species x5 =0
erb Stratum				Column Totals: 0 (A) 0 (B)
Lysichiton americanus	5	Y	OBL	Prevalence Index = B/A =
				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
				X 2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
				4 - Morphological Adaptation1 (Provide supporting
				data in Remarks or on a separate sheet)
				5 - Wetland Non-Vascular Plants ¹
)				Problematic Hydrophytic Vegetation ¹ (Explain)
Total Cover	: 5	-		
Woody Vine Stratum				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	: 0	·		Hydrophytic Vegetation
Total Cover		iotic Crust	0	Present? Yes X No
% Bare Ground in Herb Stratum 95 %	Cover of B			

rotile Des	scription: (Descr	ibe to the de	pth needed to do	cument the	e indicato	or or con	firm the abs	ence of in	dicators.)		
Depth	Matrix	(R	edox Featu	res						
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	9		Remarks	
0-10	10 YR 3/1	93	10 YR 4/6	5	С	М	loamy clay				
			10 YR 5/2	2	D	М					
10-12	10 YR 4/2	80	7.5 YR 3/4	20	С	М	loamy clay				
ype: C=0	Concentration, D=I	Depletion, RM	1=Reduced Matrix,	CS=Cover	ed or Coa	ated Sanc	d Grains. ² Lo	ocation: Pl	L=Pore Linir	ng, M=Matrix.	
ydric Soi	I Indicators: (Ap	plicable to al	I LRRs, unless of	herwise no	oted.)		Indicators	for Proble	ematic Hyd	ric Soils ³ :	
Histos	sol (A1)		Sandy	Redox (S5	i)			2 cm	Muck (A10)	
Histic	Epipedon (A2)		Strippe	ed Matrix (S	6)			Red	Parent Mate	erial (TF2)	
Black	Histic (A3)		Loamy	Mucky Mir	neral (F1)	(except l	MLRA 1)	Othe	er (Explain in	n Remarks)	
Hydro	gen Sulfide (A4)		Loamy	Gleyed Ma	atrix (F2)						
C Deple	ted Below Dark Su	urface (A11)	Deplet	ed Matrix (I	F3)						
Thick	Dark Surface (A12	2)	Redox	Dark Surfa	ace (F6)		³ India	cators of hy	/drophytic ve	egetation and	I
Sandy	/ Muck Mineral (S1)	Deplet	ed Dark Su	Irface (F7)	We	etland hydro	ology must b	pe present,	
Sandy	/ gleyed Matrix (S4	+)	Redox	Depression	ns (F8)		ι	unless distu	urbed or pro	blematic.	
epth (inch	shovel refusal les):	- tree roots 12				Ну	dric Soil Pre	esent?	Ye	es <u>X</u>	No
hepth (inch narks:	les):					Ну	rdric Soil Pre	esent?	Ye	es <u>X</u>	No
DROLOG	les):	12				Ну	rdric Soil Pre	esent?	Ye	es <u>X</u>	No
epth (inch narks: DROLOG /etland H	res): Y	12	ficient)			Ну	rdric Soil Pre			es X	
epth (inch narks: DROLOG /etland H	es): Y ydrology Indicato	12		-Stained Le	aves (B9)			Secor	ndary Indicat		re require
epth (inch narks: DROLOG /etland H rimary Ind Surfac	es): Y ydrology Indicator licators (any one ir	12	Water	-Stained Le RA 1, 2, 4A	. ,			<u>Secor</u> Wate	ndary Indicat	tors (2 or mo	re require
PROLOG PROLOG /etland H rimary Ind Surfac - High \	Y Ydrology Indicato licators (any one ir ce Water (A1)	12	Water- MLF		. ,			Secor Wate	ndary Indica	tors (2 or moi eaves (B9) (f	re require
DROLOG DROLOG Vetland H rimary Ind Surfar High N Satura	Y ydrology Indicato licators (any one ir ce Water (A1) Water Table (A2)	12	Water MLF Salt C	RA 1, 2, 4A	and 4B)) (except		Secor Wate 4. Drain	ndary Indica er-Stained L A and 4B) nage Patterr	tors (2 or moi eaves (B9) (f	re require MLRA 1,
PROLOG /etland H rimary Ind Surfac Satura Water	Y ydrology Indicato licators (any one ir ce Water (A1) Water Table (A2) ation (A3)	12	Water MLI Salt C	RA 1, 2, 4A rust (B11)	and 4B)) (except		Secor Wate Drair Drair	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat	tors (2 or moi eaves (B9) (1 ns (B10)	re require MLRA 1,
PROLOG PROLOG /etland H rimary Ind Surfac High N Satura Water Sedin	Y ydrology Indicato iicators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1)	12	Water- MLF Salt C Aquati Hydrog	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide	and 4B) ates (B13) Odor (C1) (except)		<u>Secor</u> Wate Drair Dry-S Satu	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat	tors (2 or moi eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In	re require MLRA 1,
PROLOG PROLOG /etland H rimary Ind Satura Water Sedin Sedin Drift D	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2)	12	Water- MLF Salt Ci Aquati Hydrog Oxidizi	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide	and 4B) ates (B13) Odor (C1 heres alo) (except))) ng Living		Secor Wate Drair Dry-S Satu Geor	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl	tors (2 or moi eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2)	re require MLRA 1,
DROLOG Arrimary Ind Calland H rimary Ind Satura Water Sedim Drift L Algal	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3)	12	Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp	and 4B) ates (B13) Odor (C1 heres alo) (except))) ng Living (C4)	Roots (C3)	Secor Wate Drair Dry-S Satu Satu Satu Shal	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3)	re require MLRA 1,
DROLOG /etland H /etland H /imary Ind Surfac High N Satura Water Drift E Algal Iron D	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4)	12 ors: ndicator is suf	Water- MLF Salt C Aquati Hydrog Oxidiz Preser Recen	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu	and 4B) ates (B13) Odor (C1 heres alou uced Iron uction in P) (except))) ng Living (C4) lowed So	Roots (C3)	Secor Wate Drair Dry-S Satu Geor Shall FAC	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3)	re require MLRA 1,) nagery (C
DROLOG Arks: DROLOG /etland H /etland H	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5)	12 ors: ndicator is suf	Water- MLI Salt Co Aquati Hydrog Oxidiz Preser Recen Stunte	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu	and 4B) ates (B13) Odor (C1 heres alo uced Iron action in P ed Plants) (except))) ng Living (C4) lowed So (D1) (LR	Roots (C3)	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Mour	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5)	re require MLRA 1,) nagery (C
DROLOG Arks: DROLOG /etland H rimary Ind Surfac Water Sedin Drift D Algal Iron D Surfac Iron D Iron D Jurfac Inunda	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) ment Deposits (B2) Deposits (B3) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6	12 ors: idicator is suf) rial Imagery (Water- MLF Salt C Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress	and 4B) ates (B13) Odor (C1 heres alo uced Iron action in P ed Plants) (except))) ng Living (C4) lowed So (D1) (LR	Roots (C3)	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Mour	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR	re require MLRA 1,) nagery (C
DROLOG /etland H rimary Ind Suffac Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar Saftar	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) hent Deposits (B2) Deposits (B3) Mat or Crust (B4) heposits (B5) ce Soil Cracks (B6 ation Visible on Ae ely Vegetated Cor	12 ors: idicator is suf) rial Imagery (Water- MLF Salt C Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress	and 4B) ates (B13) Odor (C1 heres alo uced Iron action in P ed Plants) (except))) ng Living (C4) lowed So (D1) (LR	Roots (C3)	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Mour	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR	re require MLRA 1,) nagery (C
DROLOG Vetland H rrimary Ind Surfac Vater Sedin Drift D Algal Iron D Surfac Spars ield Obse urface Wa	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) Marks (B1) Mat or Crust (B4) leposits (B5) ce Soil Cracks (B6 ation Visible on Ae ely Vegetated Cor rvations: ater Present?	12 ors: Idicator is suf) vrial Imagery (icave Surface Yes	B7) Other B7) Othe	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress (Explain in l th (inches):	and 4B) ates (B13) Odor (C1 heres alou uced Iron inction in P ed Plants Remarks)) (except))) ng Living (C4) lowed So (D1) (LR	Roots (C3)	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise	ndary Indical er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Mour	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR	re require MLRA 1,) nagery (C R A)
Depth (inch marks: DROLOG Vetland H rimary Ind Surfac X High \ Satura Sedim Drift D Surfac Inunda Spars ield Obse Surface Wa	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) reposits (B5) ce Soil Cracks (B6) ation Visible on Ae ely Vegetated Cor rvations: ater Present?	12 prs: ndicator is suf prial Imagery (icave Surface Yes X	Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other e (B8)	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress (Explain in th (inches):	and 4B) ates (B13) Odor (C1 heres alou uced Iron uction in P ed Plants Remarks)) (except))) ng Living (C4) lowed So (D1) (LR	Roots (C3) ils (C6) R A)	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise Fros	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Moun t-Heave Hun	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7)	re require MLRA 1,) nagery (C
DROLOG Vetland H rrimary Ind Surfac Water Satura Water Drift D Algal Iron D Surfac Inund Spars ield Obse iaturation	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) reposits (B5) ce Soil Cracks (B6 ation Visible on Ae ely Vegetated Cor revations: ater Present? Present?	12 ors: Idicator is suf) vrial Imagery (icave Surface Yes	Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other e (B8)	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress (Explain in l th (inches):	and 4B) ates (B13) Odor (C1 heres alou uced Iron uction in P ed Plants Remarks)) (except))) ng Living (C4) lowed So (D1) (LR	Roots (C3)	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise Fros	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Moun t-Heave Hun	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR	re require MLRA 1,) nagery ((R A)
DROLOG Vetland H rimary Ind Surfar Surfar Water Sedir Drift E Algal Iron D Surfar Surfar Sedir Sedir Surfar Surfar Inund. Spars ield Obse vurface Wa Vater table aturation I	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) heposits (B5) ce Soil Cracks (B6) ation Visible on Ae ely Vegetated Cor structions: ater Present? Present? Present? apillary fringe)	12 prs: Idicator is suf idicator is suf vrial Imagery (icave Surface Yes Yes X Yes X	Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other e (B8)	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress (Explain in th (inches): th (inches):	and 4B) ates (B13) Odor (C1 heres alou uced Iron ucetion in P ed Plants Remarks)) (except))) ng Living (C4) 'lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland H	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise Fros	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Moun t-Heave Hun	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7)	re require MLRA 1,) nagery ((R A)
DROLOG Marks: DROLOG Vetland H rimary Ind Surfac X High V Satura Satura Water Drift I Algal Iron D Surfac Surfac Sedim Sedim Surfac Surfac Sedir Algal Iron D Surfac Su	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) heposits (B5) ce Soil Cracks (B6) ation Visible on Ae ely Vegetated Cor structions: ater Present? Present? Present? apillary fringe)	12 prs: Idicator is suf idicator is suf vrial Imagery (icave Surface Yes Yes X Yes X	Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other e (B8)	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress (Explain in th (inches): th (inches):	and 4B) ates (B13) Odor (C1 heres alou uced Iron ucetion in P ed Plants Remarks)) (except))) ng Living (C4) 'lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland H	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise Fros	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Moun t-Heave Hun	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7)	re require MLRA 1,) nagery (C
Primary Ind Surfac X High V Satura Water Sedim Drift E Algal Iron D Surfac Surfac Surface Surface Wa Vater table Saturation I includes ca	Y ydrology Indicato icators (any one ir ce Water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) heposits (B5) ce Soil Cracks (B6) ation Visible on Ae ely Vegetated Cor structions: ater Present? Present? Present? apillary fringe)	12 prs: Idicator is suf idicator is suf vrial Imagery (icave Surface Yes Yes X Yes X	Water- MLF Salt Ci Aquati Hydrog Oxidiz Preser Recen Stunte B7) Other e (B8)	RA 1, 2, 4A rust (B11) c Invertebra gen Sulfide ed Rhizosp nce of Redu t Iron Redu d or Stress (Explain in th (inches): th (inches):	and 4B) ates (B13) Odor (C1 heres alou uced Iron ucetion in P ed Plants Remarks)) (except))) ng Living (C4) 'lowed So (D1) (LR	Roots (C3) ils (C6) R A) Wetland H	Secor Wate Drair Dry-S Satu Geor Shall FAC Raise Fros	ndary Indicat er-Stained L A and 4B) nage Patterr Season Wat ration Visibl morphic Pos low Aquitarc -Neutral Tes ed Ant Moun t-Heave Hun	tors (2 or mor eaves (B9) (f ns (B10) ter Table (C2 e on Aerial In sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7)	re require MLRA 1,) nagery (C

US Army Corps of Engineers

Western Mountains, Valleys and Coast -Version 2.0

Project/Site:	The Views		(City/County: Sandy/Cla	ckamas		Sampling D	Date:	1/23/2020
Applicant/Owner:	Even Better Homes					State: OR	Sampling P	oint:	15
Investigator(s):	K. Biafora			Section, Township	, Range:	S19, T2S, R5E			
Landform (hillslope	, terrace, etc.):	Ravine		Local relief (concav	e, convex	, none): <u>none</u>		Slope (%):	2-4%
Subregion (LRR):	Northwest Forests a	Ind Coast (LRR A)	Lat:	45.3	8693738	Long:	-122.229602	Datum:	WGS 84
Soil Map Unit Nam	e: Klickitat ston	y loam				NWI Classification:	none		
Are climatic / hydro	logic conditions on th	ne site typical for this	time of y	rear? Yes	Х	No	(If no, explain	in Remarks	;)
Are Vegetation	, Soil	, or Hydrology		significantly disturbed?	Are "N	Iormal Circumstance	es" Present?	Yes X	No
Are Vegetation	, Soil	, or Hydrology		naturally problematic?	(If nee	eded, explain any an	swers in Rema	arks.)	
SUMMARY OF	ation Present?	Ach site map sho	owing s	sampling point loc		transects, impo	rtant feature	es, etc.	

Hydric Soil Present?	Yes	No	Х	within a Wetland?	Yes	No	Х	
Wetland Hydrology Present?	Yes	No	Х					
Remarks:								

	Absolute % Cover	Dominant Species?	Indicator Status?	Dominance Test worksheet: Number of Dominant Species
r <u>ee Stratum</u> (Use scientific names.) . Thuja plicata	20	Y	FAC	That Are OBL, FACW, or FAC: 2 (A)
Acer macrophyllum	15	Y	FACU	Total Number of Dominant Species Across All Strata: 4 (B)
				Percent of Dominant Species
Total Cover:	35	-		That Are OBL, FACW, or FAC:(A/B)
hrub Stratum				Prevalence Index Worksheet:
Acer circinatum	20	Y	FAC	Total % Cover of: Multiply by:
			·	OBL species x1 =0
·			·	FACW species x2 =0
				FAC species 40 x3 = 120
			·	FACU species x4 = 180
Total Cover:	20	-		UPL species x5 =0
erb Stratum				Column Totals: 85 (A) 300 (B)
Polystichum munitum	30	Y	FACU	Prevalence Index = B/A = <u>3.5</u>
				Hydrophytic Vegetation Indicators:
			. <u> </u>	1 - Rapid Test for Hydrophytic Vegetation
·			. <u> </u>	2 - Dominance Test is >50%
			. <u> </u>	3 - Prevalence Index is ≤3.0 ¹
·			·	4 - Morphological Adaptation1 (Provide supporting
			·	data in Remarks or on a separate sheet)
				5 - Wetland Non-Vascular Plants ¹
0				Problematic Hydrophytic Vegetation ¹ (Explain)
1				
Total Cover:	30	-		1
Woody Vine Stratum				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
·		·	·	be present, unless disturbed of problematic.
	0			Hydrophytic
Total Cover	0	-		Vegetation
Total Cover: % Bare Ground in Herb Stratum 70 %		iotic Crust	0	Present? Yes No X

IL										Sampling Poir	it.		
rofile Description: (Describe t	o the dept	th neede	d to doc	ument th	ne indicat	or or con	nfirm the abs	sence of	indicators.)			-
epth	Matrix			Red	dox Feat			-					
nches) Color (moist)	%	Color (r	noist)	%	Type ¹	Loc ²	Textur	e		Remarks		
0-12 10 Y	R 3/3	100						SiL					
						·							
ype: C=Concentratio	on, D=Depl	etion, RM=	Reduced	Matrix, C	CS=Cove	ered or Co	ated San	d Grains. ² L	ocation:	PL=Pore Lini	ng, M=Matrix		
udria Sail Indiaatora	. (Applied		BBo un	laca ath	onvice	noted)		Indicator	for Dro	blematic Hyc	Iria Saila ³ :		
ydric Soil Indicators Histosol (A1)	. (Applica		LKKS, UI					mulcators		-			
	101			-	Redox (S					cm Muck (A10			
Histic Epipedon (/	42)		—		d Matrix (,	(ed Parent Mat	. ,		
Black Histic (A3)	(• • •)			-	-	ineral (F1)		MLRA 1)	0t	ther (Explain in	n Remarks)		
Hydrogen Sulfide						latrix (F2)							
_ Depleted Below D		e (A11)			d Matrix			٥.					
_ Thick Dark Surfac						face (F6)				hydrophytic v	•	b	
Sandy Muck Mine						urface (F7	")		-	drology must	-		
Sandy gleyed Mat	trix (S4)			Redox [Depressio	ons (F8)		I	unless di	sturbed or pro	blematic.		
estrictive Layer (if p	resent):												
/pe: shovel	refusal - tre	e roots											
epth (inches):	12						Hy	dric Soil Pr	esent?	Y	es	No	
DROLOGY													
DROLOGY etland Hydrology In	dicators:												
		tor is suffic	cient)						Sec	condary Indica	tors (2 or mo	re requi	rec
etland Hydrology In	one indica	tor is suffic	cient)	Water-S	Stained L	eaves (B9) (except			condary Indica ater-Stained L			
etland Hydrology In Timary Indicators (any	one indica 1)	itor is suffic	cient)			eaves (B9 A and 4B)	· · ·						
etland Hydrology In imary Indicators (any Surface Water (A	one indica 1)	tor is suffic	cient)	MLR/			· · ·	 	W	ater-Stained L	eaves (B9) (
etland Hydrology In imary Indicators (any Surface Water (A High Water Table	one indica 1) (A2)	itor is suffic	cient) 	MLR/ Salt Cru	A 1, 2, 4 / Ist (B11)				W	ater-Stained L 4A and 4B)	eaves (B9) (ns (B10)	MLRA	
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3)	one indica 1) (A2)	tor is suffic	cient) 	MLR/ Salt Cru Aquatic	A 1, 2, 4 Ist (B11) Inverteb	A and 4B))))		W. Dr Dr	ater-Stained L 4A and 4B) rainage Patter	eaves (B9) (ns (B10) ter Table (C2	MLRA 1	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1)	<u>one indica</u> 1) (A2) s (B2)	itor is suffic	cient) 	MLR/ Salt Cru Aquatic Hydroge	A 1, 2, 4 , ist (B11) Inverteb en Sulfide	A and 4B) rates (B13 e Odor (C1	;) 1)	Roots (C3)	W Dr Dr Sa	ater-Stained L 4A and 4B) rainage Patter ry-Season Wa	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II	MLRA 1	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3	one indica 1) (A2) s (B2))	itor is suffic		MLR/ Salt Cru Aquatic Hydroge Oxidized	A 1, 2, 4 Ist (B11) Inverteb en Sulfide d Rhizos	A and 4B) rates (B13 e Odor (C1 pheres alo) 1) ong Living		W. Dr Dr Sa Ge	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Pos	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2)	MLRA 1	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit	one indica 1) (A2) s (B2)) t (B4)	itor is suffic		MLR/ Salt Cru Aquatic Hydroge Oxidized Presend	A 1, 2, 4, Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec	A and 4B) rates (B13 e Odor (C1	i) 1) ong Living (C4)	Roots (C3)		ater-Stained L 4A and 4B) rainage Patter ry-Season Wa aturation Visib	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3)	MLRA 1	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus	<u>one indica</u> 1) (A2) s (B2)) t (B4))	itor is suffic		MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent	A 1, 2, 4/ ust (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red	A and 4B) rates (B13 e Odor (C pheres alo luced Iron	i) 1) ing Living (C4) Plowed Sc	I Roots (C3) bils (C6)	W Dr Dr Sa Ge St FA	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Pos nallow Aquitar	eaves (B9) (ns (B10) ter Table (C2 le on Aerial In sition (D2) d (D3) st (D5)	MLRA 1	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac	one indica 1) (A2) (S (B2)) t (B4)) ks (B6)			MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted	A 1, 2, 4/ Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B) rates (B13 e Odor (C ⁴ pheres alo luced Iron uction in F sed Plants) 1) (C4) Plowed Sc 5 (D1) (LF	I Roots (C3) bils (C6)	W Dr Sa Sa Sa FA Ra	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial Ii sition (D2) d (D3) st (D5) nds (D6) (LR	MLRA ² 2) magery 2 R A)	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible	one indica 1) (A2) (S (B2)) t (B4)) ks (B6) on Aerial I	magery (B	7)	MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted	A 1, 2, 4/ Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B) rates (B13 e Odor (C ² pheres alo luced Iron uction in F) 1) (C4) Plowed Sc 5 (D1) (LF	I Roots (C3) bils (C6)	W Dr Sa Sa Sa FA Ra	ater-Stained L 4A and 4B) rainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te	eaves (B9) (ns (B10) ter Table (C2 le on Aerial Ii sition (D2) d (D3) st (D5) nds (D6) (LR	MLRA ² 2) magery 2 R A)	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate	one indica 1) (A2) (S (B2)) t (B4)) ks (B6) on Aerial I	magery (B	7)	MLR/ Salt Cru Aquatic Hydroge Oxidized Presend Recent Stunted	A 1, 2, 4/ Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B) rates (B13 e Odor (C ⁴ pheres alo luced Iron uction in F sed Plants) 1) (C4) Plowed Sc 5 (D1) (LF	I Roots (C3) bils (C6)	W Dr Sa Sa Sa FA Ra	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial Ii sition (D2) d (D3) st (D5) nds (D6) (LR	MLRA ² 2) magery 2 R A)	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible	one indica 1) (A2) (A2) (B2)) t (B2)) t (B4)) ks (B6) on Aerial I ed Concave	magery (B e Surface (7)	MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted Other (E	A 1, 2, 4/ Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres	A and 4B) rates (B13 e Odor (C ⁴ pheres alo luced Iron uction in P sed Plants Remarks) 1) (C4) Plowed Sc 5 (D1) (LF	I Roots (C3) bils (C6)	W Dr Sa Sa Sa FA Ra	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial Ii sition (D2) d (D3) st (D5) nds (D6) (LR	MLRA ² 2) magery 2 R A)	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations:	one indica 1) (A2) (A2) (B2)) t (B4)) ks (B6) on Aerial I ed Concave	magery (B e Surface (7) B8) No	MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) a (inches)	A and 4B) rates (B13 e Odor (C ² pheres alo luced Iron uction in F sed Plants n Remarks	i) 1) (C4) (C4) \$ (D1) (LF)	I Roots (C3) bils (C6)	W Dr Sa Sa Sa FA Ra	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial Ii sition (D2) d (D3) st (D5) nds (D6) (LR	MLRA ² 2) magery 2 R A)	1, 2
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: Irface Water Present aturation Present?	one indica 1) (A2) (A	magery (B e Surface (7) B8)	MLR/ Salt Cru Aquatic Hydroge Oxidized Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in	A and 4B) rates (B13 e Odor (C ² pheres alo luced Iron uction in F sed Plants n Remarks	i) 1) (C4) (C4) \$ (D1) (LF)	Roots (C3) bils (C6) RR A)	W Dr Sa Ge St FA Ra Fr	ater-Stained L 4A and 4B) ainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou	eaves (B9) (ns (B10) ter Table (C2 le on Aerial Ii sition (D2) d (D3) st (D5) nds (D6) (LR	MLRA ² 2) magery 2 R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: Irace Water Present fater table Present? aturation Present?	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks):):):	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: Irface Water Present aturation Present?	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks):):):	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: Irface Water Present fater table Present? aturation Present?	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks):):):	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: urface Water Present? aturation Present? ncludes capillary fring cribe Recorded Data	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks):):):	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: urface Water Present? aturation Present? ncludes capillary fring cribe Recorded Data	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks):):):	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: urface Water Present? aturation Present? ncludes capillary fring cribe Recorded Data	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks):):):	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: urface Water Present? aturation Present? ncludes capillary fring cribe Recorded Data	one indica 1) (A2) s (B2)) t (B4)) ks (B6) on Aerial I ed Concavu ? Yes Yes Yes Yes	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks);;;	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) R A) Wetland H	W Dr Sa Ge St FA Ra Fn St Fn	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ² magery R A)	(CS
etland Hydrology In imary Indicators (any Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Surface Soil Crac Inundation Visible Sparsely Vegetate eld Observations: urface Water Present? aturation Present? ncludes capillary fring cribe Recorded Data	one indica 1) (A2) (A2) (B2)) t (B4)) t (B4) t (B4)) t (B4) t (B4)) t (B4) t (B4)) t (B4) t (B4)) t (B4) t (B4)) t (B4) t (B	magery (B e Surface (N	7) B8) No No	MLR/ Salt Cru Aquatic Hydroge Oxidizer Presenc Recent Stunted Other (E	A 1, 2, 4J Ist (B11) Inverteb en Sulfide d Rhizos ce of Rec Iron Red or Stres Explain in (inches) h (inches)	A and 4B) rates (B13 e Odor (C ⁻ pheres alo luced Iron uction in F sed Plants n Remarks);;;	i) i) ing Living (C4) ilowed Sc i (D1) (LF)	Roots (C3) bils (C6) RR A) Wetland H	W Dr Sa Ge Sf FA Fr ydrology	ater-Stained L 4A and 4B) aainage Patter y-Season Wa aturation Visib eomorphic Po- nallow Aquitar AC-Neutral Te aised Ant Mou ost-Heave Hu	eaves (B9) (ns (B10) ter Table (C2 le on Aerial II sition (D2) d (D3) st (D5) nds (D6) (LR mmocks (D7	MLRA ^ magery R A))	(Cs

APPENDIX C: GROUND LEVEL PHOTOGRAPHS

Photo Point 1. From the side slope of the ravine in the northwestern portion of the site facing southwest.

Photo Point 1. From the side slope of the ravine in the northwestern portion of the site facing southeast toward Stream 1.

APPENDIX C: GROUND LEVEL PHOTOGRAPHS The Views Project Site S&A#2748 Schott & Associates P.O. Box 589 Aurora, OR. 97002 503.678.6007

Photo Point 3. From the top of Wetland 1 facing east toward the western ravine side slope.

APPENDIX C: GROUND LEVEL PHOTOGRAPHS The Views Project Site S&A#2748

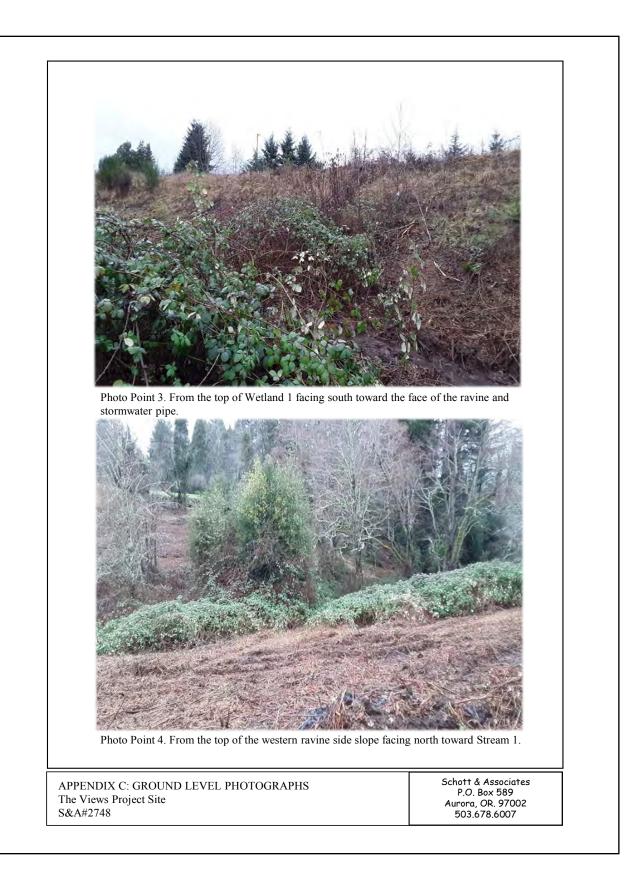
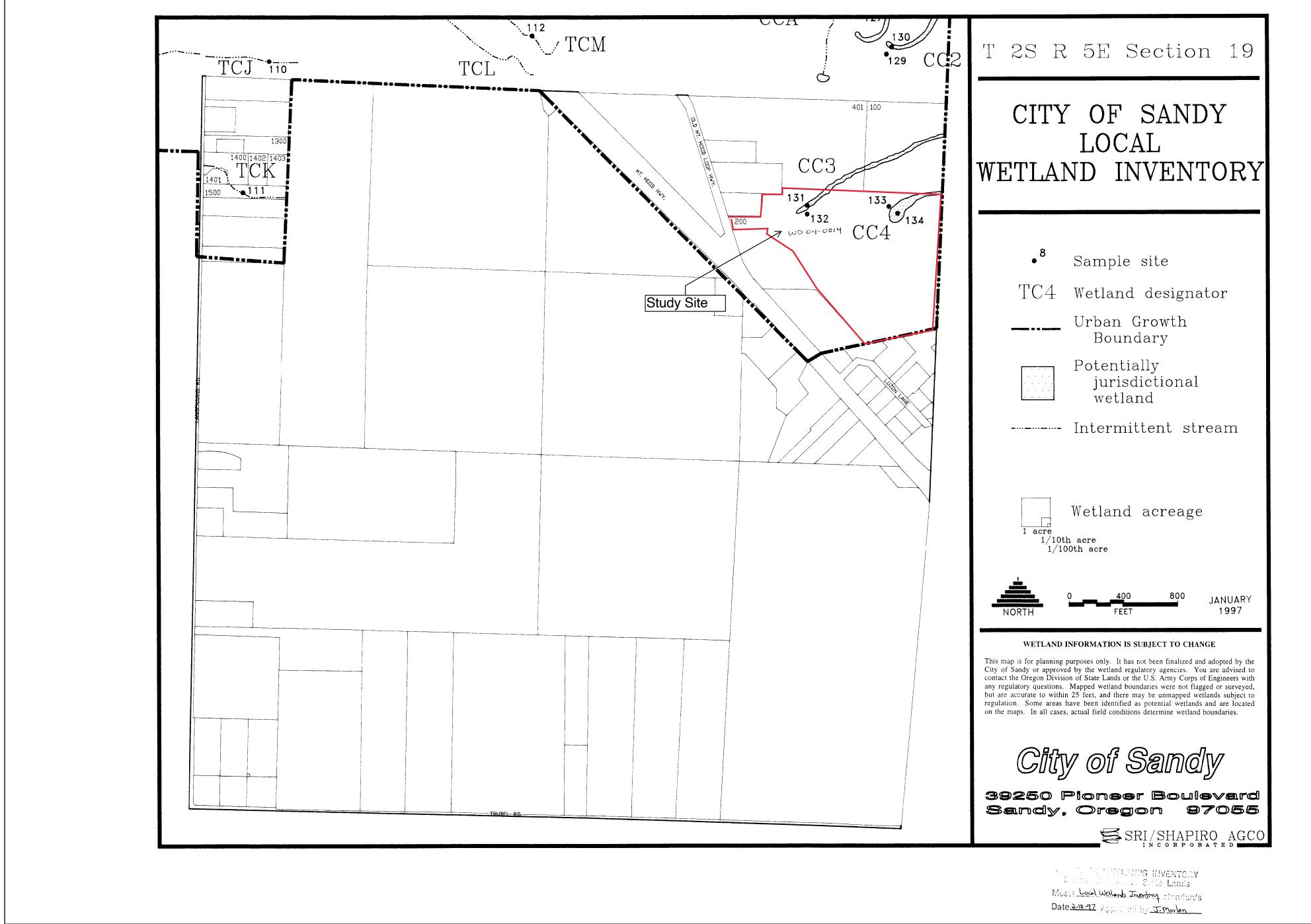


Photo Point 7. From near the top of Wetland 2 facing east toward wetland area.

APPENDIX C: GROUND LEVEL PHOTOGRAPHS The Views Project Site S&A#2748

APPENDIX C: GROUND LEVEL PHOTOGRAPHS The Views Project Site S&A#2748



APPENDIX C: GROUND LEVEL PHOTOGRAPHS The Views Project Site S&A#2748

S&A#2748

APPENDIX D: LOCAL WETLAND INVENTORY MAP FOR SANDY

APPENDIX E: LITERATURE CITATIONS

- Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.
- Environmental Laboratory, 2008 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), Wetlands Regulatory Assistance Program ERDC/EL TR-10-3 U.S. Army Engineer Research and Development Center. Vicksburg, MS.
- Federal Interagency Committee for Wetland Delineation, 1989. Federal Manual for Identifying and Delineating Jurisdictional Wetlands, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S.D.A. Soil Conservation Service, Washington, D.C. Cooperative technical publication. 138 pp.
- Federal Register, 1980. 40 CFR Part 230: Section 404(b)(1), Guidelines for Specification of Disposal Sites of Dredged or Fill Material, Vol. 45, No. 249, pp. 85352-85353, U.S. Govt. Printing Office, Washington, D.C.
- Federal Register, 1982. Title 33, Navigation and Navigable Waters; Chapter II, Regulatory Programs of the Corps of Engineers. Vol. 47, No. 138, p. 31810, U.S. Govt. Printing Office, Washington, D.C.
- Federal Register, 1986. 33 CFR Parts 320 through 330, Regulatory Programs of the Corps of Engineers; Final Rule, Vol. 51, No. 219 pp. 41206-41259, U.S. Govt. Printing Office, Washington, D.C.
- Kollmorgen Corporation, 1975. Munsell Soil Color Charts. Macbeth Division of Kollmorgen Corporation, Baltimore, MD.
- Lichvar, R.W., D.L Banks, W.N. Kirchner, and N.C. Melvin. 2016.
 The National Wetland Plant List: 2016 Wetland Ratings.
 Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN2153 733X.
- Natural Resource Conservation Service Water Agricultural Applied Climate Information Center: Portland WTR B. 1981-2020. U.S. Department of Agriculture. Available: http://agacis.rcc-acis.org
- Oregon Department of State Lands. 2012. A Guide to the Removal-Fill Permit Process. Salem, OR. April 2012.
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed [1/23/2020]

EXHIBIT I

Geotechnical Investigation and Consultation Services

Proposed The Views Planned Development Site

Tax Lot No's. 200 and 500

41717 Highway 26

Sandy (Clackamas County), Oregon

for

Even Better Homes, Inc.

Project No. 1666.002.G May 15, 2020

May 15, 2020

Mr. Mac Even Even Better Homes, Inc. P.O. Box 2021 Gresham, Oregon 97030

Dear Mr. Even:

Re: Geotechnical Investigation and Consultation Services, Proposed The Views Planned Development Site, Tax Lot No's. 200 and 500, 41717 Highway 26, Sandy (Clackamas County), Oregon

Submitted herewith is our report entitled "Geotechnical Investigation and Consultation Services, Proposed The Views Planned Development Site, Tax Lot No's. 200 and 500, 41717 Highway 26, Sandy (Clackamas County), Oregon". The scope of our services was outlined in our formal proposal to Mr. Mac Even of Even Better Homes, Inc. dated November 20, 2019. Authorization of our services was provided by Mr. Mac Even on December 19, 2019.

During the course of our investigation, we have kept you and/or others advised of our schedule and preliminary findings. We appreciate the opportunity to assist you with this phase of the project. Should you have any questions regarding this report, please do not hesitate to call.

Sincerely,

Daniel M. Redmond, P.E., G.E. President/Principal Engineer

Cc: Mr. Ray Moore All County Surveyors & Planners, Inc.

PO Box 20547 • Portland, OREGON 97294 • FAX 503/286-7176 • PHONE 503/285-0598

TABLE OF CONTENTS

	Page No.	
INTRODUCTION	1	
PROJECT DESCRIPTION	1	
SCOPE OF WORK	2	
SITE CONDITIONS	3	
Site Geology	3	
Surface Conditions	4	
Subsurface Soil Conditions	4	12
Groundwater	5	
INFILTRATION TESTING	5	
LABORATORY TESTING	5	
SEISMICITY AND EARTHQUAKE SOURCES	. 5	
Liquefaction	6	
Landslides	7	
Surface Rupture	8	
Tsunami and Seiche	8	
Flooding and Erosion	8	
SLOPE STABILITY ANALYSIS	8	
CONCLUSIONS AND RECOMMENDATIONS	9	
General	9	
Site Preparation	10	
Foundation Support	12	
Shallow Foundations	12	

Table of Contents (continued)

Floor Slab Support	13
Retaining/Below Grade Walls	13
Pavements	14
Collector Streets	14
Local Residential Street	15
Private Access Drives and Parking	15
Pavement Subgrade, Base Course & Asphalt Materials	16
Wet Weather Grading and Soft Spot Mitigation	16
Shrink-Swell and Frost Heave	17
Excavations/Slopes	17
Surface Drainage/Groundwater	17
Design Infiltration Rates	18
Seismic Design Considerations	18
CONSTRUCTION MONITORING AND TESTING	19
CLOSURE AND LIMITATIONS	19
LEVEL OF CARE	20
REFERENCES	21
ATTACHMENTS	
Figure No. 1 - Site Vicinity Map Figure No's. 2A and 2B - Site Exploration Plan(s) Figure No. 3 - Typical Fill Slope Key and Bench Detail Figure No. 4 - Perimeter Footing/Retaining Wall Drain Detail	

REDMOND GEOTECHNICAL SERVICES

14

Table of Contents (continued)

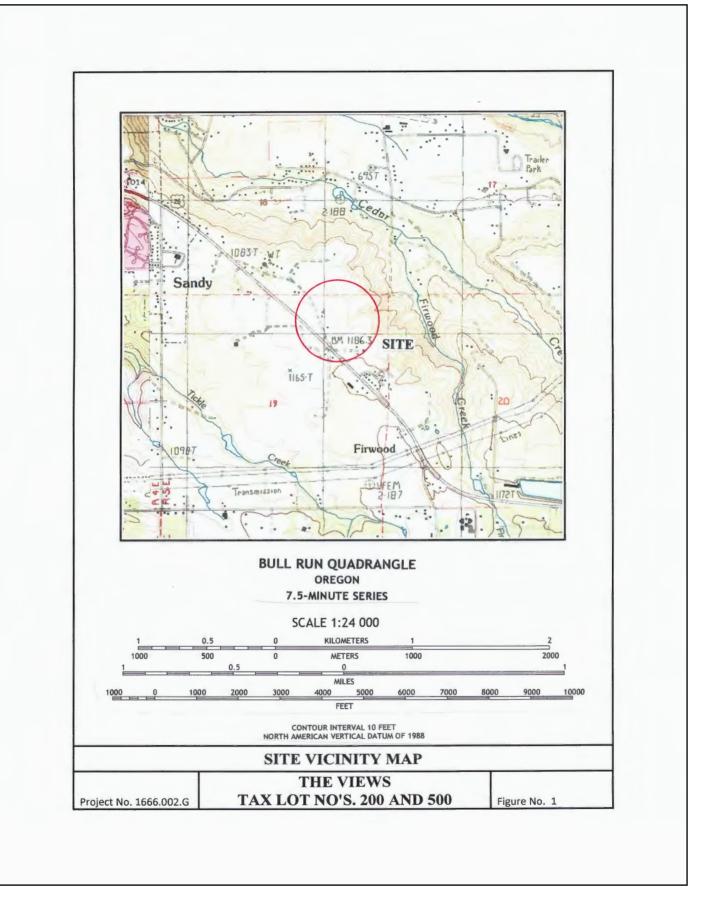
APPENDIX A

Test Pit Logs and Laboratory Data

APPENDIX B

Slope Stability Analysis

GEOTECHNICAL INVESTIGATION AND CONSULTATION SERVICES PROPOSED THE VIEWS PLANNED DEVELOPMENT SITE TAX LOT NO'S. 200 AND 500 41717 HIGHWAY 26 SANDY (CLACKAMAS COUNTY) OREGON


INTRODUCTION

Redmond Geotechnical Services, LLC is please to submit to you the results of our Geotechnical Investigation and Consultation Services at the site of the proposed new The Views planned development project located to the east of Highway 26 and to the east and/or west of the intersection of SE Vista Loop Drive in Sandy (Clackamas County), Oregon. The general location of the subject site is shown on the Site Vicinity Map, Figure No. 1. The purpose of our geotechnical investigation and consultation services at this time was to explore the existing subsurface soils and/or groundwater conditions across the subject site and to evaluate any potential concerns with regard to development at the site as well as to develop and/or provide appropriate geotechnical design and construction recommendations for the proposed new The Views planned development project.

PROJECT DESCRIPTION

Based on a review of the proposed site development plans, we understand that present plans will consist of the construction of a new planned development. Reportedly, the project will consist of the development and/or construction of approximately one hundred and twenty-two (122) new mixed use structures and/or lots ranging in size from about 2,000 to 11,000 square feet. We understand that the lots will primarily be developed with new single-family, one- and/or two-story wood-frame residential structures. However, construction of new two- and/or three-story wood-frame multi-family (apartment) buildings is also planned.

Support of the new single- and/or multi-family residential structures is anticipated to consist primarily of conventional shallow strip (continuous) footings although some individual (column) footings will also be required. Additionally, we envision that the proposed new single-and/or multi-family residential structures will be constructed with raised wooden post and beams floors and/or concrete slab-on-grade floors, respectively. Further, due to the sloping site grades, we anticipate that some of the proposed new residential homes and/or structures may be constructed with partial and/or below level. As such, construction of some below grade retaining walls is also anticipated form the project. Structural loading information, although unavailable at this time, is anticipated to be fairly typical for this type of single- and/or four-story wood-frame structures and is expected to result in maximum dead plus live continuous (strip) and individual (column) footing loads on the order of about 1.5 to 4.0 kips per lineal foot (klf) and 10 to 35 kips, respectively.

Other associated site improvements for the project will include construction of new paved public streets and/or private access drives and parking areas. Additionally, the project will include the construction of new underground utility services as well as new concrete curbs and sidewalks. Further, we understand that development of the site will also include the collection of storm water from hard and/or impervious surfaces (i.e., roofs and pavements) for on-site treatment and disposal within various storm water detention facilities designed by the Civil Engineer.

Earthwork and grading operations for the project to bring the subject property to finish design grades and/or elevations will reportedly result in both cuts and/or fills. A review of the proposed site grading plans for the project indicate that cuts and/or fills of between ten (10) to fifteen (15) feet are generally anticipated across the site.

SCOPE OF WORK

The purpose of our geotechnical studies was to evaluate the overall subsurface soil and/or groundwater conditions underlying the subject site with regard to the proposed new residential development and construction at the site and any associated impacts or concerns with respect to development at the site as well as provide appropriate geotechnical design and construction recommendations for the project. Specifically, our geotechnical investigation included the following scope of work items:

- Review of available and relevant geologic and/or geotechnical investigation reports for the subject site and/or area including a Preliminary Report of Engineering Geology and Geotechnical Engineering Services for the proposed Timber Valley Development prepared by GeoDesign, Inc. dated August 24, 2007.
- 2. A detailed field reconnaissance and subsurface exploration program of the soil and ground water conditions underlying the site by means of eleven (11) exploratory test pit excavations. The exploratory test pits were excavated to depths ranging from about five (5) to eight (8) feet beneath existing site grades at the approximate locations as shown on the Site Exploration Plan, Figure No. 2. Additionally, field infiltration testing was also performed within various test pits excavated across the subject site.
- 3. Laboratory testing to evaluate and identify pertinent physical and engineering properties of the subsurface soils encountered relative to the planned site development and construction at the site. The laboratory testing program included tests to help evaluate the natural (field) moisture content and dry density, maximum dry density and optimum moisture content, gradational characteristics, Atterberg Limits and (remolded) direct shear strength tests as well as direct shear strength and "R"-value tests.

- 4. A literature review and engineering evaluation and assessment of the regional seismicity to evaluate the potential ground motion hazard(s) at the subject site. The evaluation and assessment included a review of the regional earthquake history and sources such as potential seismic sources, maximum credible earthquakes, and reoccurrence intervals as well as a discussion of the possible ground response to the selected design earthquake(s), fault rupture, landsliding, liquefaction, and tsunami and seiche flooding.
- 5. Engineering analyses utilizing the field and laboratory data as a basis for furnishing recommendations for foundation support of the proposed new residential structures. Recommendations include maximum design allowable contact bearing pressure(s), depth of footing embedment, estimates of foundation settlement, lateral soil resistance, and foundation subgrade preparation. Additionally, construction and/or permanent subsurface water drainage considerations have also been prepared. Further, our report includes recommendations regarding site preparation, placement and compaction of structural fill materials, suitability of the on-site soils for use as structural fill, criteria for import fill materials, and preparation of foundation, pavement and/or floor slab subgrades.
- 6. Flexible pavement design and construction recommendations for the proposed new public streets and private access drives and parking area improvements.

SITE CONDITIONS

Regional and Site Geology

The subject site and/or area is located on the eastern margin of the Portland Basin near where the basin meets the western edge of the Cascade Mountains physiographic province (Orr and Orr, 1999). Bedrock in this region consists of volcanic rocks emplaced tens of millions of years ago, associated with the Columbia River Basalt Group and with volcanics from the Western Cascades province (Gannet and Caldwell, 1998).

The volcanic basement is overlain by silts, sands and gravels of Miocene to Pleistocene age which form the majority of the basin fill in the area. The basin fill sediments generally are mapped as Sandy River Mudstone towards the lower portion of the assemblage inturn overlain by the Troutdale Formation, a series of gravels, sands and silts deposited by the ancestral Columbia River and smaller rivers flowing from the Cascade Mountains (Schlicker and Finlayson, 1979). In the vicinity of Sandy, the Troutdale Formation is overlain by the Springwater Formation, a conglomerate with some volcaniclastic sands, silts, and debris flows derived from the Cascade Range. The conglomerate consists of gravels, cobbles, and boulders of volcanic composition that are strongly and deeply weathered to completely decomposed residual soils often producing a red, fine-grained soil up to 75 feet deep.

Surface Conditions

The proposed new The Views planned development property consists of two (2) generally irregular shaped tax lots (TL's 200 and 500) which encompass a total plan area of approximately 35.32 acres. The proposed The Views planned development property is roughly located to the east of Highway 26 and to the east and west of the intersection with SE Vista Loop Drive. The easterly portion of the subject property (Tax Lot No. 500) is presently unimproved and consists of an existing tree farm while the westerly portion of the subject property (Tax Lot No. 20) is presently improved and contains an existing single-family residential home as well as various detached wooden outbuildings along the westerly site boundary. Surface vegetation across the easterly portion of the site generally consists of a light to moderate growth of grass and weeds as well as brush and numerous small to large sized trees across the easterly portion of the site. Additionally, the easterly portion of the subject property (Tax Lot No. 200) contains three (3) existing seasonal drainage basins.

Topographically, the westerly portion of the subject site (Tax Lot No. 500) is characterized as gently sloping terrain (i.e., less than 5 percent) descending downward towards the west with overall topographic relief estimated at about fifty (50) feet and ranges from a low about Elevation 1128 feet near the northwesterly corner of the subject site to a high of about Elevation 1178 near the southwesterly corner of the site. However, the easterly portion of the subject property (Tax Lot No. 200) is characterized as gently sloping to moderately steep terrain (i.e., 10 to 35 percent) descending downwards from the center of the subject property is estimated at about two hundred feet (200) and ranges from a low of about Elevation 990 feet near the bottom of the existing easterly seasonal drainage basin to a high of about Elevation 1190 feet near the existing westerly residential home site.

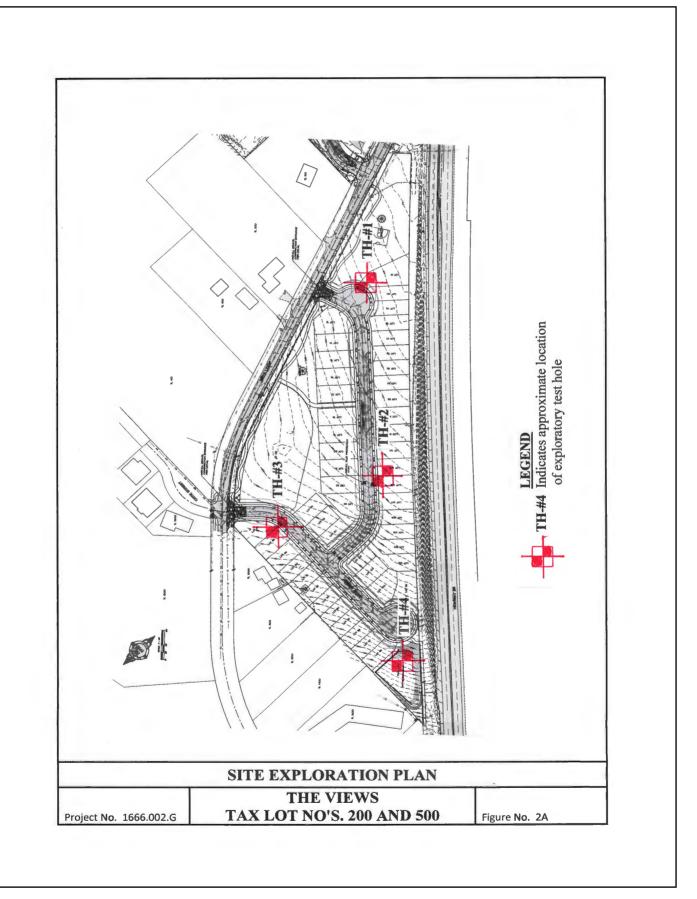
Subsurface Soil Conditions

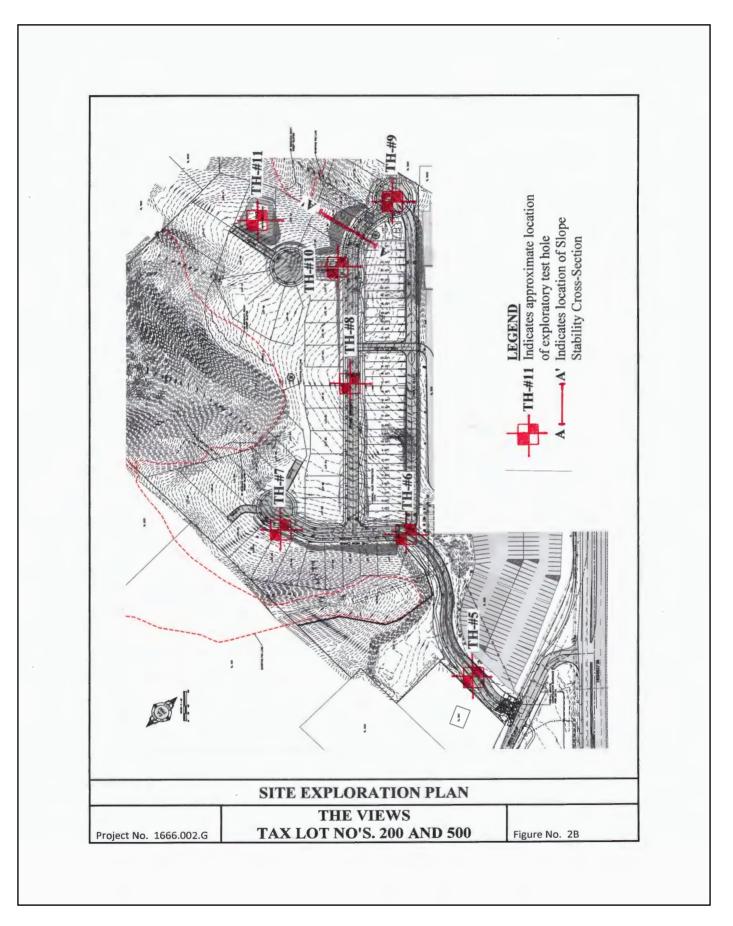
Our understanding of the subsurface soil conditions underlying the site was developed by means of eleven (11) exploratory test pits excavated to depths ranging from about five (5) to eight (8) feet beneath existing site grades on April 15, 2020 with a John Deere 200C track-mounted excavator. The location of the exploratory test pits were located in the field by marking off distances from existing and/or known site features and are shown in relation to the existing site features and/or site improvements on the Site Exploration Plan, Figure No's. 2A and 2B. Detailed logs of the test pit explorations, presenting conditions encountered at each location explored, are presented in the Appendix, Figure No's. A-4 through A-9.

The exploratory test pit excavations were observed by staff from Redmond Geotechnical Services, LLC who logged each of the test pit explorations and obtained representative samples of the subsurface soils encountered across the site. Additionally, the elevation of the exploratory test pit excavations were referenced from a site topographic survey and should be considered as approximate. All subsurface soils encountered at the site and/or within the exploratory test pit excavations were logged and classified in general conformance with the Unified Soil Classification System (USCS) which is outlined on Figure No. A-3.

The test pit explorations revealed that the subject site is underlain by native soil deposits comprised of residual soils and/or highly weathered bedrock deposits composed of a surficial layer of dark brown, wet, soft, organic, sandy, clayey silt topsoil materials to depths of about 12 to 14 inches. These surficial topsoil materials were inturn underlain by medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey silt to the maximum depth explored of about eight (8) feet beneath the existing site and/or surface grades. These sandy, clayey silt subgrade soils and/or residual soils (highly weathered bedrock deposits) are best characterized by relatively moderate strength and low to moderate compressibility.

Groundwater


Groundwater was not encountered within any of the exploratory test pit explorations (TH-#1 through TH-#11) at the time of excavation to depths of at least 8.0 feet beneath existing surface grades except. However, the northerly, easterly and southerly portions of the subject property contain existing seasonal drainage basins.


In this regard, groundwater elevations at the site may fluctuate seasonally in accordance with rainfall conditions and/or associated with runoff across the site as well as changes in site utilization. As such, we are generally of the opinion that the static water levels and/or surface water ponding observed and/or not observed during our recent field exploration work generally reflect the seasonal groundwater level(s) at and/or beneath the site.

INFILTRATION TESTING

We performed two (2) field infiltration tests at the site on April 15, 2020. The infiltration tests were performed in test holes TH-#4 and TH-#11 at depths of between five (5) and six (6) feet beneath the existing site and/or surface grades. The subgrade soils encountered in the infiltration test hole consisted of sandy, clayey silt. The infiltration testing was performed in general conformance with current EPA and/or the City of Sandy/Clackamas County Encased Falling Head test method which consisted of advancing a 6-inch diameter PVC pipe approximately 6 inches into the exposed soil horizon at each test location. Using a steady water flow, water was discharged into the pipe and allowed to penetrate and saturate the subgrade soils. The water level was adjusted over a two (2) hour period and allowed to achieve a saturated subgrade soil condition consistent with the bottom elevation of the surrounding test pit excavation. Following the required saturating period, water was again added into the PVC pipe and the time and/or rate at which the water level dropped was monitored and recorded. Each measurable drop in the water level was recorded until a consistent infiltration rate was observed and/or repeated.

Based on the results of the field infiltration testing at the site, we have found that the native sandy, clayey silt subgrade soil deposits posses an ultimate infiltration rate on the order of about 0.1 to 0.2 inches per hour (in/hr).

LABORATORY TESTING

Representative samples of the on-site subsurface soils were collected at selected depths and intervals from various test pit excavations and returned to our laboratory for further examination and testing and/or to aid in the classification of the subsurface soils as well as to help evaluate and identify their engineering strength and compressibility characteristics. The laboratory testing consisted of visual and textural sample inspection, moisture content and dry density determinations, maximum dry density and optimum moisture content, gradation analyses and Atterberg Limits as well as direct shear strength and "R"-value tests. Results of the various laboratory tests are presented in the Appendix, Figure No's. A-10 through A-15.

SEISMICITY AND EARTHQUAKE SOURCES

The seismicity of the southwest Washington and northwest Oregon area, and hence the potential for ground shaking, is controlled by three separate fault mechanisms. These include the Cascadia Subduction Zone (CSZ), the mid-depth intraplate zone, and the relatively shallow crustal zone. Descriptions of these potential earthquake sources are presented below.

The CSZ is located offshore and extends from northern California to British Columbia. Within this zone, the oceanic Juan de Fuca Plate is being subducted beneath the continental North American Plate to the east. The interface between these two plates is located at a depth of approximately 15 to 20 kilometers (km). The seismicity of the CSZ is subject to several uncertainties, including the maximum earthquake magnitude and the recurrence intervals associated with various magnitude earthquakes. Anecdotal evidence of previous CSZ earthquakes has been observed within coastal marshes along the Washington and Oregon coastlines. Sequences of interlayered peat and sands have been interpreted to be the result of large Subduction zone earthquakes occurring at intervals on the order of 300 to 500 years, with the most recent event taking place approximately 300 years ago. A study by Geomatrix (1995) and/or USGS (2008) suggests that the maximum earthquake associated with the CSZ is moment magnitude (Mw) 8 to 9. This is based on an empirical expression relating moment magnitude to the area of fault rupture derived from earthquakes that have occurred within Subduction zones in other parts of the world. An Mw 9 earthquake would involve a rupture of the entire CSZ. As discussed by Geomatrix (1995) this has not occurred in other subduction zones that have exhibited much higher levels of historical seismicity than the CSZ. However, the 2008 USGS report has assigned a probability of 0.67 for a Mw 9 earthquake and a probability of 0.33 for a Mw 8.3 earthquake. For the purpose of this study an earthquake of Mw 9.0 was assumed to occur within the CSZ.

The intraplate zone encompasses the portion of the subducting Juan de Fuca Plate located at a depth of approximately 30 to 50 km below western Washington and western Oregon. Very low levels of seismicity have been observed within the intraplate zone in western Oregon and western Washington. However, much higher levels of seismicity within this zone have been recorded in Washington and California. Several reasons for this seismic quiescence were suggested in the Geomatrix (1995) study and include changes in the direction of Subduction between Oregon, Washington, and British Columbia as well as the effects of volcanic activity along the Cascade Range.

Historical activity associated with the intraplate zone includes the 1949 Olympia magnitude 7.1 and the 1965 Puget Sound magnitude 6.5 earthquakes. Based on the data presented within the Geomatrix (1995) report, an earthquake of magnitude 7.25 has been chosen to represent the seismic potential of the intraplate zone.

The third source of seismicity that can result in ground shaking within the Vancouver and southwest Washington area is near-surface crustal earthquakes occurring within the North American Plate. The historical seismicity of crustal earthquakes in this area is higher than the seismicity associated with the CSZ and the intraplate zone. The 1993 Scotts Mills (magnitude 5.6) and Klamath Falls (magnitude 6.0), Oregon earthquakes were crustal earthquakes.

Liquefaction

Seismic induced soil liquefaction is a phenomenon in which lose, granular soils and some silty soils, located below the water table, develop high pore water pressures and lose strength due to ground vibrations induced by earthquakes. Soil liquefaction can result in lateral flow of material into river channels, ground settlements and increased lateral and uplift pressures on underground structures. Buildings supported on soils that have liquefied often settle and tilt and may displace laterally. Soils located above the ground water table cannot liquefy, but granular soils located above the water table may settle during the earthquake shaking.

Our review of the subsurface soil test pit logs from our exploratory field explorations (TH-#1 through TH-#11) and laboratory test results indicate that the site is generally underlain by medium stiff to stiff, sandy, clayey silt residual soils and/or highly weathered bedrock deposits to depths of at least 8.0 feet beneath existing site grades. Additionally, groundwater was generally not encountered within any of the exploratory test pit excavations (TH-#1 through TH-#11) at the site during our field exploration work.

As such, due to the medium stiff to stiff and/or cohesive nature of the sandy, clayey silt subgrade soils and/or highly weathered bedrock deposits beneath the site, it is our opinion that the native clayey, sandy silt subgrade soil and/or highly weathered bedrock deposits located beneath the subject site have a very low potential for liquefaction during the design earthquake motions previously described.

Landslides

No ancient and/or active landslides were observed or are known to be present on the subject site. Additionally, the subject property does not contain any steep slopes (i.e., greater than 40 percent). As such, development of the subject site into the planned residential development does not appear to present a potential geologic and/or landslide hazard provided that the site grading and development activities conform with the recommendations presented within this report.

Surface Rupture

Although the site is generally located within a region of the country known for seismic activity, no known faults exist on and/or immediately adjacent to the subject site. As such, the risk of surface rupture due to faulting is considered negligible.

Tsunami and Seiche

A tsunami, or seismic sea wave, is produced when a major fault under the ocean floor moves vertically and shifts the water column above it. A seiche is a periodic oscillation of a body of water resulting in changing water levels, sometimes caused by an earthquake. Tsunami and seiche are not considered a potential hazard at this site because the site is not near to the coast and/or there are no adjacent significant bodies of water.

Flooding and Erosion

Stream flooding is a potential hazard that should be considered in lowland areas of Clackamas County and Sandy. The FEMA (Federal Emergency Management Agency) flood maps should be reviewed as part of the design for the proposed new residential structures and site improvements. Elevations of structures on the site should be designed based upon consultants reports, FEMA (Federal Emergency Management Agency), and Clackamas County requirements for the 100-year flood levels of any nearby creeks, streams and/or drainage basins.

SLOPE STABILITY ANALYSIS

For the purpose of evaluating slope stability at the subject site, we performed quantitative slope stability modeling and analyses based upon the existing site conditions and/or the proposed site development plan.

Quantitative slope stability modeling and analyses were performed to evaluate slope stability on the site under the existing and/or post construction in-situ conditions using Slide 7.0 computer program developed by Rocscience, Inc. of Toronto, Ontario, Canada. This numerical analysis program utilizes a two-dimensional limiting equilibrium method to calculate the factor of safety of a potential slip surface, and incorporates search routines to identify the most critical potential failure surfaces for the case(s) analyzed. Factors of safety were calculated using Bishop and Janbu method of slices.

Proposed residential development at the subject site is anticipated to be constructed at and/or above the existing in-situ soil conditions of the existing easterly descending slope at the site and were modeled as a two (2) layer system with the upper layer as sandy, clayey silt structural fill soil and the lower layer as the existing (native) very moist, medium stiff to stiff, sandy, clayey silt residual soils encountered in test holes TH-#1 through TH-#11. Site and slope topography, subsurface geometry, and other site conditions modeled in the analyses are based on a topographic map provided by the client and/or our field measurements. In our analysis, we considered potential groundwater levels to be located greater than 50 feet beneath the site.

For stability calculations, the potential failure model was considered primarily as circular sliding along a basal shear surface. Shear strength parameters used in the model were selected based on soil conditions encountered in the test pits, SPT N-value correlations, and our local experience with similar soil types and geologic conditions. The results of our slope stability analyses for the proposed single-family residential structures constructed above the in-situ subgrade soil conditions on structural fill soils are summarized in Table 2. The slope stability analyses cross-section is presented as an attachment to this report in Appendix B. The location of the cross-section used is indicated on the Site Exploration Plan, Figure No. 2B.

Geologic Unit	Wet Unit Weight (pcf)	Friction Angle	Cohesion (psf)
STRUCTURAL FILL: sandy, clayey SILT (ML)	100	26	450
Medium stiff, sandy, clayey SILT (ML)	100	24	400

Table 1 - Summary of Estimated In-Situ/Fill Soil Strength Parameters

Table 2 - Summary of Slope Stability Analyses for In-Situ/Fill Soil Conditions with Proposed Development

Pre-Construction	Factor of Safety (Static)	Factor of Safety (Seismic)
Cross-Section A-A'	2.882	1.567

The results of the quantitative slope stability modeling and analysis performed using Slide 7.0 computer program indicated an existing in-situ and/or post construction slope stability factor of safety (FS) under static and seismic loading greater than 1.5 and 1.2 (see Slope Stability Results in Appendix B). In our opinion, the calculated factor of safety is adequate for the proposed residential construction and development of the subject site as we understand it.

CONCLUSIONS AND RECOMMENDATIONS

General

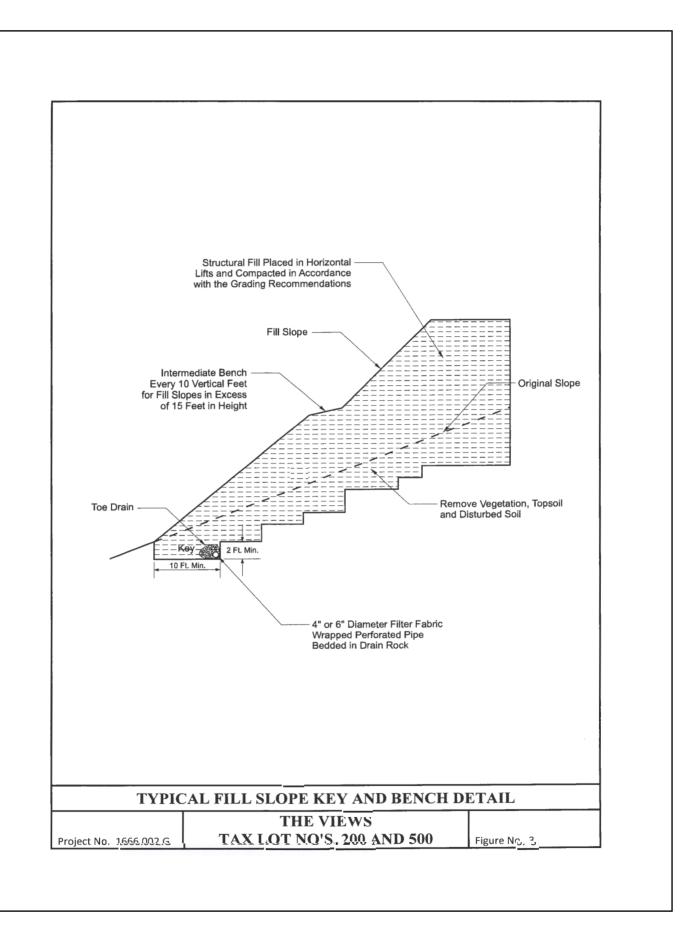
Based on the results of our field explorations, laboratory testing, and engineering analyses, it is our opinion that the site is presently stable and suitable for the proposed new The Views planned development and its associated site improvements provided that the recommendations contained within this report are properly incorporated into the design and construction of The Views planned. development project.

The primary features of concern at the site are 1) the presence of highly moisture sensitive clayey and silty subgrade soils across the site, 2) the presence of gently to moderately steep sloping site conditions across the site and 3) the relatively low infiltration rates anticipated within the near surface clayey and silty subgrade soils.

With regard to the moisture sensitive clayey and silty subgrade soils, we are generally of the opinion that all site grading and earthwork activities be scheduled for the drier summer months which is typically June through September. In regards to the gently to moderately steep sloping site conditions across the site, we are of the opinion that site grading and/or structural fill placement should be minimized where possible and should generally limit cuts and/or fills to about fifteen (15) feet unless approved by the Geotechnical Engineer. Additionally, where existing site slopes and/or surface grades exceed about 20 percent (1V:5H) and in order to construct the proposed new site improvements, benching and keying of all fills into the natural site slopes will be required. Further, due to the presence of the existing seasonal drainage basins at the site, the use of subdrains will be required beneath all structural fills and/or within all fill slopes. In addition to the above, we recommend that each lot which borders the moderately steep slopes (Lots 33 through 40 and Lots 57 through 71) engage a Geotechnical Engineer to provide site specific design and construction recommendations for the proposed single-family residential structure. With regard to the relatively low infiltration rates anticipated within the clayey and silty subgrade soils beneath the site, we generally do not recommend any storm water detention and/or infiltration within structural and/or embankment fills. However, storm water detention and some infiltration may be feasible within storm water detention basins excavated into the existing medium stiff to stiff, sandy, clayey silt residual soils. In this regard, we recommend that all proposed storm water detention and/or infiltration systems for the project be reviewed and approved by Redmond Geotechnical Services, LLC.

The following sections of this report provide specific recommendations regarding subgrade preparation and grading as well as foundation and floor slab design and construction for the new The Views planned development project.

Site Preparation


As an initial step in site preparation, we recommend that the proposed new The Views planned development site as well as any associated structural and/or site improvement area(s) be stripped and cleared of all existing improvements, any existing unsuitable fill materials, surface debris, existing vegetation, topsoil materials, and/or any other deleterious materials present at the time of construction. In general, we envision that the site stripping to remove existing vegetation and topsoil materials will generally be about 12 inches. However, localized areas requiring deeper removals, such as any existing undocumented and/or unsuitable fill materials as well as old foundation remnants, will likely be encountered and should be evaluated at the time of construction by the Geotechnical Engineer. The stripped and cleared materials should be properly disposed of as they are generally considered unsuitable for use/reuse as fill materials.

Following the completion of the site stripping and clearing work and prior to the placement of any required structural fill materials and/or structural improvements, the exposed subgrade soils within the planned structural improvement area(s) should be inspected and approved by the Geotechnical Engineer and possibly proof-rolled with a half and/or fully loaded dump truck. Areas found to be soft or otherwise unsuitable should be over-excavated and removed or scarified and recompacted as structural fill. During wet and/or inclement weather conditions, proof rolling and/or scarification and recompaction as noted above may not be appropriate.

The on-site native sandy, clayey silt subgrade soil materials are generally considered suitable for use/reuse as structural fill materials provided that they are free of organic materials, debris, and rock fragments in excess of about 6 inches in dimension. However, if site grading is performed during wet or inclement weather conditions, the use of some of the on-site native soil materials which contain significant silt and clay sized particles will be difficult at best. In this regard, during wet or inclement weather conditions, we recommend that an import structural fill material be utilized which should consist of a free-draining (clean) granular fill (sand & gravel) containing no more than about 5 percent fines. Representative samples of the materials which are to be used as structural fill materials should be submitted to the Geotechnical Engineer and/or laboratory for approval and determination of the maximum dry density and optimum moisture content for compaction.

In general, all site earthwork and grading activities should be scheduled for the drier summer months (June through September) if possible. However, if wet weather site preparation and grading is required, it is generally recommended that the stripping of topsoil materials be accomplished with a tracked excavator utilizing a large smooth-toothed bucket working from areas yet to be excavated. Additionally, the loading of strippings into trucks and/or protection of moisture sensitive subgrade soils will also be required during wet weather grading and construction. In this regard, we recommend that areas in which construction equipment will be traveling be protected by covering the exposed subgrade soils with a geotextile fabric such as Mirafi FW404 followed by at least 12 inches or more of crushed aggregate base rock. Further, the geotextile fabric should have a minimum Mullen burst strength of at least 250 pounds per square inch for puncture resistance and an apparent opening size (AOS) between the U.S. Standard No. 70 and No. 100 sieves.

All structural fill materials placed within the new building and/or pavement areas should be moistened or dried as necessary to near (within 3 percent) optimum moisture conditions and compacted by mechanical means to a minimum of 92 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Structural fill materials should be placed in lifts (layers) such that when compacted do not exceed about 8 inches. Additionally, all fill materials placed within five (5) lineal feet of the perimeter (limits) of the proposed single-family and/or multi-family structures and/or pavements should be considered structural fill. Additionally, due to the sloping site conditions, we recommend that all structural fill materials planned in areas where existing surface and/or slope gradients exceed about 20 percent (1V:5H) be properly benched and/or keyed into the native (natural) slope subgrade soils. In general, a bench width of about eight (8) to ten (10) feet and a keyway depth of about one (1) to one and one-half (1.5) feet is recommended (see Typical Fill Slope Key and Bench Detail, Figure No. 3).

However, the actual bench width and keyway depth should be determined at the time of construction by the Geotechnical Engineer. Further, all fill slopes should be constructed with a finish slope surface gradient no steeper than about 2H:1V. All aspects of the site grading, including a review of the proposed site grading plan(s), should be approved and/or monitored by a representative of Redmond Geotechnical Services, LLC.

Foundation Support

Based on the results of our investigation, it is our opinion that the site of the proposed new The Views planned development is suitable for support of the planned single- and/or three-story wood-frame structures provided that the following foundation design recommendations are followed. The following sections of this report present specific foundation design and construction recommendations for the planned new single-family and/or multi-family structures.

Shallow Foundations

In general, conventional shallow continuous (strip) footings and individual (spread) column footings may be supported by approved native (untreated) subgrade soil materials and/or clayey silt structural fill soils based on an allowable contact bearing pressure of about 2,000 pounds per square foot (psf). This recommended allowable contact bearing pressure is intended for dead loads and sustained live loads and may be increased by one-third for the total of all loads including short-term wind or seismic loads. In general, continuous strip footings should have a minimum width of at least 16 inches and be embedded at least 18 inches below the lowest adjacent finish grade (includes frost protection). Individual column footings (where required) should be embedded at least 18 inches below grade and have a minimum width of at least 24 inches. Additionally, if foundation excavation and construction work is planned to be performed during wet and/or inclement weather conditions, we recommend that a 2- to 4-inch layer of compacted crushed rock be used to help protect the exposed foundation bearing surfaces until the placement of concrete.

Total and differential settlements of foundations constructed as recommended above and supported by approved native subgrade soils or by properly compacted structural fill materials are expected to be well within the tolerable limits for this type of wood-frame structure and should generally be less than about 1-inch and 1/2-inch, respectively.

Allowable lateral frictional resistance between the base of the footing element and the supporting subgrade bearing soil can be expressed as the applied vertical load multiplied by a coefficient of friction of 0.30 and 0.45 for native silty subgrade soils and/or import gravel fill materials, respectively. In addition, lateral loads may be resisted by passive earth pressures on footings poured "neat" against in-situ (native) subgrade soils or properly backfilled with structural fill materials based on an equivalent fluid density of 250 pounds per cubic foot (pcf). This recommended value includes a factor of safety of approximately 1.5 which is appropriate due to the amount of movement required to develop full passive resistance.

Floor Slab Support

In order to provide uniform subgrade reaction beneath concrete slab-on-grade floors, we recommend that the floor slab area be underlain by a minimum of 6 inches of free-draining (less than 5 percent passing the No. 200 sieve), well-graded, crushed rock. The crushed rock should help provide a capillary break to prevent migration of moisture through the slab. However, additional moisture protection can be provided by using a 10-mil polyolefin geo-membrane sheet such as StegoWrap.

The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Where floor slab subgrade materials are undisturbed, firm and stable and where the underslab aggregate base rock section has been prepared and compacted as recommended above, we recommend that a modulus of subgrade reaction of 150 pci be used for design.

Retaining/Below Grade Walls

Retaining and/or below grade walls should be designed to resist lateral earth pressures imposed by native soils or granular backfill materials as well as any adjacent surcharge loads. For walls which are unrestrained at the top and free to rotate about their base, we recommend that active earth pressures be computed on the basis of the following equivalent fluid densities:

Slope Backfill (Horizontal/Vertical)	Equivalent Fluid Density/Silt (pcf)	Equivalent Fluid Density/Gravel (pcf)
Level	35	30
3H:1V	60	50
2H:1V	90	80

Non-Restrained Retaining Wall Pressure Design Recommendations

For walls which are fully restrained at the top and prevented from rotation about their base, we recommend that at-rest earth pressures be computed on the basis of the following equivalent fluid densities:

Restrained Retaining Wall Pressure Design Recommendations

Slope Backfill (Horizontal/Vertical)	Equivalent Fluid Density/Silt (pcf)	Equivalent Fluid Density/Gravel (pcf)
Level	45	35
3H:1V	65	60
2H:1V	95	90

The above recommended values assume that the walls will be adequately drained to prevent the buildup of hydrostatic pressures. Where wall drainage will not be present and/or if adjacent surcharge loading is present, the above recommended values will be significantly higher.

Backfill materials behind walls should be compacted to 90 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Special care should be taken to avoid over-compaction near the walls which could result in higher lateral earth pressures than those indicated herein. In areas within three (3) to five (5) feet behind walls, we recommend the use of hand-operated compaction equipment.

Pavements

Flexible pavement design for the proposed new public street improvements as well as the proposed new private drives and parking area improvements for The Views planned development was determined in accordance with the City of Sandy and/or Clackamas County Department of Public Works standards.

The subgrade soil samples collected at the site were tested in the laboratory in accordance with the ASTM Vol. 4.08 Part D-2844-69 (AASHTO T-190-93) test method for the determination of the subgrade soil "R"-value and expansion pressure. The results of the "R"-value testing was then converted to an equivalent Resilient Modulus (MRsG) in accordance with current AASHTO methodology. The results of the laboratory "R"-value tests revealed that the subgrade soils have an apparent "R"-value of between 29 and 31 with an average "R"-value to Resilient Modulus (MRsG), the subgrade soils have a Resilient Modulus (MRsG) of about 6,070 psi which is classified a "Fair" (MRsG = 5,000 psi to 10,000 psi). Based on the above, we recommend that the asphaltic concrete pavement section(s) for the new The Views planned development areas at the site consist of the following:

Collector Streets

The following documents and/or design input parameters were used to help determine the flexible pavement section design for improvements to new and/or existing Collector Streets:

- . Street Classification: Collector Street
- . Design Life: 20 years
- . Serviceability: 4.2 initial, 2.5 terminal
- . Traffic Loading Data: 1,000,000 18-kip EAL's
- . Reliability Level: 90%
- . Drainage Coefficient: 1.0 (asphalt), 0.8 (aggregate)
- . Asphalt Structural Coefficient: 0.41
- . Aggregate Structural Coefficient: 0.10

Based on the above design input parameters and using the design procedures contained within the AASHTO 1993 Design of Pavement Structures Manual, a Structural Number (SN) of 4.1 was determined. In this regard, we recommend the following flexible pavement section for the new improvements to new and/or existing Collector Streets:

Material Type	Pavement Section (inches)
Asphaltic Concrete	5.0
Aggregate Base Rock	14.0

Local Residential Streets

The following documents and/or design input parameters were used to help determine the flexible pavement section design for new local residential streets:

- . Street Classification: Local Residential Street
- . Design Life: 25 years
- . Serviceability: 4.2 initial, 2.5 terminal
- . Traffic Loading Data: 100,000 18-kip EAL's
- . Reliability Level: 90%
- . Drainage Coefficient: 1.0 (asphalt), 0.8 (aggregate)
- . Asphalt Structural Coefficient: 0.41
- . Aggregate Structural Coefficient: 0.10

Based on the above design input parameters and using the design procedures contained within the AASHTO 1993 Design of Pavement Structures Manual, a Structural Number (SN) of 2.6 was determined. In this regard, we recommend the following flexible pavement section for the construction of new Local Residential Streets:

Material Type	Pavement Section (inches)
Asphaltic Concrete	4.0
Aggregate Base Rock	10.0

Private Access Drives and Parking Areas

We recommend that the asphaltic concrete pavement section(s) for any private access drives and parking areas associated with The Views planned development areas consist of the following:

	Asphaltic Concrete Thickness (inches)	Crushed Base Rock Thickness (inches)
Automobile Parking Areas	3.0	8.0
Automobile Drive Areas	3.5	10.0

Note: Where heavy vehicle traffic is anticipated such as those required for fire and/or garbage trucks, we recommend that the automobile drive area pavement section be increased by adding 0.5 inches of asphaltic concrete and 2.0 inches of aggregate base rock. Additionally, the above recommended flexible pavement section(s) assumes a design life of 20 years.

Pavement Subgrade, Base Course & Asphalt Materials

The above recommended pavement section(s) were based on the design assumptions listed herein and on the assumption that construction of the pavement section(s) will be completed during an extended period of reasonably dry weather. All thicknesses given are intended to be the minimum acceptable. Increased base rock sections and the use of a woven geotextile fabric may be required during wet and/or inclement weather conditions and/or in order to adequately support construction traffic and protect the subgrade during construction. Additionally, the above recommended pavement section(s) assume that the subgrade will be prepared as recommended herein, that the exposed subgrade soils will be properly protected from rain and construction traffic, and that the subgrade is firm and unyielding at the time of paving. Further, it assumes that the subgrade is graded to prevent any ponding of water which may tend to accumulate in the base course.

Pavement base course materials should consist of well-graded 1-1/2 inch and/or 3/4-inch minus crushed base rock having less than 5 percent fine materials passing the No. 200 sieve. The base course and asphaltic concrete materials should conform to the requirements set forth in the latest edition of the Oregon Department of Transportation, Standard Specifications for Highway Construction. The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. The asphaltic concrete paving materials should be compacted to at least 92 percent of the theoretical maximum density as determined by the ASTM D-2041 (Rice Gravity) test method.

Wet Weather Grading and Soft Spot Mitigation

Construction of the proposed new paved site improvements is generally recommended during dry weather. However, during wet weather grading and construction, excavation to subgrade can proceed during periods of light to moderate rainfall provided that the subgrade remains covered with aggregate. A total aggregate thickness of 8- to 12-inches may be necessary to protect the subgrade soils from heavy construction traffic. Construction traffic should not be allowed directly on the exposed subgrade but only atop a sufficient compacted base rock thickness to help mitigate subgrade pumping. If the subgrade becomes wet and pumps, no construction traffic shall be allowed on the road alignment. Positive site drainage shall be maintained if site paving will not occur before the on-set of the wet season.

Depending on the timing for the project, any soft subgrade found during proof-rolling or by visual observations can either be removed and replaced with properly dried and compacted fill soils or removed and replaced with compacted crushed aggregate. However, and where approved by the Geotechnical Engineer, the soft area may be covered with a bi-axial geogrid and covered with compacted crushed aggregate.

Soil Shrink-Swell and Frost Heave

The results of the laboratory "R"-value tests indicate that the native subgrade soils possess a low to moderate expansion potential. As such, the exposed subgrade soils should not be allowed to completely dry and should be moistened to near optimum moisture content (plus or minus 3 percent) at the time of the placement of the crushed aggregate base rock materials. Additionally, exposure of the subgrade soils to freezing weather may result in frost heave and softening of the subgrade. As such, all subgrade soils exposed to freezing weather should be evaluated and approved by the Geotechnical Engineer prior to the placement of the crushed aggregate base rock materials.

Excavation/Slopes

Temporary excavations of up to about four (4) feet in depth may be constructed with near vertical inclinations. Temporary excavations greater than about four (4) feet but less than eight (8) feet should be excavated with inclinations of at least 1 to 1 (horizontal to vertical) or properly braced/shored. Where excavations are planned to exceed about eight (8) feet, this office should be consulted. All shoring systems and/or temporary excavation bracing for the project should be the responsibility of the excavation contractor. Permanent slopes should be constructed no steeper than about 2H to 1V unless approved by the Geotechnical Engineer.

Depending on the time of year in which trench excavations occur, trench dewatering may be required in order to maintain dry working conditions if the invert elevations of the proposed utilities are located at and/or below the groundwater level. If groundwater is encountered during utility excavation work, we recommend placing trench stabilization materials along the base of the excavation.

Trench stabilization materials should consist of 1-foot of well-graded gravel, crushed gravel, or crushed rock with a maximum particle size of 4 inches and less than 5 percent fines passing the No. 200 sieve. The material should be free of organic matter and other deleterious material and placed in a single lift and compacted until well keyed.

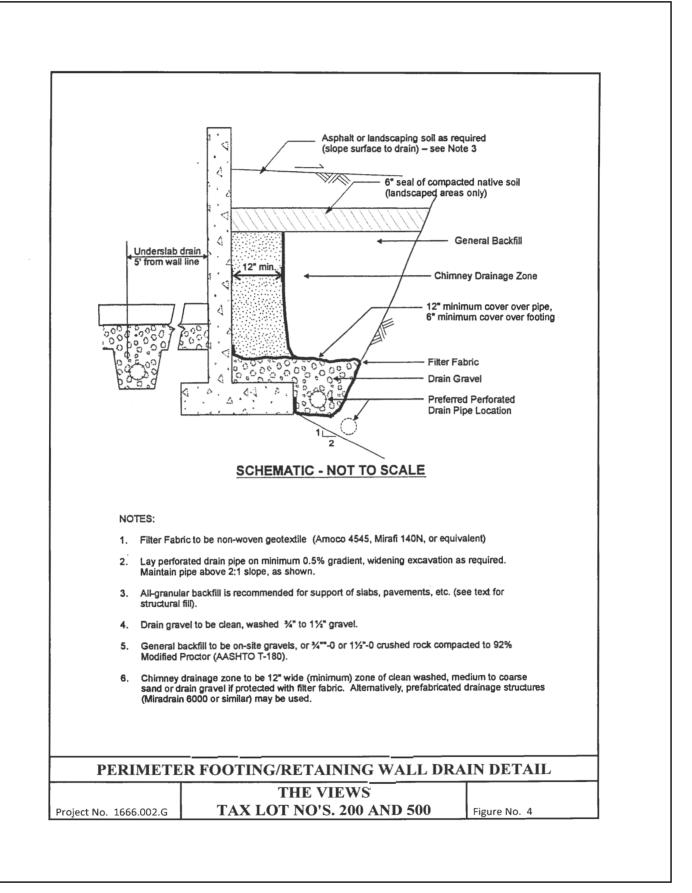
Surface Drainage/Groundwater

We recommend that positive measures be taken to properly finish grade the site so that drainage waters from the residential structures and landscaping areas as well as adjacent properties or buildings are directed away from the new single- and/or multi-family residential structures foundations and/or floor slabs. All roof drainage should be directed into conduits that carry runoff water away from the residential structures to a suitable outfall. Roof downspouts should not be connected to foundation drains. A minimum ground slope of about 2 percent is generally recommended in unpaved areas around the proposed new residential structures.

Groundwater was not encountered at the site within any of the exploratory test pits excavated at the site at the time of excavation to depths of up to 8.0 feet beneath existing site grades. However, the northerly, easterly and southerly portion(s) of the site contain existing seasonal drainage basins. Further, groundwater elevations in the area and/or across the subject property may fluctuate seasonally and may temporarily pond/perch near the ground surface during periods of prolonged rainfall.

As such, based on our current understand of the possible site grading required to bring the subject site to finish design grade(s), we are of the opinion that an underslab drainage system is generally not required for the proposed multi-family residential structures. However, a perimeter foundation drain is recommended for any perimeter footings and/or below grade retaining walls. A typical recommended perimeter footing/retaining wall drain detail is shown on Figure No. 4. Additionally, a subdrain is recommended beneath and/or within all structural fills which are constructed within and/or above the existing seasonal drainage basins. Further, due to our understanding that various storm water detention and/or infiltration basins will be utilized for the project as well as the relatively low infiltration rates of the near surface sandy, clayey silt subgrade soils and/or highly weathered bedrock deposits anticipated within and/or near to the foundation bearing level of the proposed residential structures, we are generally of the opinion that storm water detention basins and/or infiltration systems should not be utilized around and/or up-gradient of the proposed residential structures unless approved by the Geotechnical Engineer.

Design Infiltration Rates


Based on the results of our field infiltration testing, we recommend using the following infiltration rate to design any on-site near surface storm water infiltration and/or disposal systems for the project:

Subgrade Soil Type	Recommended Infiltration Rate
sandy, clayey SILT (ML)	less than 0.1 inches per hour (in/hr)

Note: A safety factor of two (2) was used to calculate the above recommended design infiltration rate. Additionally, given the gradational variability of the on-site sandy, clayey sit subgrade soils beneath the site as well as the anticipation of some site grading for the project, it is generally recommended that field testing be performed during and/or following construction of any on-site storm water infiltration system(s) in order to confirm that the above recommended design infiltration rates are appropriate.

Seismic Design Considerations

Structures at the site should be designed to resist earthquake loading in accordance with the methodology described in the 2019 and/or latest edition of the State of Oregon Structural Specialty Code (OSSC) and/or Amendments to the 2015 International Building Code (IBC).

The maximum considered earthquake ground motion for short period and 1.0 period spectral response may be determined from the Oregon Structural Specialty Code and/or from the National Earthquake Hazard Reduction Program (NEHRP) "Recommended Provisions for Seismic Regulations for New Buildings and Other Structures" published by the Building Seismic Safety Council. We recommend Site Class "D" be used for design. Using this information, the structural engineer can select the appropriate site coefficient values (Fa and Fv) from the 2015 IBC and/or ASCE 7-16 to determine the maximum considered earthquake spectral response acceleration for the project. However, we have assumed the following response spectrum for the project:

Site Class	Ss	S1	Fa	Fv	Sms	Sm1	Sds	Sd1
D	0.698	0.311	1.241	1.989	0.867	0.619	0.578	0.413

Table 1. Recommended Seismic Design Parameters

Notes: 1. Ss and S1 were established based on the ASCE 7-16 mapped maximum considered earthquake spectral acceleration maps for 2% probability of exceedence in 50 years.

2. Fa and Fv were established based on the ASCE 7-16 using the selected S_s and S_1 values.

CONSTRUCTION MONITORING AND TESTING

We recommend that **Redmond Geotechnical Services, LLC** be retained to provide construction monitoring and testing services during all earthwork operations for the proposed new The Views planned development. The purpose of our monitoring services would be to confirm that the site conditions reported herein are as anticipated, provide field recommendations as required based on the actual conditions encountered, document the activities of the grading contractor and assess his/her compliance with the project specifications and recommendations. It is important that our representative meet with the contractor prior to any site grading to help establish a plan that will minimize costly over-excavation and site preparation work. Of primary importance will be observations made during site preparation and stripping, structural fill placement, footing excavations and construction as well as retaining wall backfill.

CLOSURE AND LIMITATIONS

This report is intended for the exclusive use of the addressee and/or their representative(s) to use to design and construct the proposed new single- and/or multi-family residential structures and their associated site improvements described herein as well as to prepare any related construction documents. The conclusions and recommendations contained in this report are based on site conditions as they presently exist and assume that the explorations are representative of the subsurface conditions between the explorations and/or at other locations across the study area. The data, analyses, and recommendations herein may not be appropriate for other structures and/or purposes.

We recommend that parties contemplating other structures and/or purposes contact our office. In the absence of our written approval, we make no representation and assume no responsibility to other parties regarding this report. Additionally, the above recommendations are contingent on Redmond Geotechnical Services, LLC being retained to provide all site inspections and constriction monitoring services for this project. Redmond Geotechnical Services, LLC will not assume any responsibility and/or liability for any engineering judgment, inspection and/or testing services performed by others.

It is the owners/developers responsibility for insuring that the project designers and/or contractors involved with this project implement our recommendations into the final design plans, specifications and/or construction activities for the project. Further, in order to avoid delays during construction, we recommend that the final design plans and specifications for the project be reviewed by our office to evaluate as to whether our recommendations have been properly interpreted and incorporated into the project.

If during any future site grading and construction, subsurface conditions different from those encountered in the explorations are observed or appear to be present beneath excavations, we should be advised immediately so that we may review these conditions and evaluate whether modifications of the design criteria are required. We also should be advised if significant modifications of the proposed site development are anticipated so that we may review our conclusions and recommendations.

LEVEL OF CARE

The services performed by the Geotechnical Engineer for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in the area under similar budget and time restraints. No warranty or other conditions, either expressed or implied, is made.

REFERENCES

Adams, John, 1984, Active Deformation of the Pacific Northwest Continental Margin: Tectonics, v.3, no. 4, p. 449-472.

Applied Technology Council, ATC-13, 1985, Earthquake Damage Evaluation Data for California.

Atwater, B.F., 1992, Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington: Journal of Geophysical Research, v. 97, p. 1901-1919.

Atwater, B.F., 1987a, A periodic Holocene recurrence of widespread, probably coseismic Subsidence in southwestern Washington: EOS, v. 68, no. 44.

Atwater, B.F., 1987b, Evidence for great Holocene earthquakes along the outer coast of Washington State: Science, v. 236, no. 4804, pp. 942-944.

Campbell, K.W., 1990, Empirical prediction of near-surface soil and soft-rock ground motion for the Diablo Canyon Power Plant site, San Luis Obispo County, California: Dames & Moore report to Lawrence Livermore National Laboratory.

Carver, G.A., and Burke, R.M., 1987, Late Holocene paleoseismicity of the southern end of the Cascadia Subduction zone [abs.]: EOS, v. 68, no. 44, p. 1240.

Chase, R.L., Tiffin, D.L., Murray, J.W., 1975, The western Canadian continental margin: In Yorath, C.J., Parker, E.R., Glass, D.J., editors, Canada's continental margins and offshore petroleum exploration: Canadian Society of Petroleum Geologists Memoir 4, p. 701-721.

Crouse, C.B., 1991a, Ground motion attenuation equations for earthquakes on the Cascadia Subduction Zone: Earthquake Spectra, v. 7, no. 2, pp. 201-236.

Crouse, C.B., 1991b, Errata to Crouse (1991a), Earthquake Spectra, v. 7, no. 3, p. 506.

Darienzo, M.E., and Peterson, C.D., 1987, Episodic tectonic subsidence recorded in late Holocene salt marshes, northern Oregon central Cascadia margin: Tectonics, v. 9, p. 1-22.

Darienzo, M.E., and Peterson, C.D., 1987, Episodic tectonic subsidence recorded in late Holocene salt marshes northwest Oregon [abs]: EOS, v. 68, no. 44, p. 1469.

EERI (Earthquake Engineering Research Institute), 1993, The March 25, 1993, Scotts Mill Earthquake, Western Oregon's Wake-Up Call: EERI Newsletter, Vol. 27, No. 5, May.

Geomatrix, 1995 Seismic Design Mapping, State of Oregon: Final Report to Oregon Department of Transportation, January.

Geologic Map Series (GMS-49), Map of Oregon Seismicity, 1841-1986 dated 1986.

Geologic Map Series (GMS-97), Geologic Map of the Damascus Quadrangle, Clackamas County, Oregon dated 1995.

Grant, W.C., and McLaren, D.D., 1987, Evidence for Holocene Subduction earthquakes along the northern Oregon coast [abs]: EOS v. 68, no. 44, p. 1239.

Grant, W.C., Atwater, B.F., Carver, G.A., Darienzo, M.E., Nelson, A.R., Peterson, C.D., and Vick, G.S., 1989, Radiocarbon dating of late Holocene coastal subsidence above the Cascadia Subduction zone-compilation for Washington, Oregon, and northern California, [abs]: EOS Transactions of the American Geophysical Union, v. 70, p. 1331.

International Conference of Building Officials (ICBO), 1994, Uniform Building Code: 1994 Edition, Whittier, CA. 1994.

Joyner, W.B., and Boore, D.M., 1998, Measurement, characterization and prediction of strong ground motion: Earthquake Engineering and Soil Dynamics II – Recent Advances in Ground Motion Evaluation, ASCE Geotech. Special Publ. No. 20, p. 43-102.

Riddihough, R.P., 1984, Recent movements of the Juan de Fuca plate system: Journal of Geophysical Research, v. 89, no. 88, p. 6980-6994.

Youngs, R.R., Day, S.M., and Stevens, J.L., 1998, Near field ground motions on rock for large Subduction earthquakes: Earthquake Engineering and Soil Dynamics II – Recent Advances in Ground Motion Evaluation, ASCE Geotech. Special Publ. No. 20, p. 445-462.

Appendix "A"

Test Pit Logs and Laboratory Test Data

APPENDIX

FIELD EXPLORATIONS AND LABORATORY TESTING

FIELD EXPLORATION

Subsurface conditions at the site were explored by excavating eleven (11) exploratory test pits (TH-#1 through TH-#11) on April 15, 2020. The approximate location of the test pit explorations are shown in relation to the existing site features and/or site improvements on the Site Exploration Plan, Figure No's. 2A and 2B.

The test pits were excavated using track-mounted excavating equipment in general conformance with ASTM Methods in Vol. 4.08, D-1586-94 and D-1587-83. The test pits were excavated to depths ranging from about 5.0 to 8.0 feet beneath existing site grades. Detailed logs of the test pits are presented on the Log of Test Pits, Figure No's. A-4 through A-9. The soils were classified in accordance with the Unified Soil Classification System (USCS), which is outlined on Figure No. A-3.

The exploration program was coordinated by a field engineer who monitored the excavating and exploration activity, obtained representative samples of the subsurface soils encountered, classified the soils by visual and textural examination, and maintained continuous logs of the subsurface conditions. Disturbed and/or undisturbed samples of the subsurface soils were obtained at appropriate depths and/or intervals and placed in plastic bags and/or with a thin walled ring sample.

Groundwater was not encountered within any of the exploratory test pits (TH-#1 through TH-#11) at the time of excavating to depths of up to 8.0 feet beneath existing surface grades.

LABORATORY TESTING

Pertinent physical and engineering characteristics of the soils encountered during our subsurface investigation were evaluated by a laboratory testing program to be used as a basis for selection of soil design parameters and for correlation purposes. Selected tests were conducted on representative soil samples. The program consisted of tests to evaluate the existing (in-situ) moisture-density, maximum dry density and optimum moisture content, Atterberg Limits and gradational characteristics as well as direct shear strength and "R"-value tests.

Dry Density and Moisture Content Determinations

Density and moisture content determinations were performed on both disturbed and relatively undisturbed samples from the test pit explorations in general conformance with ASTM Vol. 4.08 Part D-216. The results of these tests were used to calculate existing overburden pressures and to correlate strength and compressibility characteristics of the soils. Test results are shown on the test pit logs at the appropriate sample depths.

Maximum Dry Density

Two (2) Maximum Dry Density and Optimum Moisture Content tests were performed on representative samples of the on-site sandy, clayey silt subgrade soils in accordance with ASTM Vol. 4.08 Part D-1557. This test was conducted to help establish various engineering properties for use as structural fill. The test results are presented on Figure No. A-10.

Atterberg Limits

Two (2) Liquid Limit (LL) and Plastic Limit (PL) tests were performed on representative samples of the sandy, clayey silt subgrade soils in accordance with ASTM Vol. 4.08 Part D-4318-85. These tests were conducted to facilitate classification of the soils and for correlation purposes. The test results appear on Figure No. A-11.

Gradation Analysis

Two (2) Gradation analyses were performed on representative samples of the sandy, clayey silt subsurface soils in accordance with ASTM Vol. 4.08 Part D-422. The test results were used to classify the soil in accordance with the Unified Soil Classification System (USCS). The test results are shown graphically on Figure No. A-12.

Direct Shear Strength Test

Two (2) Direct Shear Strength tests were performed on undisturbed and/or remolded samples of the sandy, clayey silt subgrade soils at a continuous rate of shearing deflection (0.02 inches per minute) in accordance with ASTM Vol. 4.08 Part D-3080-79. The test results were used to determine engineering strength properties and are shown graphically on Figure No's. A-13 and A-14.

"R"-Value Tests

Two (2) "R"-value tests were performed on remolded samples of the sandy, clayey silt subgrade soils in accordance with ASTM Vol. 4.08 Part D-2844. The test results were used to help evaluate the subgrade soils supporting and performance capabilities when subjected to traffic loading. The test results are shown on Figure No. A-15.

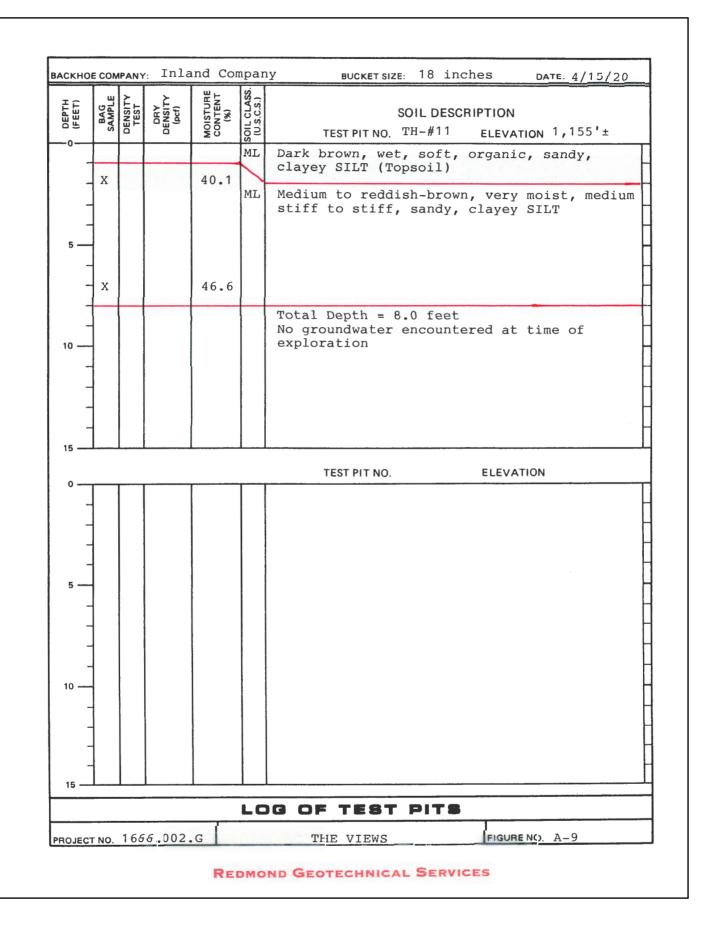
The following figures are attached and complete the Appendix:

Figure No. A-3 Figure No's. A-4 through A-9 Figure No. A-10 Figure No. A-11 Figure No. A-12 Figure No's. A-13 and A-14 Figure No. A-15 Figure No's. A-16 and A-17 Key To Exploratory Test Pit Logs Log of Test Pits Maximum Dry Density Atterberg Limits Test Results Gradation Test Results Direct Shear Strength Test Results Results of "R"-Value Tests Field Infiltration Test Results

REDMOND GEOTECHNICAL SERVICES

A-2

Р	RIMARY	DIVISION	1S	GROUP SYMBOL		SECONDARY	DIVISION	IS
!	GR	AVELS	CLEAN GRAVELS	GW	Well gra	aded gravels, gravel-s	and mixtures, lit	tle or no
SOILS MATERIAL 3. 200		HAN HALF	(LESS THAI 5% FINES		Poorly g	graded gravels or gravines.	el-sand mixture	s, little or
MAT MAT	1	COARSE TION IS	GRAVEL	GM	Silty gra	ivels, gravel-sand-silt	mixtures, non-	plastic fines.
COARSE GRAINED SOILS RE THAN HALF OF MATERI IS LARGER THAN NO. 200 SIEVE SIZE	1	ER THAN 4 SIE∨E	WITH FINES	GC	Clayey g	gravels, gravel-sand-o	lay mixtures, p	lastic fines.
e grain n half ier than sieve si	SA	NDS	CLEAN SANDS	sw	Well gra	aded sands, gravelly s	ands, little or n	o fines.
ARSE (THAN LARGER SIE	1	HAN HALF	(LESS THAI 5% FINES		Poorly g	raded sands or grave	ly sands, little o	or no fines.
COA MORE 1 IS L	FRAC	TION IS	SANDS	SM	Silty sar	nds, sand-silt mixture	s, non-plastic f	ines.
MC	1	ER THAN 4 SIEVE	FINES	sc	Clayey s	ands, sand-clay mixt	ures, plastic fine	es.
ILS DF ER SIZE		SILTS AND	CLAYS	ML	Inorgani	c silts and very fine sy fine sands or clayey	sands, rock flou silts with slight	r, silty or plasticity.
		LIQUID LIM	IIT IS	CL	Inorgani	c clays of low to mee , sandy clays, silty cla	lium plasticity of	
SI AH AS IS		LESS THAP	N 50%	OL		silts and organic silty		isticity.
GRAINED E THAN HA RIAL IS SN VO. 200 SIE		SILTS AND	CLAYS	мн	Inorganio silty	c silts, micaceous or o soils, elastic silts.	iatomaceous fin	e sandy or
FINE GRAINE MORE THAN MATERIAL IS THAN NO. 200		LIQUID LIM	IIT IS	СН		c clays of high plastic		
FINE MORE MATE THAN N		GREATER TH	AN 50%	он	Organic	clays of medium to h	igh plasticity, or	ganic silts.
	IGHLY OR	GANIC SOIL	S	Pt	Peat and	d other highly organi	soils.	
	20	U.S	5. STANDARD S 40	SERIES SIE∨E 10		CLEAR SQU	ARE SIEVE OP 3"	ENINGS 12"
SILTS AND	CLAYS		SANI			GRAVEL	COBBLES	BOULDER
		FINE	MEDIU		ARSE	FINE COARS	E	<u> </u>
			G	RAIN SIZE	S			
	,GRAVELS /		/S/FOOT [†]	1	AYS ANI STIC SIL	I STRENGTE	I [‡] BLOWS/F	=00T [†]
VE	RY LOOSE	d	- 4	VE	RY SOFT		-	2
	LOOSE	4	- 10		SOFT FIRM	1/4 - 1/2 1/2 - 1	2 - 4 -	4 8
MED	NUM DENSE		- 30		STIFF	1 - 2	8 -	16
VE	DENSE RY DENSE		- 50 /ER 50	VE	RY STIFF HARD	= 2 - 4 OVER 4	16 - OVER	1
	DEI ATI	/E DENSIT		L		CONSISTENC		
sp	Number of lit spoon CA Unconfined	blows of 140 STM D-1586 compressive s	pound hammer). strength in tons/	/sq. ft. as deter	mined by	laboratory testing or ter, torvane, or visual	8 inch I.D.) approximated	
	REDM	OND				(PLORATORY ssification Sys	stem (ASTI	
		ECHNI	CAL			THE VIEWS Sandy, Ore		
R	GEUI							
PO Box 205	SERV	AND, OREGO	N 97294	PROJECT	NO.	DATE	- Figure	

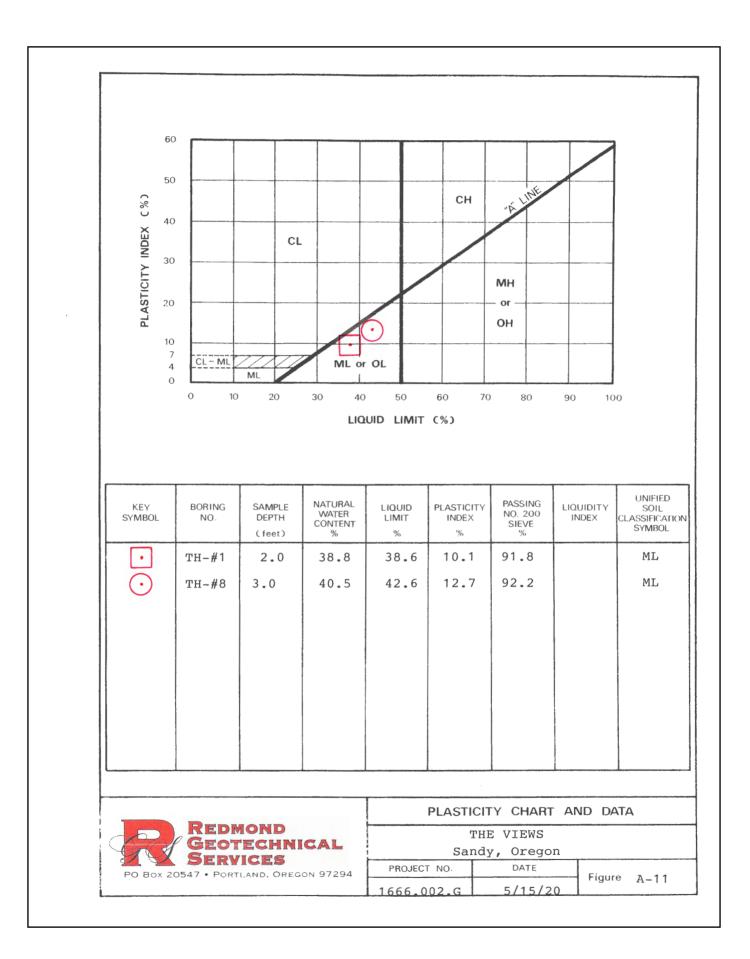

(FEET)	BAG SAMPLE	SITY ST	SITY SITY	MOISTURE CONTENT (%)	LASS.	SOIL DESCRIPTION
.0	SAN SAN	DENSITY TEST	DRY DENSITY (pcf)	MOIS CONT	SOIL CLASS. (U.S.C.S.)	TEST PIT NO. TH-#1 ELEVATION 1,173;±
• -			-		ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
-	х			38.8	ML	Medium to reddish-brown, very moist, medium
	х			40.2		stiff to stiff, sandy, clayey SILT
5 —						
_						Total Depth = 6.0 feet No groundwater encountered at time of exploration
0						
-						
5 —						·
0						TEST PIT NO. TH-#2 ELEVATION 1,166'±
-					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
1	х			39.3	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
5 —	x			41.1		
						Total Depth = 6.0 feet No groundwater encountered at time of exploration
。						
_						
-						
					LO	G OF TEST PITS
		166	56.002	G		THE VIEWS

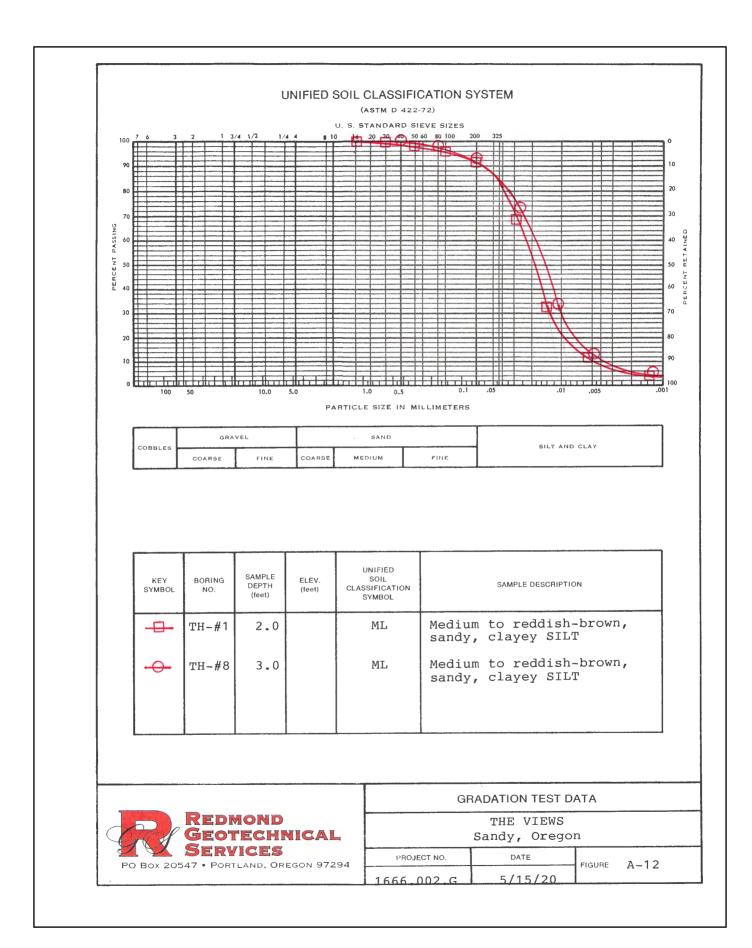
DEPTH (FEET)	BAG SAMPLE	DENSITY TEST	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION TEST PIT NO. TH-#3 ELEVATION 1,155'±
-0					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
	х			37.9	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
-						Total Depth = 6.0 feet No groundwater encountered at time of exploration
10 — - -						
15 —						
0 —					ML	TEST PIT NO.TH-#4ELEVATION 1,142'±Dark brown, wet, soft, organic, sandy,
1	x			39.6	ML	clayey SILT (Topsoil) Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
5 —						
_	x			42.6		
- - 10						Total Depth = 8.0 feet No groundwater encountered at time of exploration
-						
15 —				L		
					LO	G OF TEST PITS
OJECT	NO.	166	6.002	G	-	THE VIEWS FIGURE NO. A-5

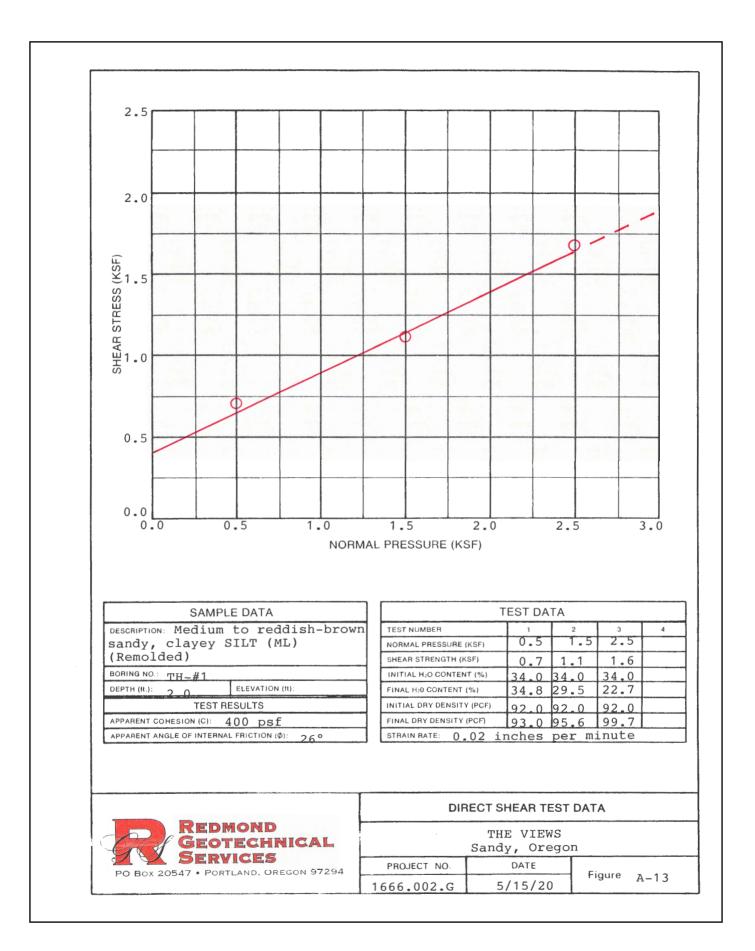
ACKHO		PANY	h∶ Inla	and Co		DY BUCKET SIZE: 18 inches DATE: 4/15/20
DEPTH (FEET)	BAG SAMPLE	DENSITY	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION TEST PIT NO. TH-#5 ELEVATION 1,174'±
					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
- - 5	х			38.6	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
 10						Total Depth = 6.0 feet No groundwater encountered at time of exploration
						TEST PIT NO. TH-#6 ELEVATION 1,168'±
					ML	Dark brown, wet, sofy, organic, sandy, clayey SILT (Topsoil)
 - 5	х			40.4	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
 - - - 10						Total Depth = 6.0 feet No groundwater encountered at time of exploration
15					LO	G OF TEST PITS
OJECT	NO	166	6.002.	G		THE VIEWS FIGURE NO. A-6

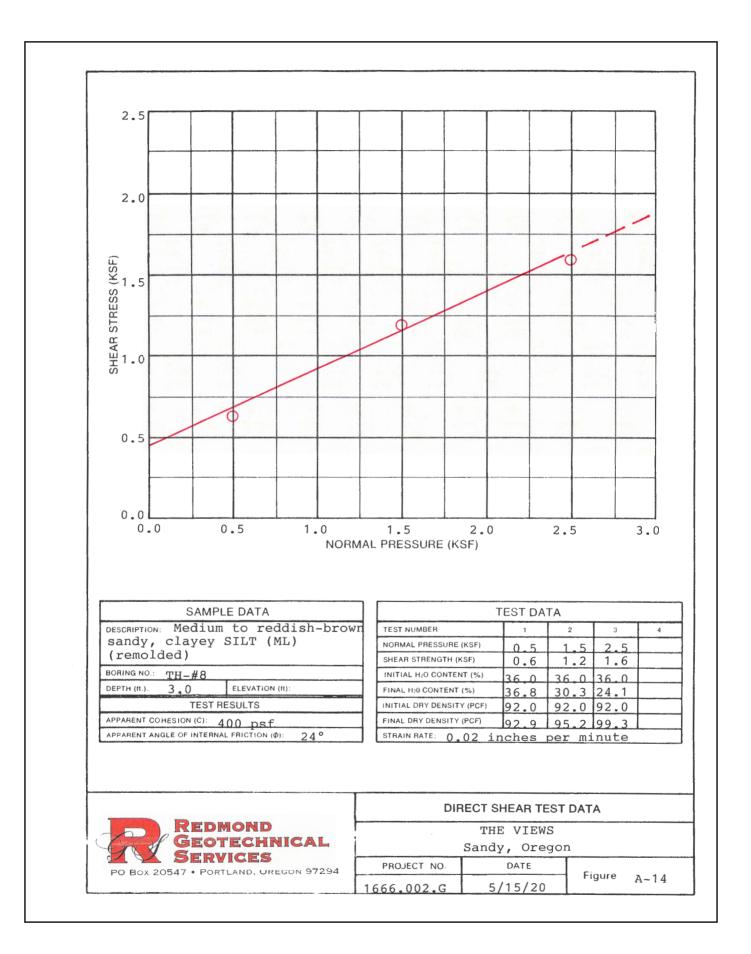
Ē	PLE	ST ST	λ. tr	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION
(FEET)	BAG	DENSITY	DRY DENSITY (pcf)	AOIST NOIST (%)	DIL C	TEST PIT NO. $TH-#7$ ELEVATION 1,165'±
o				20	ML	Dark brown, wet, soft, organic, sandy,
-						clayey SILT (Topsoil)
-	Х			40.1	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
5 —	x			44.8		
-						Total Depth = 7.0 feet No groundwater encountered at time of exploration
0 <u> </u>						
5 —						
0				·	,	TEST PIT NO. TH-#8 ELEVATION 1,188'±
-					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
-						
-	х			40.5	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
5 —						
-						Total Depth = 6.0 feet No groundwater encountered at time of exploration
- 0						
-				1	1 1	
						G OF TEST PITS

DEPTH (FEET)	BAG SAMPLE	DENSITY TEST	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION TEST PIT NO. TH-#9 ELEVATION 1,188'±
0					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
	х			39.2	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
						Total Depth = 6.0 feet No groundwater encountered at time of exploration
15 —		Lł		I	II	TEST PIT NO. TH-#10 ELEVATION 1,176'±
0					ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)
-	Х			39.9	ML	Medium to reddish-brown, very moist, medium stiff to stiff, sandy, clayey SILT
5	х			42.7		
						Total Depth = 7.0 feet No groundwater encountered at time of exploration
					LO	G OF TEST PITS
ROJECT	NO.	166	6.002.	G		THE VIEWS FIGURE NO. A-8




SAMPLE LOCATION	SOIL DESCRIPTION	MAXIMUM DRY DENSITY (pcf)	OPTIMUM MOISTURE CONTENT (%)
TH-#1 @ 2.0'	Medium to reddish-brown, sandy, clayey SILT (ML)	34.0	100.0
TH-#8 @ 3.0'	Medium to reddish-brown, sandy, clayey SILT (ML)	36.0	98.0


EXPANSION INDEX TEST RESULTS


SAMPLE LOCATION	INITIAL MOISTURE (%)	COMPACTED DRY DENSITY (pcf)	FINAL MOISTURE (%)	VOLUMETRIC SWELL (%)	EXPANSION INDEX	EXPANSIVE CLASS.
			×			
XIMU	M DENS	ITY&E>	PANSI	ON INDE	X TEST	RESUL
	6.002.G		THE VIEWS		FIGURE NO.	. A-10

Page 488 of 916

RESULTS OF R (RESISTANCE) VALUE TESTS

SAMPLE LOCATION: TH-#2

SAMPLE DEPTH: 2.5 feet bgs

A	B	C
219	329	431
0	1	2
0	3	8
37.6	34.4	31.1
92.4	96.2	100.6
18	29	36
	0 0 37.6 92.4	0 1 0 3 37.6 34.4 92.4 96.2

SAMPLE LOCATION: TH-#6

SAMPLE DEPTH: 3.0 feet bgs

Specimen	A	В	C
Exudation Pressure (psi)	208	326	439
Expansion Dial (0.0001")	0	1	2
Expansion Pressure (psf)	0	3	8
Moisture Content (%)	37.2	34.1	30.7
Dry Density (pcf)	92.9	97.1	101.4
Resistance Value "R"	19	31	40

A-15

Division 004 Appendix C - Infiltration Testing

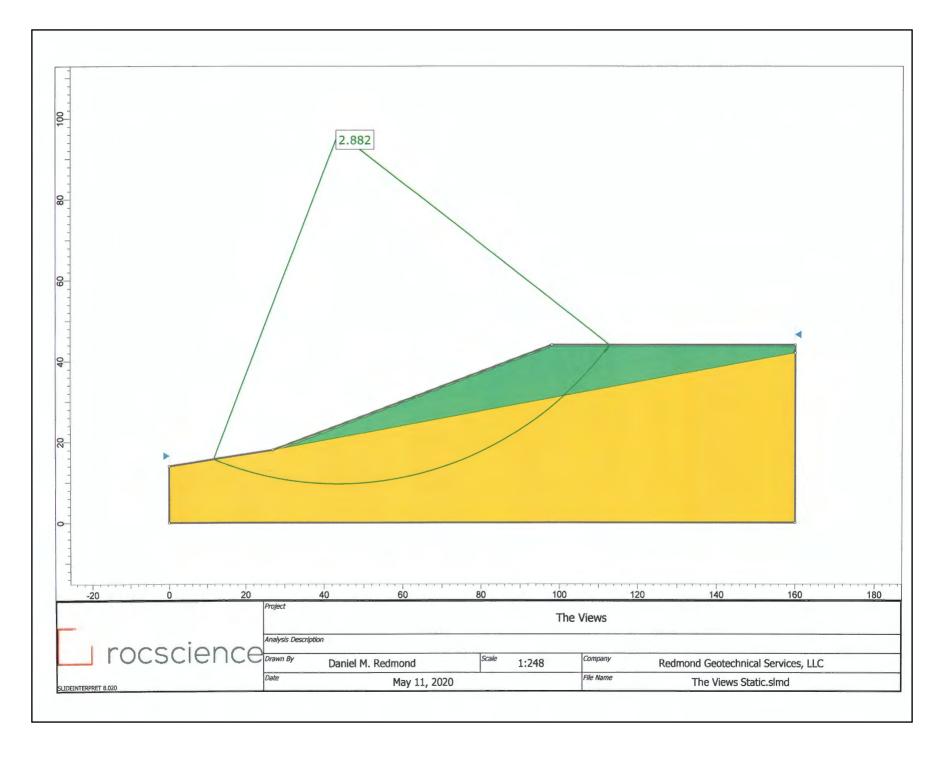
Location: The Views Planned Development	Date: April 15, 2020	Test Hole: TH-#4
Depth to Bottom of Hole: 5.0 feet	Hole Diameter: 6 inches	Test Method: Encased Falling Head
Tester's Name: Daniel M. Redmond, P.E., G.E		
Tester's Company: Redmond Geotechnical Sector	ervices, LLC Test	er's Contact Number: 503-285-0598
Depth (feet)	Soi	I Characteristics
0-1.0	Dark brown Topsoil	
1.0-5.0	Medium to reddish-brown, sandy, clayey SILT (ML)	

	Time Interval	Measurement	Drop in Water	Infiltration Rate	Remarks
Time	(Minutes)	(inches)	(inches)	(inches/hour)	
11:00	0	48.00	*		Filled w/12" water
11:20	20	48.20	0.20	0.60	
11:40	20	48.34	0.14	0.42	
12:00	20	48.45	0.11	0.33	
12:20	20	48.54	0.09	0.27	
12:40	20	48.62	0.08	0.24	
1:00	20	48.69	0.07	0.21	
1:20	20	48.76	0.07	0.21	
1:40	20	48.83	0.07	0.21	

Infiltration Test Data Table

Figure No. A-16

Division 004 Appendix C - Infiltration Testing


Location: The Views Planned Development	Date: April 15, 2020	Test Hole: TH-#11
Depth to Bottom of Hole: 6.0 feet	Hole Diameter: 6 inches	Test Method: Encased Falling Head
Tester's Name: Daniel M. Redmond, P.E., G.E		
Tester's Company: Redmond Geotechnical Se	ervices, LLC Test	er's Contact Number: 503-285-0598
Depth (feet)	Soi	Characteristics
0-1.0	Dark brown Topsoil	
1.0-6.0	Medium to reddish-brown, sandy, clayey SILT (ML)	
	· · · · · · · · · · · · · · · · · · ·	

	Time Interval	Measurement	Drop in Water	Infiltration Rate	Remarks
Time	(Minutes)	(inches)	(inches)	(inches/hour)	
11:30	0	60.00			Filled w/12" water
11:50	20	60.15	0.15	0.45	
12:10	20	60.25	0.10	0.30	
12:30	20	60.32	0.07	0.21	
12:50	20	60.37	0.05	0.15	
1:10	20	60.41	0.04	0.12	
1:30	20	60.44	0.03	0.09	
1:50	20	60.47	0.03	0.09	
2:10	20	60.50	0.03	0.09	

Infiltration Test Data Table

Figure No. A-17

Appendix "B" Slope Stability Analysis

Slide Analysis Information The Views Static

Project Summary

File Name:	The Views Static.sImd
Slide Modeler Version:	8.02
Compute Time:	00h:00m:00.673s
Project Title:	The Views
Author:	Daniel M. Redmond
Company:	Redmond Geotechnical Services, LLC
Date Created:	May 11, 2020

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:

Vertical

Analysis Methods Used			
	Bishop simplified		
	Janbu simplified		
Number of slices:	50		
Tolerance:	0.005		
Maximum number of iterations:	75		
Check malpha < 0.2:	Yes		
Create Interslice boundaries at intersections with water tables and piezos:	Yes		
Initial trial value of FS:	1		
Steffensen Iteration:	Yes		

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Materials

Property	Material 1	Material 2
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	100	100
Cohesion [psf]	400	450
Friction Angle [°]	24	24
Water Surface	None	None
Ru Value	0	0

Global Minimums

Method: bishop simplified

FS	2.882170
Center:	43.648, 96.485
Radius:	86.829
Left Slip Surface Endpoint:	11.725, 15.737
Right Slip Surface Endpoint:	112.819, 44.000
Resisting Moment:	9.25215e+06 lb-ft
Driving Moment:	3.21013e+06 lb-ft
Total Slice Area:	1353.86 ft2
Surface Horizontal Width:	101.094 ft
Surface Average Height:	13.3921 ft

Method: janbu simplified

FS	2.615210
Center:	49.090, 67.552
Radius:	62.814
Left Slip Surface Endpoint:	13.254, 15.964
Right Slip Surface Endpoint:	107.322, 44.000
Resisting Horizontal Force:	105805 lb
Driving Horizontal Force:	40457.4 lb
Total Slice Area:	1637.73 ft2
Surface Horizontal Width:	94.0679 ft
Surface Average Height:	17.4101 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:9861Number of Invalid Surfaces:8

Error Codes:

Error Code -112 reported for 8 surfaces

Method: janbu simplified

Number of Valid Surfaces: 9293 Number of Invalid Surfaces: 576

Error Codes:

Error Code -108 reported for 238 surfaces Error Code -111 reported for 338 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 2.88217

4 of 14

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effectiv Norma Stress [psf]
1	2.03095	109.117	-20.8537	Material 1	400	24	156.278	450.42	113.246	0	113.24
2	2.03095	321.522	-19.4261	Material 1	400	24	172.643	497.587	219.183	0	219.18
3	2.03095	522.417	-18.0109	Material 1	400	24	187.958	541.728	318.325	0	318.32
4	2.03095	712.089	-16.6071	Material 1	400	24	202.264	582.958	410.93	0	410.9
5	2.03095	890.791	-15.2134	Material 1	400	24	215.594	621.379	497.223	0	497.22
6	2.03095	1058.75	-13.8288	– Material 1	400	24	227.982	657.082	577.416	0	577.42
7	2.03095	1216.17	-12.4525	-	400	24	239.454	690.148	651.682	0	651.68
8	2.03095	1373.52	-11.0834	-	400	24	250.845	722.979	725.423	0	725.42
9	2.03095	1588.08	-9.72076	-	400	24	266.63	768.473	827.606	0	827.6
10	2.03095	1804.78	-8.36361		400	24	282.472	814.132	930.158	0	930.1
11	2.03095	2011.51	-7.01117	_	400	24	297.432	857.249	1027	0	10
12	2.03095	2208.37	-5.66266	Material 1	400	24	311.527	897.873	1118.24	0	1118.
13	2.03095	2395.44	-4.31728	Material 1	400	24	324.771	936.046	1203.98	0	1203.
14	2.03095	2572.77	-2.97428	Material	400	24	337.179	971.806	1284.3	0	1284
15	2.03095	2740.41	-1.63292	Material 1	400	24	348.759	1005.18	1359.27	0	1359.
16	2.03095	2898.39	-0.292458	Material 1	400	24	359.524	1036.21	1428.94	0	1428.
17	2.03095	3046.72	1.04785		400	24	369.478	1064.9	1493.39	0	1493.
18	2.03095	3185.39	2.38873	Material	400	24	378.63	1091.28	1552.63	0	1552.
19	2.03095	3314.39	3.73092		400	24	386.984	1115.35	1606.71	0	1606.
20	2.03095	3433.67	5.07516	1 Material 1	400	24	394.543	1137.14	1655.64	0	1655.
21	2.03095	3543.19	6.42221	ء Material 1	400	24	401.308	1156.64	1699.43	0	1699.
22	2.03095	3642.87	7.77284	ء Material 1	400	24	407.28	1173.85	1738.1	0	1738
23	2.03095	3732.63	9.12784	-	400	24	412.458	1188.78	1771.62	0	1771

					f	ile:///C:	/Users/De	nise/AppD	ata/Local/Te	emp/Rocs	cienceTempSlid
24	2.03095	3812.36	10.488	Material 1	400	24	416.84	1201.4	1799.98	0	1799.9{
25	2.03095	3881.94	11.8542	Material 1	400	24	420.421	1211.72	1823.16	0	1823.1(
26	2.03095	3941.22	13.2272	Material 1	400	24	423.196	1219.72	1841.13	0	1841.1:
27	2.03095	3990.04	14.6081	Material 1	400	24	425.159	1225.38	1853.83	0	1853.8:
28	2.03095	4028.21	15.9976	Material 1	400	24	426.3	1228.67	1861.22	0	1861.2
29	2.03095	4055.51	17.3969	– Material 1	400	24	426.608	1229.56	1863.22	0	1863.22
30	2.03095	4071.7	18.807	– Material 1	400	24	426.073	1228.01	1859.75	0	1859.7!
31	2.03095	4076.51	20.2291	Material 1	400	24	424.68	1224	1850.73	0	1850.7:
32	2.03095	4069.63	21.6642	Material 1	400	24	422.412	1217.46	1836.05	0	1836.0!
33	2.03095	4050.73	23.1138	Material 1	400	24	419.252	1208.36	1815.6	0	1815.(
34	2.03095	4019.42	24.5793	Material 1	400	24	415.178	1196.61	1789.23	0	1789.2:
35	2.03095	3975.27	26.0621	Material 1	400	24	410.167	1182.17	1756.78	0	1756.7{
36	2.03095	3917.8	27.5639	Material 1	400	24	404.193	1164.95	1718.11	0	1718.1:
37	2.03095	3846.46	29.0866	Material 1	400	24	397.225	1144.87	1673	0	167:
38	2.03095	3760.66	30.6322	Material 1	400	24	389.229	1121.82	1621.24	0	1621.24
39	2.03095	3659.69	32.2029	Material 1	400	24	380.167	1095.71	1562.58	0	1562.5
40	2.03095	3542.78	33.8012	Material 1	400	24	369.997	1066.39	1496.75	0	1496.7!
41	2.03095	3409.03	35.43	Material 1	400	24	358.67	1033.75	1423.42	0	1423.42
42	2.03095	3257.41	37.0925	Material 1	400	24	346.129	997.604	1342.24	0	1342.24
43	2.03095	3066.35	38.7923	Material 1	400	24	330.933	953.806	1243.87	0	1243.8
44	2.03095	2741.65	40.5337	Material 1	400	24	306.801	884.253	1087.65	0	1087.6!
45	1.95539	2295.97	42.2875	Material 2	450	24	295.944	852.962	905.067	0	905.06:
46	1.95539	1937.1	44.0574	Material 2	450	24	268.97	775.216	730.446	0	730.44(
47	1.95539	1554.96	45.882	Material 2	450	24	240.647	693.586	547.104	0	547.104
48	1.95539	1147.2	47.7687	Material 2	450	24	210.883	607.8	354.424	0	354.42

						file:///C:	/Users/Der	nise/AppD	ata/Local/T	emp/Rocs	cienceTemp
49	1.95539	710.952	49.7266	Material 2	450	24	179.566	517.54	151.698	0	151.69{
50	1.95539	242.656	51.7672	Material 2	450	24	146.57	422.44	-61.8999	0	-61.899!

• Global Minimum Query (janbu simplified) - Safety Factor: 2.61521

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effectiv Norma Stress [psf]
1	1.8932	146.283	-33.7476	Material 1	400	24	187.44	490.195	202.583	0	202.58
2	1.8932	429.775	-31.6943	Material 1	400	24	214.123	559.976	359.312	0	359.31
3	1.8932	695.692	-29.6855	Material 1	400	24	238.692	624.229	503.624	0	503.62
4	1.8932	945.103	-27.7162	Material 1	400	24	261.329	683.43	636.596	0	636.59
5	1.8932	1178.92	-25.7819	Material 1	400	24	282.186	737.976	759.105	0	759.10
6	1.8932	1397.92	-23.8786	Material 1	400	24	301.388	788.194	871.896	0	871.89
7	1.8932	1602.77	-22.003	Material 1	400	24	319.043	834.364	975.599	0	975.59
8	1.8932	1815.4	-20.1519	Material 1	400	24	337.288	882.078	1082.77	0	1082.7
9	1.8932	2069.11	-18.3226	Material 1	400	24	359.285	939.606	1211.97	0	1211.9
10	1.8932	2312.84	-16.5123	– Material 1	400	24	380.13	994.121	1334.42	0	1334.4
11	1.8932	2544.3	-14.719	– Material 1	400	24	399.631	1045.12	1448.97	0	1448.9
12	1.8932	2763.8	-12.9402	– Material 1	400	24	417.842	1092.74	1555.93	0	1555.9
13	1.8932	2971.63	-11.1741	Material 1	400	24	434.807	1137.11	1655.58	0	1655.5
14	1.8932	3168.02	-9.41865	- Material 1	400	24	450.568	1178.33	1748.16	0	1748.1
15	1.8932	3353.14	-7.6721		400	24	465.157	1216.48	1833.85	0	1833.8
16	1.8932	3527.15	-5.93271		400	24	478.603	1251.65	1912.83	0	1912.8
17	1.8932	3690.19	-4.19879	– Material 1	400	24	490.931	1283.89	1985.24	0	1985.2
18	1.8932	3842.32	-2.46872		400	24	502.16	1313.25	2051.2	0	2051
19	1.8932	3983.62	-0.740899	_	400	24	512.306	1339.79	2110.8	0	2110
20	1.8932	4114.1	0.986245		400	24	521.383	1363.53	2164.11	0	2164.1
21	1.8932	4233.78	2.71429		400	24	529.398	1384.49	2211.19	0	2211.1
22	1.8932	4342.6	4.44481	Material 1	400	24	536.358	1402.69	2252.07	0	2252.0
23	1.8932	4440.52	6.1794	_	400	24	542.262	1418.13	2286.76	0	2286.7

						file:///C:	/Users/De	nise/AppD	ata/Local/Te	emp/Rocs	cienceTempSlid
24	1.8932	4527.44	7.91971	Material	400	24	547 115	1430 82	2315.26	0	2315.2(
25		4603.23		1 Material	400				2313.20		
		4667.74		1							2337.5!
26				Material 1	400				2353.58		2353.5{
27		4720.78	13.1921	Material 1	400	24	555.294	1452.21	2363.29	0	2363.2!
28	1.8932	4762.09	14.9728	Material 1	400	24	555.856	1453.68	2366.61	0	2366.6:
29	1.8932	4791.42	16.7684	Material 1	400	24	555.313	1452.26	2363.42	0	2363.4;
30	1.8932	4808.43	18.5812	Material 1	400	24	553.642	1447.89	2353.6	0	2353.(
31	1.8932	4812.74	20.4135	Material 1	400	24	550.812	1440.49	2336.99	0	2336.9!
32	1.8932	4803.91	22.2679	Material 1	400	24	546.801	1430	2313.41	0	2313.4:
33	1.8932	4781.44	24.1472	- Material 1	400	24	541.563	1416.3	2282.64	0	2282.64
34	1.8932	4744.73	26.0547	- Material 1	400	24	535.056	1399.28	2244.43	0	2244.4:
35	1.8932	4693.11	27.9937	Material 1	400	24	527.234	1378.83	2198.48	0	2198.4
36	1.8932	4625.76	29.9684	Material	400	24	518.036	1354.77	2144.45	0	2144.4!
37	1.8932	4541.77	31.9831	1 Material	400	24	507.392	1326.94	2081.93	0	2081.9:
38	1.8932	4440.04	34.0432	1 Material	400	24	495.223	1295.11	2010.46	0	2010.4{
39	1.8932	4319.27	36.1547	1 Material	400	24	481.434	1259.05	1929.46	0	1929.4
40	1.8932	4177.92	38.3249	1 Material	400	24	465.911	1218.45	1838.28	0	1838.2
41	1.8932	4014.11	40.5622	1 Material	400	24	448.518	1172.97	1736.12	0	1736.1:
42	1.8932	3825.57	42.8771	1 Material	400	24	429.092	1122.17	1622.01	0	1622.0:
43	1.8932	3609.44	45.2827	1 Material	400	24	407.432	1065.52	1494.78	0	1494.7
		3362.09		1 Material	400				1352.96		1352.9(
		3075.15		1					1193.06		
			53.235	Material 1 Material	400						1193.0
				1	400				975.884		
			56.1051	2					710.282		
48	1.74518	1520.22	59.0818	Material 2	450	24	249.424	652.297	454.366	0	454.36(

						file:///C:	/Users/De	nise/AppD	ata/Local/T	Temp/Rocs	cienceTem	pSlid
49	1.74518	975.333	62.3462	Material 2	450	24	201.654	527.368	173.772	0	173.77;	
50	1.74518	342.355	66.0201	– Material 2	450	24	148.568	388.536	-138.052	0	-138.05;	

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 2.88217

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	11.7246	15.737	0	0	(
2	13.7556	14.9633	404.936	0	(
3	15.7865	14.2471	912.476	0	(
4	17.8175	13.5867	1504.32	0	(
5	19.8484	12.981	2163.93	0	
6	21.8794	12.4287	2876.31	0	
7	23.9103	11.9288	3627.89	0	
8	25.9413	11.4803	4406.37	0	
9	27.9722	11.0824	5204.32	0	
10	30.0032	10.7345	6033.64	0	
11	32.0341	10.4359	6884.93	0	
12	34.0651	10.1862	7745.38	0	
13	36.096	9.9848	8603.12	0	
14	38.127	9.83147	9447.17	0	
15	40.1579	9.72595	10267.3	0	
16	42.1889	9.66805	11054.2	0	
17	44.2198	9.65768	11799	0	
18	46.2508	9.69483	12493.7	0	
19	48.2817	9.77955	13131	0	
20	50.3127	9.91199	13704	0	
21	52.3436	10.0924	14206.5	0	
22	54.3746	10.321	14632.8	0	
23	56.4055	10.5982	14978	0	
24	58.4365	10.9245	15237.4	0	
25	60.4674	11.3005	15407	0	
26	62.4983	11.7268	15483.5	0	
27	64.5293	12.2041	15463.8	0	
28	66.5602	12.7335	15345.8	0	
29	68.5912	13.3157	15127.7	0	
30	70.6221	13.9521	14808.3	0	
31	72.6531	14.6438	14387.1	0	
32	74.684	15.3922	13864.3	0	
33	76.715	16.1989	13240.8	0	
34	78.7459	17.0658	12518.2	0	
35	80.7769	17.9947	11699.1	0	
36	82.8078	18.988	10786.9	0	
37	84.8388	20.0481	9786.24	0	
38	86.8697	21.1779	8702.66	0	
39	88.9007	22.3806	7543.21	0	
40	90.9316	23.6597	6316.44	0	
41	92.9626	25.0193	5032.64	0	
42	94.9935	26.4643	3704.18	0	
43	97.0245	27.9998	2345.88	0	

11 of 14

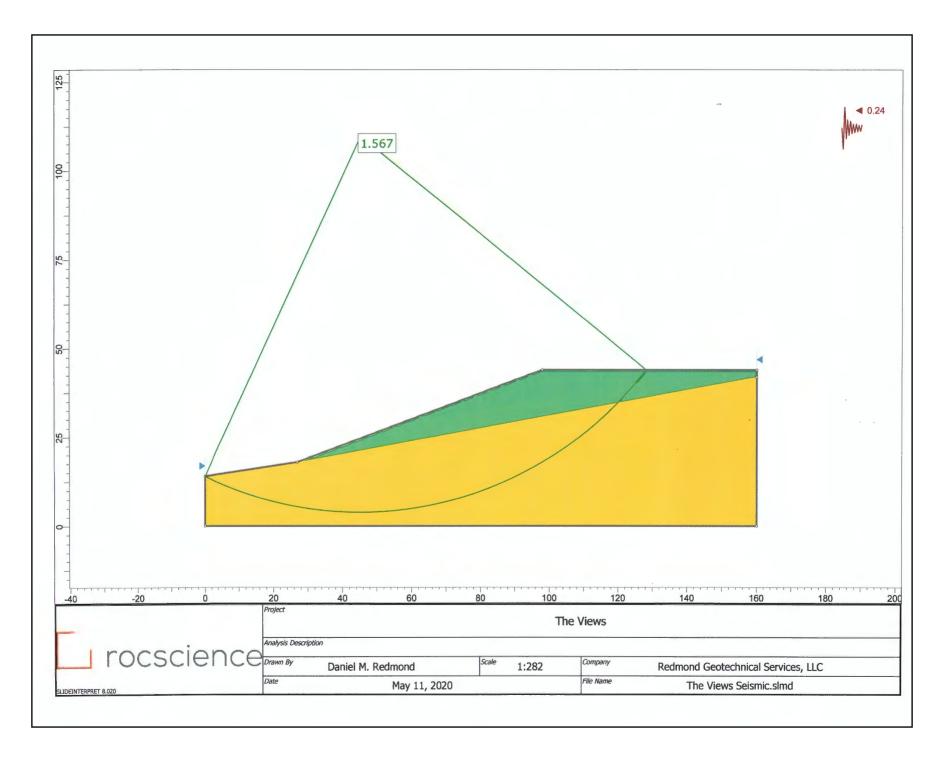
44	99.0554	29.6323	987.255	0	0
45	101.086	31.369	-278.67	0	0
46	103.042	33.1475	-1309.77	0	0
47	104.997	35.0395	-2166.01	0	0
48	106.953	37.0561	-2798.81	0	0
49	108.908	39.2102	-3150.02	0	0
50	110.863	41.5181	-3149.08	0	0
51	112.819	44	0	0	0

• Global Minimum Query (janbu simplified) - Safety Factor: 2.61521

12 of 14

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	13.2539	15.9635	0	0	(
2	15.1471	14.6987	611.338	0	(
3	17.0403	13.5297	1437.02	0	(
4	18.9335	12.4504	2432.73	0	(
5	20.8267	11.4558	3560.99	0	(
6	22.7199	10.5413	4789.75	0	(
7	24.6131	9.70321	6091.46	0	(
8	26.5063	8.93819	7442.22	0	
9	28.3995	8.24344	8833.46	0	
10	30.2927	7.61649	10273.9	0	1
11	32.1859	7.05526	11743	0	
12	34.0791	6.55792	13220.7	0	
13	35.9723	6.12292	14689.1	0	
14	37.8655	5.74894	16132	0	
15	39.7587	5.43489	17534.6	0	
16	41.6519	5.17986	18883.5	0	
17	43.5451	4.98312	20166.5	0	
18	45.4383	4.84414	21372.4	0	
19	47.3315	4.76251	22491.2	0	
20	49.2247	4.73803	23513.4	0	
21	51.1179	4.77062	24430.6	0	
22	53.0111	4.86038	25235	0	
23	54.9043	5.00754	25919.7	0	
24	56.7975	5.21252	26478.3	0	
25	58.6907	5.47589	26905	0	
26	60.5839	5.79839	27194.8	0	
27	62.4771	6.18096	27343.2	0	
28	64.3703	6.62473	27346.4	0	
29	66.2635	7.13104	27201.2	0	
30	68.1567	7.7015	26905	0	
31	70.0499	8.33794	26455.9	0	
32	71.9431	9.04252	25852.8	0	
33	73.8363	9.81774	25095.3	0	
34	75.7295	10.6665	24183.9	0	
35	77.6227	11.5921	23120	0	
36	79.5159	12.5985	21906.4	0	
37	81.4091	13.6901	20546.8	0	
38	83.3023	14.8723	19046.7	0	
39	85.1955	16.1514	17413.4	0	
40	87.0887	17.5347	15656.4	0	
41	88.9819	19.0312	13788	0	
42	90.8751	20.6517	11824.4	0	
43	92.7683	22.4096	9785.98	0	

13 of 14


51	107.322	44	0	0	0
50	105.577	40.0766	-774.426	0	0
49	103.831	36.746	-547.815	0	0
48	102.086	33.8321	340.576	0	0
47	100.341	31.2345	1673.94	0	0
46	98.4479	28.7006	3542.25	0	0
45	96.5547	26.4091	5601.56	0	0
44	94.6615	24.3215	7699.85	0	0

Entity Information

Group: Group 1 🔷

Shared Entities

Туре	Coord	linat	es
	x	Y	
	160	0	
	160	42	
	160	44	
External Boundary	98	44	
	27	18	
	0	14	
	0	0	
	х	Y	
Material Boundary	27	18	
Indicental Doundary	160	42	
	<u> </u>		,

Slide Analysis Information The Views Seismic

Project Summary

File Name:	The Views Seismic.slmd
Slide Modeler Version:	8.02
Compute Time:	00h:00m:00.586s
Project Title:	The Views
Author:	Daniel M. Redmond
Company:	Redmond Geotechnical Services, LLC
Date Created:	May 11, 2020

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:

Vertical

Analysis Methods Used					
	Bishop simplified				
	Janbu simplified				
Number of slices:	50				
Tolerance:	0.005				
Maximum number of iterations:	75				
Check malpha < 0.2:	Yes				
Create Interslice boundaries at intersections with water tables and piezos:	Yes				
Initial trial value of FS:	1				
Steffensen Iteration:	Yes				

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.24

Materials

2 of 14

Property	Material 1	Material 2
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	100	100
Cohesion [psf]	400	450
Friction Angle [°]	24	24
Water Surface	None	None
Ru Value	0	0

Global Minimums

Method: bishop simplified

FS	1.566590
Center:	45.226, 109.816
Radius:	105.925
Left Slip Surface Endpoint:	0.051, 14.008
Right Slip Surface Endpoint:	128.221, 44.000
Resisting Moment:	1.66238e+07 lb-ft
Driving Moment:	1.06114e+07 lb-ft
Total Slice Area:	2303.82 ft2
Surface Horizontal Width:	128.17 ft
Surface Average Height:	17.9747 ft

Method: janbu simplified

FS	1.416710
Center:	48.300, 89.634
Radius:	89.606
Left Slip Surface Endpoint:	0.204, 14.030
Right Slip Surface Endpoint:	125.416, 44.000
Resisting Horizontal Force:	156706 lb
Driving Horizontal Force:	110613 lb
Total Slice Area:	2625.28 ft2
Surface Horizontal Width:	125.212 ft
Surface Average Height:	20.9667 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 9986 Number of Invalid Surfaces: 3

Error Codes:

Error Code -112 reported for 3 surfaces

Method: janbu simplified

Number of Valid Surfaces: 9260 Number of Invalid Surfaces: 729

Error Codes:

Error Code -108 reported for 188 surfaces Error Code -111 reported for 539 surfaces Error Code -112 reported for 2 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.56659

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Norma Stress [psf]
1	2.55188	196.528	-24.4859	Material 1	400	24	318.4	498.803	221.915	0	221.91
2	2.55188	579.356	-22.9778	Material 1	400	24	363.644	569.681	381.109	0	381.10
3	2.55188	942.064	-21.4864	Material 1	400	24	405.59	635.393	528.702	0	528.70
4	2.55188	1285.29	-20.0101	Material 1	400	24	444.439	696.253	665.395	0	665.39
5	2.55188	1609.58	-18.5476	Material 1	400	24	480.362	752.53	791.796	0	791.79
6	2.55188	1915.46	-17.0975	Material 1	400	24	513.513	804.465	908.443	0	908.44
7	2.55188	2203.36	-15.6586	Material 1	400	24	544.027	852.267	1015.81	0	1015.8
8	2.55188	2473.68	-14.2298	– Material 1	400	24	572.02	896.121	1114.31	0	1114.3
9	2.55188	2726.76	-12.81	-	400	24	597.599	936.193	1204.31	0	1204.3
10	2.55188	2962.91	-11.3981	-	400	24	620.856	972.627	1286.14	0	1286.1
11	2.55188	3196.12	-9.99319	Material 1	400	24	643.483	1008.07	1365.76	0	1365.7
12	2.55188	3518.87	-8.59435		400	24	676.253	1059.41	1481.06	0	1481.0
13	2.55188	3847.69	-7.20065		400	24	709.297	1111.18	1597.33	0	1597.3
14	2.55188	4160.44	-5.81123	Material 1	400	24	740.069	1159.38	1705.61	0	1705.6
15	2.55188	4457.25	-4.42523	- Material 1	400	24	768.627	1204.12	1806.09	0	1806.0
16	2.55188	4738.22	-3.04182	_	400	24	795.024	1245.48	1898.97	0	1898.9
17	2.55188	5003.43	-1.66018	_	400	24	819.306	1283.52	1984.41	0	1984.4
18	2.55188	5252.93	-0.279513	Material	400	24	841.514	1318.31	2062.55	0	2062.5
19	2.55188	5486.73	1.10099	1 Material 1	400	24	861.684	1349.91	2133.52	0	2133.5
20	2.55188	5704.83	2.48214		400	24	879.845	1378.36	2197.43	0	2197.4
21	2.55188	5907.19	3.86473	_	400	24	896.023	1403.7	2254.35	0	2254.3
22	2.55188	6093.75	5.24958	-	400	24	910.238	1425.97	2304.37	0	2304.3
23	2.55188	6264.41	6.63752	-	400	24	922.513	1445.2	2347.55	0	2347.

						file:///C:	/Users/De	nise/AppD	ata/Local/	Temp/Roc	scienceTempSlid
	2 5 5 5 1 0 0	6410.00	0.00000		400					_	
		6419.06	8.02938	Materiai 1	400				2383.93		2383.93
2	5 2.55188	6557.55	9.42603	Material 1	400	24	941.267	1474.58	2413.54	0	2413.54
20	6 2.55188	6679.69	10.8284	Material 1	400	24	947.766	1484.76	2436.4	0	2436.4
2	2.55188	6785.26	12.2373	Material 1	400	24	952.342	1491.93	2452.52	0	2452.52
2	3 2.55188	6874.01	13.6538	- Material 1	400	24	955.004	1496.1	2461.88	0	2461.88
2	2.55188	6945.66	15.0788		400	24	955.738	1497.25	2464.47	0	2464.47
30	2.55188	6999.87	16.5135	- Material 1	400	24	954.538	1495.37	2460.24	0	2460.24
3	2.55188	7036.28	17.9589	- Material 1	400	24	951.385	1490.43	2449.15	0	2449.15
3.	2 2.55188	7054.44	19.4163	- Material 1	400	24	946.259	1482.4	2431.12	0	2431.12
33	3 2.55188	7053.9	20.8868	- Material 1	400	24	939.148	1471.26	2406.08	0	2406.08
34	2.55188	7034.1	22.3719	- Material 1	400	24	930.007	1456.94	2373.93	0	2373.93
3	5 2.55188	6994.45	23.873	- Material 1	400	24	918.817	1439.41	2334.55	0	2334.55
30	6 2.55188	6934.26	25.3918	Material 1	400	24	905.534	1418.6	2287.81	0	2287.81
3.	2.55188	6852.78	26.9299	- Material 1	400	24	890.112	1394.44	2233.55	0	2233.55
3	8 2.55188	6749.14	28.4894	- Material 1	400	24	872.504	1366.86	2171.59	0	2171.59
3	2.55188	6576.97	30.0722	- Material 1	400	24	848.31	1328.95	2086.46	0	2086.46
40	2.55188	6204.99	31.6808	Material 1	400	24	805.246	1261.49	1934.94	0	1934.94
4	L 2.55188	5790.01	33.3178	T Material 1	400	24	758.559	1188.35	1770.67	0	1770.67
43	2.55188	5348.11	34.9862	Material 1	400	24	709.862	1112.06	1599.32	0	1599.32
43	3 2.55188	4877.63	36.6893	Material 1	400	24	659.089	1032.52	1420.67	0	1420.67
44	2.55188	4376.67	38.4311		400	24	606.166	949.613	1234.45	0	1234.45
4	5 2.55188	3843	40.216	_	400	24	551.011	863.208	1040.38	0	1040.38
4	5 2.55188	3274	42.0493	ء Material 1	400	24	493.536	773.168	838.148	0	838.148
4	7 2.55188	2666.57	43.9373	_	400	24	433.641	679.337	627.401	0	627.401
4	3 2.74395	2140.57	45.9634	_	450	24	393.408	616.309	373.536	0	373.536
I											

						file:///C:/Users/Denise/AppData/Local/Temp/RocscienceTempSlid						npSlid
49	2.74395	1331.01	48.1434	Material 2	450	24	322.784	505.67	125.038	0	125.038	
50	2.74395	455.397	50.4204	Material 2	450	24	248.906	389.934	-134.91	0	-134.91	

• Global Minimum Query (janbu simplified) - Safety Factor: 1.41671

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Norma Stress [psf]
1	2.52796	243.26	-31.5148	Material 1	400	24	387.262	548.638	333.847	0	333.84
2	2.52796	715.647	-29.6369	Material 1	400	24	452.225	640.672	540.558	0	540.55
3	2.52796	1160.53	-27.7933	Material 1	400	24	511.389	724.49	728.817	0	728.81
4	2.52796	1579.34	-25.9805	Material 1	400	24	565.322	800.898	900.432	0	900.43
5	2.52796	1973.3	-24.1954	Material 1	400	24	614.491	870.556	1056.89	0	1056.8
6	2.52796	2343.47	-22.4348	Material 1	400	24	659.285	934.016	1199.42	0	1199.4
7	2.52796	2690.79	-20.6964	Material 1	400	24	700.03	991.739	1329.07	0	1329.0
8	2.52796	3016.07	-18.9777	Material 1	400	24	737.001	1044.12	1446.71	0	1446.7
9	2.52796	3320.01	-17.2766	Material 1	400	24	770.437	1091.49	1553.1	0	1553
10	2.52796	3603.23	-15.591	Material 1	400	24	800.538	1134.13	1648.88	0	1648.8
11	2.52796	3877.41	-13.9192	Material 1	400	24	828.984	1174.43	1739.4	0	1739
12	2.52796	4234.98	-12.2594	Material 1	400	24	868.152	1229.92	1864.03	0	1864.0
13	2.52796	4598.29	-10.61	Material 1	400	24	907.451	1285.6	1989.08	0	1989.0
14	2.52796	4942.6	-8.9695	Material 1	400	24	943.636	1336.86	2104.22	0	2104.2
15	2.52796	5268.19	-7.33635	Material 1	400	24	976.823	1383.88	2209.82	0	2209.8
16	2.52796	5575.3	-5.70917	Material 1	400	24	1007.12	1426.79	2306.21	0	2306.2
17	2.52796	5864.1	-4.0866	Material 1	400	24	1034.6	1465.73	2393.66	0	2393.6
18	2.52796	6134.71	-2.46731	Material 1	400	24	1059.35	1500.79	2472.42	0	2472.4
19	2.52796	6387.25	-0.849997	Material 1		24	1081.44	1532.08	2542.69	0	2542.6
20	2.52796	6621.73	0.766642	Material 1				1559.67			2604.6
21	2.52796	6838.18	2.38389	Material 1				1583.62			2658.4
			4.00305	1		24					2704.1
23	2.52796	7216.72	5.62541	Material 1		24	1144.07	1620.81	2741.99	0	2741.9

					f	ile:///C:/	/Users/Der	nise/AppD	ata/Local/	Femp/Roc	scienceTempSlid
24	2.52796	7378.61	7.25232	Material	400	24	1153.47	1634.13	2771.91	0	2771.91
25	2.52796	7522.02	8.88513	1 Material	400	24	1160.41	1643.96	2793.99	0	2793.99
26	2.52796	7646.72	10.5253	1 Material	400	24	1164.9	1650.32	2808.27	0	2808.27
27	2.52796	7752.44	12.1742	1 Material	400	24	1166.94	1653.21	2814.75	0	2814.75
28	2.52796	7838.85	13.8334	1 Material	400	24	1166.51	1652.61	2813.41	0	2813.41
29	2.52796	7905.55	15.5045	1 Material	400	24	1163.63	1648.52	2804.21	0	2804.21
30	2.52796	7952.08	17.1893	1 Material	400	24	1158.25	1640.9	2787.1	0	2787.1
31	2.52796	7977.92	18.8896	1 Material	400	24	1150.35	1629.71	2761.97	0	2761.97
32	2.52796	7982.46	20.6073	1 Material 1	400	24	1139.9	1614.91	2728.74	0	2728.74
33	2.52796	7964.99	22.3447	1 Material 1	400	24	1126.86	1596.44	2687.24	0	2687.24
34	2.52796	7924.71	24.104	Material 1	400	24	1111.17	1574.21	2637.32	0	2637.32
35	2.52796	7860.7	25.8879	- Material 1	400	24	1092.78	1548.15	2578.79	0	2578.79
36	2.52796	7771.9	27.6991	Material 1	400	24	1071.6	1518.15	2511.4	0	2511.4
37	2.52796	7657.09	29.541	Material 1	400	24	1047.55	1484.08	2434.87	0	2434.87
38	2.52796	7514.86	31.4171	Material 1	400	24	1020.53	1445.8	2348.9	0	2348.9
39	2.52796	7332.01	33.3316	Material 1	400	24	989.236	1401.46	2249.32	0	2249.32
40	2.52796	6950.73	35.2892	Material 1	400	24	937.721	1328.48	2085.4	0	2085.4
41	2.52796	6481.21	37.2954	Material 1	400	24	877.804	1243.59	1894.74	0	1894.74
42	2.52796	5975.77	39.3567	Material 1	400	24	815.02	1154.65	1694.97	0	1694.97
43	2.52796	5431.21	41.4809	Material 1	400	24	749.217	1061.42	1485.58	0	1485.58
		4843.59		1	400	24	680.22	963.674	1266.03	0	1266.03
45	2.52796	4208.09	45.9575	Material 1	400	24	607.829	861.117	1035.69	0	1035.69
		3518.61		1	400				793.806		793.806
		2767.3		1	400						
48	2.1325	1699.02	53.251	Material 2	450	24	399.689	566.243	261.086	0	261.086

					f	ĭle:///C:	/Users/De	nise/AppD	ata/Local/	Temp/Roc	scienceTerr	npSlid
49	2.1325	1062.47	55.5974	Material 2	450	24	324.971	460.389	23.3352	0	23.3352	
50	2.1325	365.215	58.0942	Material 2	450	24	246.795	349.637	-225.42	0	-225.42	

Interslice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 1.56659

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	0.0509766	14.0076	0	0	0
2	2.60286	12.8454	1022.67	0	0
3	5.15474	11.7633	2223.29	0	0
4	7.70663	10.7588	3562.54	0	0
5	10.2585	9.82947	5005.76	0	0
6	12.8104	8.97327	6522.33	0	0
7	15.3623	8.18833	8085.16	0	0
8	17.9142	7.47302	9670.25	0	0
9	20.466	6.82588	11256.3	0	0
10	23.0179	6.24564	12824.6	0	0
11	25.5698	5.73118	14358.3	0	0
12	28.1217	5.28152	15846.3	0	0
13	30.6736	4.89585	17297.4	0	0
14	33.2255	4.57344	18697.7	0	0
15	35.7773	4.31372	20029.3	0	0
16	38.3292	4.11624	21276.3	0	0
17	40.8811	3.98063	22423.9	0	0
18	43.433	3.90667	23459.1	0	0
19	45.9849	3.89422	24370	0	0
20	48.5368	3.94326	25145.8	0	0
21	51.0886	4.05388	25777.2	0	0
22	53.6405	4.22627	26255.7	0	0
23	56.1924	4.46074	26574	0	0
24	58.7443	4.7577	26725.9	0	0
25	61.2962	5.11767	26705.9	0	0
26	63.848	5.54133	26509.8	0	0
27	66.3999	6.02943	26134.3	0	0
28	68.9518	6.58291	25576.9	0	0
29	71.5037	7.20281	24836.3	0	0
30	74.0556	7.89035	23912	0	0
31	76.6075	8.64691	22804.8	0	0
32	79.1593	9.47404	21516.4	0	0
33	81.7112	10.3735	20049.6	0	0
34	84.2631	11.3473	18408.4	0	0
35	86.815	12.3977	16598.3	0	0
36	89.3669	13.5271	14626	0	0
37	91.9188	14.7383	12499.7	0	0
38	94.4706	16.0347	10229.5	0	0
39	97.0225	17.4196	7827.02	0	0
40	99.5744	18.8972	5328.74	0	0
41	102.126	20.4721	2845.61	0	0
42	104.678	22.1495	420.21	0	0
43	107.23	23.9355	-1909.45	0	0

11 of 14

44	109.782	25.8368	-4100.62	0	o
45	112.334	27.8617	-6104.87	0	0
46	114.886	30.0194	-7866.98	0	0
47	117.438	32.3211	-9323.39	0	0
48	119.989	34.7801	-10400.3	0	0
49	122.733	37.6179	-10895.4	0	0
50	125.477	40.6807	-10712.7	0	0
51	128.221	44	0	0	0

• Global Minimum Query (janbu simplified) - Safety Factor: 1.41671

12 of 14

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	0.203906	14.0302	0	0	0
2	2.73187	12.4802	1438.76	0	0
3	5.25983	11.0419	3188.47	0	0
4	7.78779	9.70947	5174.74	0	0
5	10.3158	8.47756	7335.06	0	0
6	12.8437	7.3417	9616.45	0	0
7	15.3717	6.29795	11973.7	0	0
8	17.8996	5.34289	14368.2	0	0
9	20.4276	4.47354	16766.4	0	0
10	22.9556	3.6873	19139.7	0	0
11	25.4835	2.98191	21463.2	0	0
12	28.0115	2.3554	23719.5	0	0
13	30.5395	1.80609	25923.2	0	0
14	33.0674	1.33253	28057.2	0	0
15	35.5954	0.933523	30097.7	0	0
16	38.1233	0.608053	32023.7	0	0
17	40.6513	0.35532	33816.2	0	0
18	43.1793	0.174708	35458.4	0	0
19	45.7072	0.0657796	36935.3	0	0
20	48.2352	0.0282739	38233.5	0	0
21	50.7632	0.0621012	39341.1	0	0
22	53.2911	0.167342	40248	0	0
23	55.8191	0.34425	40945	0	0
24	58.347	0.593251	41424.4	0	0
25	60.875	0.914952	41679.8	0	0
26	63.403	1.31015	41705.8	0	0
27	65.9309	1.77983	41498.5	0	0
28	68.4589	2.3252	41054.9	0	0
29	70.9869	2.94769	40373.2	0	0
30	73.5148	3.64897	39453	0	0
31	76.0428	4.43099	38295	0	0
32	78.5707	5.296	36901.2	0	0
33	81.0987	6.24657	35275.3	0	0
34	83.6267	7.28566	33422	0	0
35	86.1546	8.41669	31348.2	0	0
36	88.6826	9.64354	29062.3	0	0
37	91.2106	10.9707	26574.8	0	0
38	93.7385	12.4033	23898.9	0	0
39	96.2665	13.9475	21050	0	0
40	98.7944	15.61	18053.2	0	0
41	101.322	17.3992	15026.1	0	0
42	103.85	19.3247	12042.9	0	0
43	106.378	21.398	9156.38	0	0

13 of 14

44	108.906	23.633	6427.86	0	0
45	111.434	26.0469	3930.15	0	0
46	113.962	28.6608	1750.67	0	0
47	116.49	31.5017	-3.58852	0	0
48	119.018	34.6048	-1198.83	0	0
49	121.151	37.4606	-1499.29	0	0
50	123.283	40.5748	-1133.47	0	0
51	125.416	44	0	0	0

Entity Information

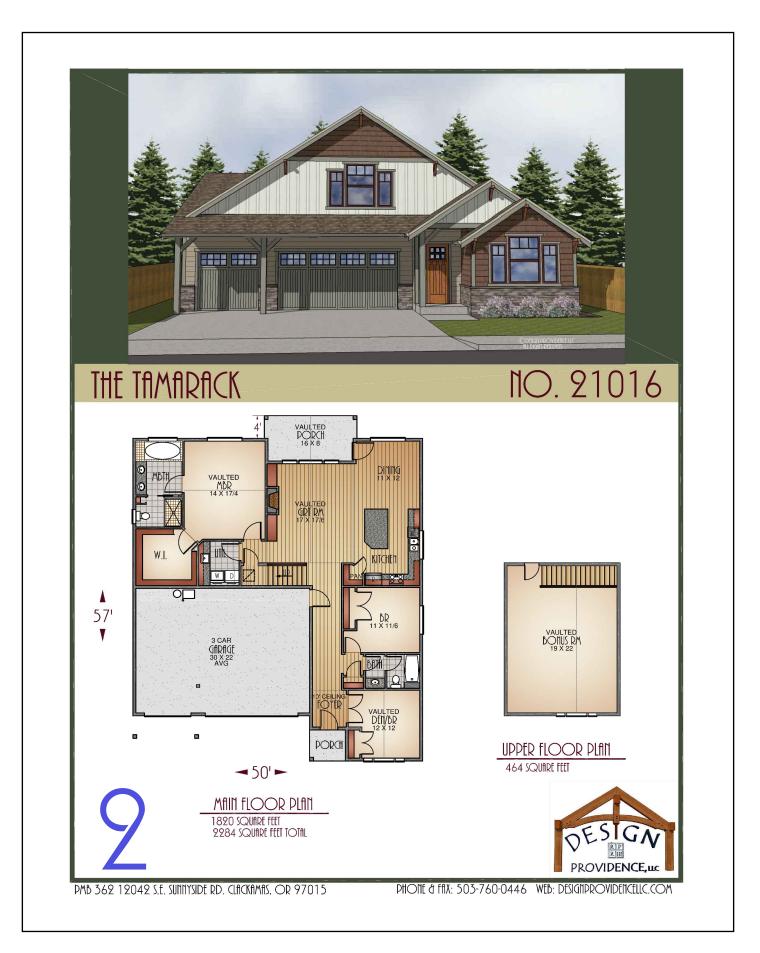
Group: Group 1 🔶

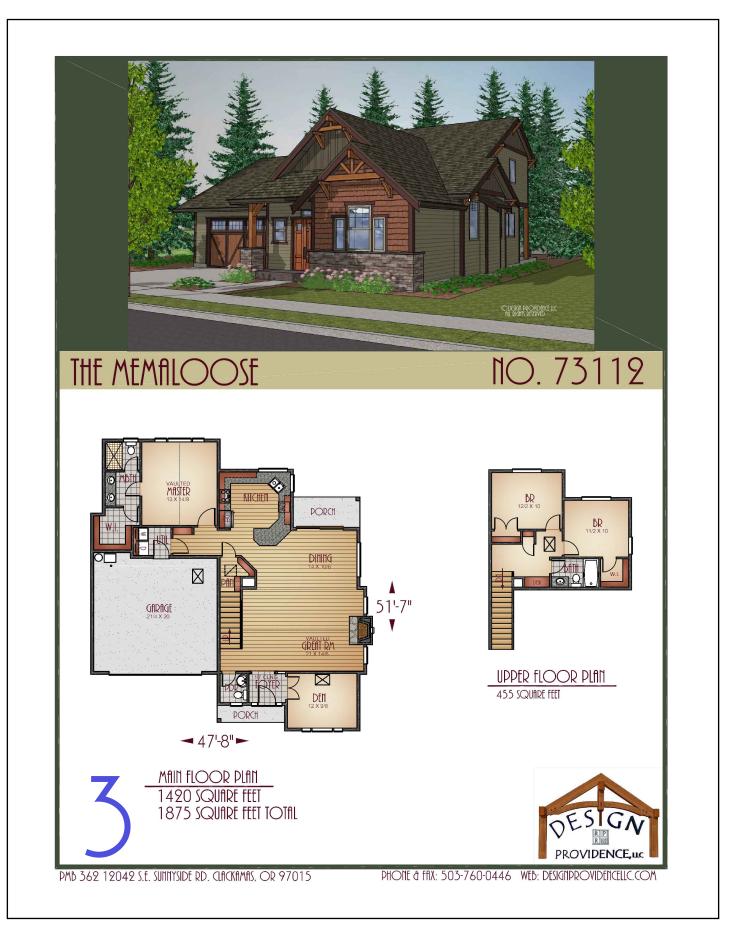
Shared Entities

Туре	Coordinates			
	x	Y		
	160	0		
	160	42		
	160	44		
External Boundary	98	44		
	27	18		
	0	14		
	0	0		
			•	
	X	Y		
Material Boundary	27	18		
	160	42		
			1	

EXHIBIT J

ABCHITECTURAL PLANS


The Views Upper & Lower Views S.F. Detached Houses


Table 17.90.150 – A: Number of Required Design Elements Garage Width Percent: Greater than 60 percent and up to 70 percent or a garage under home design 7 elements

Typical Design Elements:

- 1. Covered porch entry minimum 40 square foot covered front porch, minimum five (5) feet deep.
- 2. Building face containing two (2) or more off-sets of 16 inches or greater
- 3. Roof overhang of 16 inches or greater
- 4. Columns, pillars or posts at least four (4) inches wide and containing larger base materials.
- 5. Decorative gables cross or diagonal bracing, shingles, trim, corbels, exposed rafter ends, or brackets
- 6. Decorative "belly-band" between building floors or gables
- 7. Windows and front door occupying a minimum of 10 percent of the primary street facing façade
- 8. Sidelight and/or transom windows associated with the front door or windows in the front door
- 9. Window grids on all façade windows
- 10. Other item mixing board and batt siding with lap siding for architectural detail



The Views Lower Views S.F. Attached Townhouses

Table 17.90.150 – A: Number of Required Design Elements *Detached Garage (An independent, self-supporting structure separated from the dwelling by at least 6 feet) 4 elements plus 4 elements on the garage *Rear Loaded Garage 4 elements (zero for garage)

Townhouse Design Elements:

Front Façade:

- 1. Covered porch entry minimum 40 square foot covered front porch, minimum five (5) feet deep.
- 2. Building face containing two (2) or more off-sets of 16 inches or greater
- 3. Roof overhang of 16 inches or greater
- 4. Columns, pillars or posts at least four (4) inches wide and containing larger base materials.
- 5. Decorative gables cross or diagonal bracing, shingles, trim, corbels, exposed rafter ends, or brackets
- 6. Decorative "belly-band" between building floors or gables
- 7. Windows and front door occupying a minimum of 10 percent of the primary street facing façade
- 8. Sidelight and/or transom windows associated with the front door or windows in the front door
- 9. Window grids on all façade windows
- 10. Other item mixing board and batt siding with lap siding for architectural detail

Additional Street Facing Façades (3) minimum:

- 1. Roof overhang of 16 inches or greater.
- 2. Decorative "belly-band" between building floors or gables
- 3. Window grids on all façade windows

ADDITIONAL REQUIREMENTS

Roofs shall be gabled or hip type roofs (minimum pitch 3:12) Proposed: 7:12 pitch

Garage Design Elements:

- 1. Roof overhang of 16 inches or greater
- 2. Decorative gables cross or diagonal bracing, shingles, trim, corbels, exposed rafter ends, or brackets
- 3. Decorative "belly-band" between building floors or gables

