

MINUTES

City Council Work Session Meeting Wednesday, February 13, 2019 City Hall- Council Chambers, 39250 Pioneer Blvd., Sandy, Oregon 97055 6:30 PM

COUNCIL PRESENT:	Carl Exner, Councilor, Jeremy Pietzold, Council President, John Hamblin, Councilor,
	Laurie Smallwood, Councilor, Jan Lee, Councilor, and Stan Pulliam, Mayor

COUNCIL ABSENT:

STAFF PRESENT:

MEDIA PRESENT:

Page

1. Presentation

1.1. Introduction (Mayor Stan Pulliam) Waste Water Treatment Plant Presentation by MurraySmith Sandy WSFP CityCouncil 2019.02 2 - 66

Mayor, Stan Pulliam

KPL

City Recorder, Karey Milne

Agenda

WWTP Timeline

Overview of Wastewater System

Winter (Nov-Apr) Tickle Creek Discharge

- During the winter, treated wastewater from the WWTP is released to Tickle Creek, a small tributary of the Clackamas River Basin.
- Tickle Creek is a small stream and does not have the capacity to accept any more wastewater at the discharge location.

Summer (May-Oct) Water Recycling/Storage @ Iseli Nursery

Image Source: Iseli Nursery

Key Challenges

- 1. "Leaky" Wastewater Collection System
- 2. WWTP Capacity and Footprint
- 3. Community Growth
- 4. Limitations of Oregon Laws and Regulations

Key Challenge: "Leaky" Wastewater Collection System

Peaking Factor (PIF/AAF): 9/1 average 15/1 worst 5/1 is typical

Key Challenge: "Leaky" Wastewater Collection System

Key Challenge: WWTP Capacity and Footprint

murraysmīth 🔪

Key Challenge: Community Growth

Population Forecast

Population	Employees	
10,908	5,044	
14,377	6,648	
18,980	8,763	
22,400	10,342	
	10,908 14,377 18,980	

#Projected population based on an 2.8% annual growth rate as stated in the 2015 Sand Urbanization Study.

- Sandy is one of the fastest growing communities in Clackamas County & Oregon.
- Population has doubled in past 20 years, and will double again in the next 20!

 murraysmith

Key Challenge: Limitations of Oregon Laws and Regulations

- Three Basin Rule
- NPDES Permit
- Oregon Dilution Rule
- Recycled Water Irrigation

Current NPDES Permit

	Averag	ge Effluent	Monthly*	Weekly*	Daily
	Conce	entrations	Average	Average	Maximum
Parameter	Monthly	Weekly	lb/day⊥	lb/day	Ibs
BOD₅	10 mg/L	15 mg/L	125	187	250
TSS	10 mg/L	15 mg/L	125	187	250

- Tickle Creek discharge November through April Only
- No Tickle Creek discharge May through October Water recycling at Iseli Nursery
- Three Basin Rule (OAR 340-041-0350) does not allow mass load limits increase in the Clackamas River Sub-basin.

Oregon Dilution Rule

By 2040, WWTP discharge will exceed allowable discharge in Tickle Creek about half the time.

Need more streamflow!

Recycled Water Irrigation

- Oregon regulations limit recycled water irrigation to agronomic uptake.
- For the potted plants, Iseli irrigates when dry soils are observed.
- Often low agronomic demands in May and October when no Tickle Creek discharge allowed.
- Need significantly more offsite RW storage to continue current discharge.

3. Existing WW System Evaluation

Overall Approach: Balanced WW System Investments

Three Parts:

- A. Collection System Rehabilitation
- B. WWTP Capacity Expansion
- C. Discharge/Storage/Reuse

Collection System Rehab Approach: Rainfall Derived Infiltration and Inflow (RDII)

Collection System Rehab Approach: Flow Monitoring and Modeling

Collection System Rehab Approach: <u>Cost-effective</u>ness of Rehabilitation Strategies

Method	% Peak I/I Removal
Mains and Laterals	65 to 88%
Mains and ROW Laterals Only	40%
Mainlines Only	12 to 16%

Method	\$/gallons removed
Mains and Laterals	0.41
Laterals Only	26.40
Mainlines Only	27.79

Collection System Rehab Approach: Initial Phases Generally Most Effective

Phase	Cost	I/I reduction	\$/gallons removed
1 and 2	\$3.0M	6.4 mgd	0.47
3	\$3.1M	2.2 mgd	1.41
4	\$6.0M	2.1 mgd	2.86

Example:

City of Sweet Home, Oregon

Collection System Rehab Approach: Long-Term Commitment to Program

Example:

City of Sweet Home, Oregon

Collection System Rehab Approach: Sewer Basin Delineation

Collection System Rehab Approach: Basin 8 Wet-Weather Response

Existing WWTP Upgrades: 4 Scenarios based on peak flows

Discharge/Storage/Reuse: Additional Offsite RW Storage

Discharge/Storage/Reuse: Outfall Relocation downstream

Existing WW System Evaluation: Combined Alternative Costs

ltem	RDII REDUCTION LEVEL			
item	9.0 MGD	10.5 MGD	14.0 MGD	17.5 MGD
Collection System Upgrades	\$35.5M	\$23.3M	\$16.2M	\$11.9M
WWTP Upgrades	\$16.2M	\$19.3M	\$25.1M	\$31.7M
Storage/Discharge Upgrades	\$19.7M	\$20M	\$20.7M	\$21.5M
Tota	\$ 71.4M	\$62.6M	\$62.0M	\$65.1M

Existing WW System Evaluation: Key Consideration

ltem	Estimated Cost
Collection System Rehabilitation (14.0 MGD Peak Flow)	\$16.2M
Existing WWTP Upgrades	\$25.1M

Storage/Discharge/R**éLimited Return on Investment (ROI)** \$20.7M

Total \$62.0M

4. Preliminary Recommended Plan

Collection System Improvements
Effluent Discharge Improvements
Treatment Improvements

Collection System Improvements: Phased Approach

Collection System Improvements: Target Cost/Gallon removed

Collection System Improvements Near-term Efforts

- Smoke Testing (City-wide)
- Flow Monitoring
- CCTV (Basins 2 and 8)
- Develop Private I/I Policy
- Remove Inflow Sources

Initial Inflow reduction steps could be very cost-effective in reducing WWTP peak flows

34

Effluent Discharge Improvements: Looking to the Sandy River

1993 WSFP evaluated four discharge alternatives

- 1. Tickle Creek/Iseli Nursery
- 2. Sandy River
- 3. Clackamas River
- 4. Export to Gresham

Sandy River discharge was a close second in 1993 alternatives evaluation.

Image Reference: The Freshwater Trust

Treatment Improvements: Four Alternatives Considered

- Alternative A Existing WWTP site with existing process approach and effluent pump station to the Sandy River
- Alternative B Existing WWTP site with partial MBR conversion and effluent pump station to the Sandy River
- Alternative C Existing WWTP site with primary clarifiers, anaerobic digestion, and effluent pump station to the Sandy River
- Alternative D Existing WWTP site with primary clarifiers and anaerobic digestion.
 Satellite MBR WW Facility

Treatment Improvements: Four Alternatives Considered

- Alternative A Existing WWTP site with existing process approach and effluent pump station to the Sandy River
- AlternativALTS: A-CTREQUIRE PUMPING FROM on to the Sandy River EXISTING WWTP TO SANDY RIVER
- Alternative C Existing WWTP site with primary clarifiers, anaerobic digestion, and effluent pump station to the Sandy River
- Alternative D Existing WWTP site with primary clarifiers and anaerobic digestion.
 Satellite MBR WW Facility

Alternative Cost Summary

Recommended Plan Overview

Eastside Satellite MBR Facility Layout

Overview of Recommended Improvements

THE PLAN PROVIDES FOR:

- Avoids new trunkline to existing WWTP
- Delays major upgrades at existing WWTP and new effluent pump station and force main
- Greatest ability to phase improvements
- Long-term river discharge to support community growth

Alternative D: Phased Implementation Plan

Wastewater System Improvements	Phase 1 (2018-2025)	Phase 2 (2025-2032)	Phase 3 (2032-2040)	Beyond 2040
Collection System Capacity Upgrades	\$ 4.30 M	\$ 0.90 M	\$ 0.9 M	-
Collection System RDII Reduction Program	\$ 8.34 M	\$ 1.60 M	\$ 1.80 M	\$ 12.00 M
Existing WWTP Improvements	\$ 2.50 M	\$ 19.80 M	\$ 1.40 M	-
Eastside Satellite Treatment Facility	\$ 19.20 M		\$ 3.50 M	-
Diversion Pump Station	\$ 7.20 M			
Force main to Sandy Outfall	\$ 1.00 M			
Sandy River Outfall	\$ 12.80 M			
Iseli Pump Station Upgrades/ Effluent Pump Station & Force Main to Sandy River	\$ 1.40 M			\$ 25.30 M
Total	l \$ 56.74 M	\$ 22.30 M	\$ 7.60 M	\$ 37.30 M

5. Next Steps and Questions

Next Steps

- Continue with public process & Plan adoption
- Renegotiate MAO schedule with Oregon DEQ
- Prepare Letter of Interest (LOI) for potential WIFIA funding
- Site visits to reference OR/WA MBR WWTP facilities
- Prepare Conceptual layouts for the Diversion PS and Satellite MBR Facility
- Sandy River outfall alignment study
- Sandy River temperature evaluation
- Conduct Kaizen permitting meeting with local, state and federal agencies

Near-Term Schedule

- January 16, 2019 Revise Draft Facilities Plan per DEQ comments and re-submit
- January 18, 2019 Draft available to the public and solicit comments
- February 1, 2019 DEQ comments on updated Draft Facilities Plan
- February 13, 2019 Public Meeting #2
- March 2019 Close of Public Comment Period
- April/May 2019 Respond to Public Comments & Renegotiate MAO
- June/July 2019 Finalize Wastewater System Facilities Plan for City Council Adoption
- Summer/Fall 2019 Begin Adopted Plan Implementation

For more information Wastewater System Facility Plan link on City webpage: • https://www.ci.sandy.or.us/sewer-wastewater-system-facilities-plan

Existing WWTP

Winter Discharge (November - April)

Summer Reuse (May-October)

murraysmīth

50

murraysmīth

Collection System Recommendations

Component and Phase	Cost
RDII Reduction – Phase 1: Includes monitoring, inspection and repair of priority gravity mainlines and laterals, correcting stormwater connections	\$8.3 M
Capacity Improvements – Phase 1: Upsizing infrastructure (pump stations, pressure and gravity mainlines)	\$4.3 M
Capacity Improvements – Phase 2 and Phase 3	\$1.8 M
RDII Reduction – Phase 2 and Phase 3	\$3.4 M

Princeton Sewer Operating Committee, New Jersey

I/I reduction method Effectiveness at reducing I/I¹

Sewer mains and manholes 20 – 25%

Add lower laterals 40 – 45%

Add upper laterals 70 – 75%

¹Based on 2010 WEFTEC proceedings

murraysmīth >

Other Success Stories

- Johnson County Wastewater District, Kansas
 - 40 percent of peak RDII attributed to private laterals
- New Castle County Department of Special Services, Delaware
 - 55 percent peak RDII reduction if private laterals are addressed
- South Palos Township, Illinois
 - 40 to 60 percent peak RDII reduction if private laterals are addressed
- Other Northwest programs?

murraysmith

Summary of Costs for WWTP Upgrades for Peak Flow Scenarios

Item	9.0 MGD	10.5 MGD	14.0 MGD	17.5 MGD
Liquid Stream Upgrades	\$ 9.24 M	\$ 12.38 M	\$ 17.45 M	\$ 24.11 M
Solids Stream Upgrades	\$ 6.93 M	\$ 6.93 M	\$ 7.62 M	\$ 7.62 M
Total	\$ 16.17 M	\$ 19.31 M	\$ 25.07 M	\$ 31.73 M

RDII Reduction Optimized at 14.0 MGD

A. — Existing WWTP site with existing process approach and effluent pump station to the Sandy River

- Upgrade existing treatment plant with existing processes
- Rehab 2 basins
- New effluent pump station to Sandy River Outfall

Item	Cost
WWTP Upgrades	\$30.5M
Collection System Upgrades	\$13.4M
Effluent Infrastructure	\$38.1M
Total	\$82.0M

B. — Existing WWTP site with partial MBR conversion and effluent pump station to the Sandy River

- Upgrade existing treatment plant with advanced treatment technology
- Rehab 2 basins
- New effluent pump station to Sandy River Outfall

Item	Cost
WWTP Upgrades	\$39.0M
Collection System Upgrades	\$13.4M
Effluent Infrastructure	\$38.1M
Total	\$90.5M

C. – Existing WWTP site with primary clarifiers, anaerobic digestion, and effluent pump station to the Sandy River

- Upgrade existing treatment plant and improve solids handling
- Rehab 2 basins
- New effluent pump station to Sandy River Outfall

Item	Cost
WWTP Upgrades	\$34.3M
Collection System Upgrades	\$13.4M
Effluent Infrastructure	\$38.1M
Total	\$85.8M

D. — Existing WWTP site with primary clarifiers and anaerobic digestion. Satellite MBR WWR

- Split treatment with Existing WWTP and New Eastside satellite treatment facility construction
- Rehab 2 basin

• Satellite treatment facility effluent pump station and New Sandy River

Outfall

Item	Cost
WWTP Upgrades	\$47.3M
Collection System Upgrades	\$12.3M
Effluent Infrastructure	\$21.0M
Total	\$80.6M

Alternative D – Process Schematic/Phasing Liquids: SECONDARY CLARIFIERS CLARIFIERS 2 EXISTING 55' 2 NEW 65 **GRIT REMOVAL** AERATION BASINS **UV DISINFECTION** 2 TRAINS - EACH 3.5 MGD EXISTING 7MGD EXISTING 7MGD EXISTING WAGD EXISTING PUMP STATION GATED EXISTING FILTERS TO ISELI NURSERY (FUTURE BETLUENT PS)

63

Inflow Sources

- Cross-connected storm drains
- Roof leaders
- Driveway drains
- Submerged manhole covers

Basin 7 Run 13 Incident 22

Basin 7 Run 14 Incident 27